101
|
Neumann DP, Goodall GJ, Gregory PA. Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin Cell Dev Biol 2017; 75:50-60. [PMID: 28789987 DOI: 10.1016/j.semcdb.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Interconversions between epithelial and mesenchymal states, often referred to as epithelial mesenchymal transition (EMT) and its reverse MET, play important roles in embryonic development and are recapitulated in various adult pathologies including cancer progression. These conversions are regulated by complex transcriptional and post-transcriptional mechanisms including programs of alternative splicing which are orchestrated by specific splicing factors. This review will focus on the latest developments in our understanding of the splicing factors regulating epithelial mesenchymal plasticity associated with cancer progression and the induction of pluripotency, including potential roles for circular RNAs (circRNAs) which have been recently implicated in these processes.
Collapse
Affiliation(s)
- Daniel P Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
102
|
Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 2017; 36:6446-6461. [PMID: 28759043 PMCID: PMC5701091 DOI: 10.1038/onc.2017.246] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
The majority of long noncoding RNAs (lncRNAs) is still poorly characterized with respect to function, interactions with protein-coding genes, and mechanisms that regulate their expression. As for protein-coding RNAs, epigenetic deregulation of lncRNA expression by alterations in DNA methylation might contribute to carcinogenesis. To provide genome-wide information on lncRNAs aberrantly methylated in breast cancer we profiled tumors of the C3(1) SV40TAg mouse model by MCIp-seq (Methylated CpG Immunoprecipitation followed by sequencing). This approach detected 69 lncRNAs differentially methylated between tumor tissue and normal mammary glands, with 26 located in antisense orientation of a protein-coding gene. One of the hypomethylated lncRNAs, 1810019D21Rik (now called Esrp2-antisense (as)) was identified in proximity to the epithelial splicing regulatory protein 2 (Esrp2) that is significantly elevated in C3(1) tumors. ESRPs were shown previously to have a dual role in carcinogenesis. Both gain and loss have been associated with poor prognosis in human cancers, but the mechanisms regulating expression are not known. In-depth analyses indicate that coordinate overexpression of Esrp2 and Esrp2-as inversely correlates with DNA methylation. Luciferase reporter gene assays support co-expression of Esrp2 and the major short Esrp2-as variant from a bidirectional promoter, and transcriptional regulation by methylation of a proximal enhancer. Ultimately, this enhancer-based regulatory mechanism provides a novel explanation for tissue-specific expression differences and upregulation of Esrp2 during carcinogenesis. Knockdown of Esrp2-as reduced Esrp2 protein levels without affecting mRNA expression and resulted in an altered transcriptional profile associated with extracellular matrix (ECM), cell motility and reduced proliferation, whereas overexpression enhanced proliferation. Our findings not only hold true for the murine tumor model, but led to the identification of an unannotated human homolog of Esrp2-as which is significantly upregulated in human breast cancer and associated with poor prognosis.
Collapse
|
103
|
Katsura A, Tamura Y, Hokari S, Harada M, Morikawa M, Sakurai T, Takahashi K, Mizutani A, Nishida J, Yokoyama Y, Morishita Y, Murakami T, Ehata S, Miyazono K, Koinuma D. ZEB1-regulated inflammatory phenotype in breast cancer cells. Mol Oncol 2017; 11:1241-1262. [PMID: 28618162 PMCID: PMC5579340 DOI: 10.1002/1878-0261.12098] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/04/2017] [Indexed: 12/20/2022] Open
Abstract
Zinc finger E‐box binding protein 1 (ZEB1) and ZEB2 induce epithelial‐mesenchymal transition (EMT) and enhance cancer progression. However, the global view of transcriptional regulation by ZEB1 and ZEB2 is yet to be elucidated. Here, we identified a ZEB1‐regulated inflammatory phenotype in breast cancer cells using chromatin immunoprecipitation sequencing and RNA sequencing, followed by gene set enrichment analysis (GSEA) of ZEB1‐bound genes. Knockdown of ZEB1 and/or ZEB2 resulted in the downregulation of genes encoding inflammatory cytokines related to poor prognosis in patients with cancer, including IL6 and IL8, therefore suggesting that ZEB1 and ZEB2 have similar functions in terms of the regulation of production of inflammatory cytokines. Antibody array and ELISA experiments confirmed that ZEB1 controlled the production of the IL‐6 and IL‐8 proteins. The secretory proteins regulated by ZEB1 enhanced breast cancer cell proliferation and tumor growth. ZEB1 expression in breast cancer cells also affected the growth of fibroblasts in cell culture, and the accumulation of myeloid‐derived suppressor cells in tumors in vivo. These findings provide insight into the role of ZEB1 in the progression of cancer, mediated by inflammatory cytokines, along with the initiation of EMT.
Collapse
Affiliation(s)
- Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yusuke Tamura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoshi Hokari
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Mayumi Harada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Metabolic Care and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tsubasa Sakurai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kei Takahashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Anna Mizutani
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Nishida
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yuichiro Yokoyama
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
104
|
Kaneko H, Terasaki H. Biological Involvement of MicroRNAs in Proliferative Vitreoretinopathy. Transl Vis Sci Technol 2017; 6:5. [PMID: 28706757 PMCID: PMC5505124 DOI: 10.1167/tvst.6.4.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Even with a high surgical success rate for retinal detachment and proliferative vitreoretinopathy (PVR) supported by the robust improvement in vitrectomy surgery and its related devices, certain questions still remain for the pathogenesis and treatment of PVR. One of the important biological events in PVR is epithelial–mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells. MicroRNAs are noncoding, small, single-strand RNAs that posttranscriptionally regulate gene expression and have essential roles in homeostasis and pathogenesis in many diseases. Recently, microRNAs also had a critical role in EMT in many tissues and cells. One main purpose of this brief review is to describe the knowledge obtained from microRNA research, especially concerning vitreoretinal diseases. In addition, the potential role of microRNAs in prevention of PVR by regulating EMT in RPE cells is described. Understanding microRNA involvement in PVR could be helpful for developing new biological markers or therapeutic targets and reducing the rate of visual disability due to PVR.
Collapse
Affiliation(s)
- Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya Japan
| |
Collapse
|
105
|
Sistigu A, Di Modugno F, Manic G, Nisticò P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev 2017; 36:67-77. [PMID: 28595838 DOI: 10.1016/j.cytogfr.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Tumorigenesis and tumor progression relies on the dialectics between tumor cells, the extracellular matrix and its remodelling enzymes, neighbouring cells and soluble cues. The host immune response is crucial in eliminating or promoting tumor growth and the reciprocal coevolution of tumor and immune cells, during disease progression and in response to therapy, shapes tumor fate by activating innate and adaptive mechanisms. The phenotypic plasticity is a common feature of epithelial and immune cells and epithelial-mesenchymal transition (EMT) is a dynamic process, governed by microenvironmental stimuli, critical in tumor cell shaping, increased tumor cell heterogeneity and stemness. In this review we will outline how the dysregulation of microenvironmental signaling is crucial in determining tumor plasticity and EMT, arguing how therapy resistance hinges on these dynamics.
Collapse
Affiliation(s)
- Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy; Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00173, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
106
|
Budi EH, Duan D, Derynck R. Transforming Growth Factor-β Receptors and Smads: Regulatory Complexity and Functional Versatility. Trends Cell Biol 2017; 27:658-672. [PMID: 28552280 DOI: 10.1016/j.tcb.2017.04.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-β family proteins control cell physiology, proliferation, and growth, and direct cell differentiation, thus playing key roles in normal development and disease. The mechanisms of how TGF-β family ligands interact with heteromeric complexes of cell surface receptors to then activate Smad signaling that directs changes in gene expression are often seen as established. Even though TGF-β-induced Smad signaling may be seen as a linear signaling pathway with predictable outcomes, this pathway provides cells with a versatile means to induce different cellular responses. Fundamental questions remain as to how, at the molecular level, TGF-β and TGF-β family proteins activate the receptor complexes and induce a context-dependent diversity of cell responses. Among the areas of progress, we summarize new insights into how cells control TGF-β responsiveness by controlling the TGF-β receptors, and into the key roles and versatility of Smads in directing cell differentiation and cell fate selection.
Collapse
Affiliation(s)
- Erine H Budi
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA
| | - Dana Duan
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA.
| |
Collapse
|
107
|
Sinh ND, Endo K, Miyazawa K, Saitoh M. Ets1 and ESE1 reciprocally regulate expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. Cancer Sci 2017; 108:952-960. [PMID: 28247944 PMCID: PMC5448599 DOI: 10.1111/cas.13214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is a crucial morphological event that occurs during progression of epithelial tumors. We reported previously that levels of the δ‐crystallin/E2‐box factor 1 (δEF1) family proteins (Zinc finger E‐box binding homeobox 1 [ZEB1]/δEF1 and ZEB2/ Smad‐interacting protein 1), key regulators of the EMT, are positively correlated with EMT phenotypes and aggressiveness of breast cancer. Here, we show that Ets1 induces ZEB expression and activates the ZEB1 promoter, independently of its threonine 38 phosphorylation status. In the basal‐like subtype of breast cancer cells, siRNAs targeting Ets1 repressed expression of ZEBs and partially restored their epithelial phenotypes and sensitivity to antitumor drugs. Epithelium‐specific ETS transcription factor 1 (ESE1), a member of the Ets transcription factor family, was originally characterized as being expressed in an epithelial‐restricted pattern, placing it within the epithelium‐specific ETS subfamily. ESE1, highly expressed in the luminal subtype of breast cancer cells, was repressed by activation of the MEK–ERK pathway, resulting in induction of ZEBs through Ets1 upregulation. Conversely, Ets1, highly expressed in the basal‐like subtype, was repressed by inactivation of MEK–ERK pathway, resulting in reduction of ZEBs through ESE1 upregulation. These findings suggest that ESE1 and Ets1, whose expressions are reciprocally regulated by the MEK–ERK pathway, define the EMT phenotype through controlling expression of ZEBs in each subtype of breast cancer cells.
Collapse
Affiliation(s)
- Nguyen Duy Sinh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kaori Endo
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
108
|
Arase M, Tamura Y, Kawasaki N, Isogaya K, Nakaki R, Mizutani A, Tsutsumi S, Aburatani H, Miyazono K, Koinuma D. Dynamics of chromatin accessibility during TGF-β-induced EMT of Ras-transformed mammary gland epithelial cells. Sci Rep 2017; 7:1166. [PMID: 28446749 PMCID: PMC5430828 DOI: 10.1038/s41598-017-00973-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is induced by transforming growth factor (TGF)-β and facilitates tumor progression. We here performed global mapping of accessible chromatin in the mouse mammary gland epithelial EpH4 cell line and its Ras-transformed derivative (EpRas) using formaldehyde-assisted isolation of regulatory element (FAIRE)-sequencing. TGF-β and Ras altered chromatin accessibility either cooperatively or independently, and AP1, ETS, and RUNX binding motifs were enriched in the accessible chromatin regions of EpH4 and EpRas cells. Etv4, an ETS family oncogenic transcription factor, was strongly expressed and bound to more than one-third of the accessible chromatin regions in EpRas cells treated with TGF-β. While knockdown of Etv4 and another ETS family member Etv5 showed limited effects on the decrease in the E-cadherin abundance and stress fiber formation by TGF-β, gene ontology analysis showed that genes encoding extracellular proteins were most strongly down-regulated by Etv4 and Etv5 siRNAs. Accordingly, TGF-β-induced expression of Mmp13 and cell invasiveness were suppressed by Etv4 and Etv5 siRNAs, which were accompanied by the reduced chromatin accessibility at an enhancer region of Mmp13 gene. These findings suggest a mechanism of transcriptional regulation during Ras- and TGF-β-induced EMT that involves alterations of accessible chromatin, which are partly regulated by Etv4 and Etv5.
Collapse
Affiliation(s)
- Mayu Arase
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Tamura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Natsumi Kawasaki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunobu Isogaya
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Anna Mizutani
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
109
|
Dimitrova Y, Gruber AJ, Mittal N, Ghosh S, Dimitriades B, Mathow D, Grandy WA, Christofori G, Zavolan M. TFAP2A is a component of the ZEB1/2 network that regulates TGFB1-induced epithelial to mesenchymal transition. Biol Direct 2017; 12:8. [PMID: 28412966 PMCID: PMC5392957 DOI: 10.1186/s13062-017-0180-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 01/28/2023] Open
Abstract
Background The transition between epithelial and mesenchymal phenotypes (EMT) occurs in a variety of contexts. It is critical for mammalian development and it is also involved in tumor initiation and progression. Master transcription factor (TF) regulators of this process are conserved between mouse and human. Methods From a computational analysis of a variety of high-throughput sequencing data sets we initially inferred that TFAP2A is connected to the core EMT network in both species. We then analysed publicly available human breast cancer data for TFAP2A expression and also studied the expression (by mRNA sequencing), activity (by monitoring the expression of its predicted targets), and binding (by electrophoretic mobility shift assay and chromatin immunoprecipitation) of this factor in a mouse mammary gland EMT model system (NMuMG) cell line. Results We found that upon induction of EMT, the activity of TFAP2A, reflected in the expression level of its predicted targets, is up-regulated in a variety of systems, both murine and human, while TFAP2A’s expression is increased in more “stem-like” cancers. We provide strong evidence for the direct interaction between the TFAP2A TF and the ZEB2 promoter and we demonstrate that this interaction affects ZEB2 expression. Overexpression of TFAP2A from an exogenous construct perturbs EMT, however, in a manner similar to the downregulation of endogenous TFAP2A that takes place during EMT. Conclusions Our study reveals that TFAP2A is a conserved component of the core network that regulates EMT, acting as a repressor of many genes, including ZEB2. Reviewers This article has been reviewed by Dr. Martijn Huynen and Dr. Nicola Aceto. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0180-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoana Dimitrova
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Andreas J Gruber
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Nitish Mittal
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Souvik Ghosh
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Beatrice Dimitriades
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Daniel Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - William Aaron Grandy
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland.
| |
Collapse
|
110
|
Rodríguez-Mateo C, Torres B, Gutiérrez G, Pintor-Toro JA. Downregulation of Lnc-Spry1 mediates TGF-β-induced epithelial-mesenchymal transition by transcriptional and posttranscriptional regulatory mechanisms. Cell Death Differ 2017; 24:785-797. [PMID: 28186499 DOI: 10.1038/cdd.2017.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/16/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of regulatory genes that participate in a wide range of biological processes, including proliferation, differentiation and development, as well as in a broad spectrum of diseases. Although the role of lncRNAs in TGF-β-induced epithelial-to-mesenchymal transition (EMT) has been well established, little is known about the role of lncRNAs as immediate-early regulators of EMT. Here lnc-Spry1 is identified as an immediate-early regulator of EMT that is downregulated by TGF-β. It is also found that knockdown of lnc-Spry1 promotes a mesenchymal-like phenotype and results in increased cell migration and invasion. In addition, it is shown that lnc-Spry1 depletion preferentially affects the expression of TGF-β-regulated gene targets. Moreover, lnc-Spry1 associates with U2AF65 splicing factor, suggesting a role in alternative splicing. Depletion of lnc-Spry1 induces, as TGF-β, isoform switching of fibroblast growth factor receptors, resulting in FGF-2-sensitive cells. Taken together, these results show that lnc-Spry1 could act as an early mediator of TGF-β signaling and reveal different roles for a lncRNA in modulating transcriptional and posttranscriptional gene expression.
Collapse
Affiliation(s)
- Cristina Rodríguez-Mateo
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Avda Américo Vespucio s/n, Seville 41092, Spain
| | - Belén Torres
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Avda Américo Vespucio s/n, Seville 41092, Spain
| | | | - José A Pintor-Toro
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Avda Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|
111
|
EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 2017; 16:8. [PMID: 28137272 PMCID: PMC5282733 DOI: 10.1186/s12943-016-0579-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/25/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with metastasis formation as well as with generation and maintenance of cancer stem cells. In this way, EMT contributes to tumor invasion, heterogeneity and chemoresistance. Morphological and functional changes involved in these processes require robust reprogramming of gene expression, which is only partially accomplished at the transcriptional level. Alternative splicing is another essential layer of gene expression regulation that expands the cell proteome. This step in post-transcriptional regulation of gene expression tightly controls cell identity between epithelial and mesenchymal states and during stem cell differentiation. Importantly, dysregulation of splicing factor function and cancer-specific splicing isoform expression frequently occurs in human tumors, suggesting the importance of alternative splicing regulation for cancer biology. In this review, we briefly discuss the role of EMT programs in development, stem cell differentiation and cancer progression. Next, we focus on selected examples of key factors involved in EMT and stem cell differentiation that are regulated post-transcriptionally through alternative splicing mechanisms. Lastly, we describe relevant oncogenic splice-variants that directly orchestrate cancer stem cell biology and tumor EMT, which may be envisioned as novel targets for therapeutic intervention.
Collapse
|
112
|
Guo Q. Changes in mitochondrial function during EMT induced by TGFβ-1 in pancreatic cancer. Oncol Lett 2017; 13:1575-1580. [PMID: 28454293 PMCID: PMC5403440 DOI: 10.3892/ol.2017.5613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is linked to cancer. Differences in the number, morphology and function of mitochondria have been observed between normal cells and cancer cells. However, changes in mitochondrial function during epithelial-mesenchymal transition (EMT) in pancreatic cancer are less known. In the present study, the cultured human pancreatic cancer cell line Panc-1 was treated with transforming growth factor (TGF)β-1. Mitochondrial functions following TGFβ-1 exposure in pancreatic cancer were investigated. It was noticed that TGFβ-1 treatment induces morphologic changes and a shift from epithelial to mesenchymal phenotype in pancreatic cancer. Furthermore, increased mitochondrial mass was detected in pancreatic cancer following TGFβ-1 treatment. Besides, the production of reactive oxygen species in TGFβ-1-treated pancreatic cancer cells significantly increased compared with the control cells. Our results indicate that the phenomenon of EMT in pancreatic cancer has an association with mitochondrial dysfunction. Mitochondrial dysfunction may be a cause of EMT in pancreatic cancer, which leads to heterogeneity in pancreatic cancer, and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Qingqu Guo
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
113
|
Luz FAC, Brígido PC, Moraes AS, Silva MJB. Aberrant Splicing in Cancer: Mediators of Malignant Progression through an Imperfect Splice Program Shift. Oncology 2016; 92:3-13. [PMID: 27794578 DOI: 10.1159/000450650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 01/07/2023]
Abstract
Although the efforts to understand the genetic basis of cancer allowed advances in diagnosis and therapy, little is known about other molecular bases. Splicing is a key event in gene expression, controlling the excision of introns decoded inside genes and being responsible for 80% of the proteome amplification through events of alternative splicing. Growing data from the last decade point to deregulation of splicing events as crucial in carcinogenesis and tumor progression. Several alterations in splicing events were observed in cancer, caused by either missexpression of or detrimental mutations in some splicing factors, and appear to be critical in carcinogenesis and key events during tumor progression. Notwithstanding, it is difficult to determine whether it is a cause or consequence of cancer and/or tumorigenesis. Most reviews focus on the generated isoforms of deregulated splicing pattern, while others mainly summarize deregulated splicing factors observed in cancer. In this review, events associated with carcinogenesis and tumor progression mainly, and epithelial-to-mesenchymal transition, which is also implicated in alternative splicing regulation, will be progressively discussed in the light of a new perspective, suggesting that splicing deregulation mediates cell reprogramming in tumor progression by an imperfect shift of the splice program.
Collapse
Affiliation(s)
- Felipe Andrés Cordero Luz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | | | | | | |
Collapse
|
114
|
Tripathi V, Sixt KM, Gao S, Xu X, Huang J, Weigert R, Zhou M, Zhang YE. Direct Regulation of Alternative Splicing by SMAD3 through PCBP1 Is Essential to the Tumor-Promoting Role of TGF-β. Mol Cell 2016; 64:549-564. [PMID: 27746021 DOI: 10.1016/j.molcel.2016.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 01/17/2023]
Abstract
In advanced stages of cancers, TGF-β promotes tumor progression in conjunction with inputs from receptor tyrosine kinase pathways. However, mechanisms that underpin the signaling cooperation and convert TGF-β from a potent growth inhibitor to a tumor promoter are not fully understood. We report here that TGF-β directly regulates alternative splicing of cancer stem cell marker CD44 through a phosphorylated T179 of SMAD3-mediated interaction with RNA-binding protein PCBP1. We show that TGF-β and EGF respectively induce SMAD3 and PCBP1 to colocalize in SC35-positive nuclear speckles, and the two proteins interact in the variable exon region of CD44 pre-mRNA to inhibit spliceosome assembly in favor of expressing the mesenchymal isoform CD44s over the epithelial isoform CD44E. We further show that the SMAD3-mediated alternative splicing is essential to the tumor-promoting role of TGF-β and has a global influence on protein products of genes instrumental to epithelial-to-mesenchymal transition and metastasis.
Collapse
Affiliation(s)
- Veenu Tripathi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Katherine M Sixt
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shaojian Gao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xuan Xu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ming Zhou
- Laboratory of Protein Characterization, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
115
|
Abstract
Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
116
|
Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, Cataldo I, Rusev BC, Lawlor RT, Diodoro MG, Milella M, Grazi GL, Bissell MJ, Scarpa A, Nisticò P. The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome. Oncoimmunology 2016; 5:e1221556. [PMID: 28123868 PMCID: PMC5213039 DOI: 10.1080/2162402x.2016.1221556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease in need of prognostic markers to address therapeutic choices. We have previously shown that alternative splicing of the actin regulator, hMENA, generates hMENA11a, and hMENAΔv6 isoforms with opposite roles in cell invasion. We examined the expression pattern of hMENA isoforms by immunohistochemistry, using anti-pan hMENA and specific anti-hMENA11a antibodies, in 285 PDACs, 15 PanINs, 10 pancreatitis, and normal pancreas. Pan hMENA immunostaining, absent in normal pancreas and low-grade PanINs, was weak in PanIN-3 and had higher levels in virtually all PDACs with 64% of cases showing strong staining. Conversely, the anti-invasive hMENA11a isoform only showed strong staining in 26% of PDAC. The absence of hMENA11a in a subset (34%) of pan-hMENA-positive tumors significantly correlated with poor outcome. The functional effects of hMENA isoforms were analyzed by loss and gain of function experiments in TGF-β1-treated PDAC cell lines. hMENA11a knock-down in PDAC cell lines affected cell-cell adhesion but not invasion. TGF-β1 cooperated with β-catenin signaling to upregulate hMENA and hMENAΔv6 expression but not hMENA11a In the absence of hMENA11a, the hMENA/hMENAΔv6 up-regulation is crucial for SMAD2-mediated TGF-β1 signaling and TGF-β1-induced EMT. Since the hMENA isoform expression pattern correlates with patient outcome, the data suggest that hMENA splicing and related pathways are novel key players in pancreatic tumor microenvironment and may represent promising targets for the development of new prognostic and therapeutic tools in PDAC.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Pierluigi Iapicca
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Francesca Di Modugno
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Paola Trono
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, Regina Elena National Cancer Institute , Rome, Italy
| | - Matteo Fassan
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Ivana Cataldo
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Borislav C Rusev
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Rita T Lawlor
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | | | - Michele Milella
- Medical Oncology, Regina Elena National Cancer Institute , Rome, Italy
| | - Gian Luca Grazi
- Hepato-pancreato-biliary Surgery Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Mina J Bissell
- Lawrence Berkeley National Laboratory, University of California , CA, USA
| | - Aldo Scarpa
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Paola Nisticò
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| |
Collapse
|
117
|
Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M, Girard L, Behrens C, Wistuba II, Gazdar AF, Hayward NK, Minna JD. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 2016; 126:3219-35. [PMID: 27500490 DOI: 10.1172/jci76725] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors. Both TGF-β- and MYC-induced EMT required ZEB1, but engaged distinct TGF-β-dependent and vitamin D receptor-dependent (VDR-dependent) pathways, respectively. Functionally, we found that ZEB1 causally promotes malignant progression of HBECs and tumorigenicity, invasion, and metastases in non-small cell lung cancer (NSCLC) lines. Mechanistically, ZEB1 expression in HBECs directly repressed epithelial splicing regulatory protein 1 (ESRP1), leading to increased expression of a mesenchymal splice variant of CD44 and a more invasive phenotype. In addition, ZEB1 expression in early stage IB primary NSCLC correlated with tumor-node-metastasis stage. These findings indicate that ZEB1-induced EMT and associated molecular changes in ESRP1 and CD44 contribute to early pathogenesis and metastatic potential in established lung cancer. Moreover, TGF-β and VDR signaling and CD44 splicing pathways associated with ZEB1 are potential EMT chemoprevention and therapeutic targets in NSCLC.
Collapse
|
118
|
Göttgens EL, Span PN, Zegers MM. Roles and Regulation of Epithelial Splicing Regulatory Proteins 1 and 2 in Epithelial-Mesenchymal Transition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:163-194. [PMID: 27692175 DOI: 10.1016/bs.ircmb.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The transformation of polarized epithelial cells into cells with mesenchymal characteristics by the morphogenetic process of epithelial-mesenchymal transition (EMT) is a well-characterized process essential for embryonic development and associated with cancer progression. EMT is a program driven by changes in gene expression induced by several EMT-specific transcription factors, which inhibit the expression of cell-cell adhesion proteins and other epithelial markers, causing a characteristic loss of cell-cell adhesion, a switch to mesenchymal cell morphology, and increased migratory capabilities. Recently, it has become apparent that in addition to these transcriptionally regulated changes, EMT may also be regulated posttranscriptionally, that is, by alternative splicing. Specifically, the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) have been described as epithelial-specific splicing master regulators specifically involved in EMT-associated alternative splicing. Here, we discuss the regulation of ESRP activity, as well as the evidence supporting a causal role of ESRPs in EMT.
Collapse
Affiliation(s)
- E-L Göttgens
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
119
|
Abstract
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
120
|
Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5070063. [PMID: 27367735 PMCID: PMC4961994 DOI: 10.3390/jcm5070063] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Transitory phenotypic changes such as the epithelial–mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue. One such cue, transforming growth factor β (TGFβ), prominently induces EMT via a group of specific transcription factors. The potency of TGFβ is partly based on its ability to perform two parallel molecular functions, i.e. to induce the expression of growth factors, cytokines and chemokines, which sequentially and in a complementary manner help to establish and maintain the EMT, and to mediate signaling crosstalk with other developmental signaling pathways, thus promoting changes in cell differentiation. The molecules that are activated by TGFβ signaling or act as cooperating partners of this pathway are impossible to exhaust within a single coherent and contemporary report. Here, we present selected examples to illustrate the key principles of the circuits that control EMT under the influence of TGFβ.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE 751 23 Uppsala, Sweden.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
121
|
Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition. Mol Cell Biol 2016; 36:1704-19. [PMID: 27044866 DOI: 10.1128/mcb.00019-16] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is an essential biological process during embryonic development that is also implicated in cancer metastasis. While the transcriptional regulation of EMT has been well studied, the role of alternative splicing (AS) regulation in EMT remains relatively uncharacterized. We previously showed that the epithelial cell-type-specific proteins epithelial splicing regulatory proteins 1 (ESRP1) and ESRP2 are important for the regulation of many AS events that are altered during EMT. However, the contributions of the ESRPs and other splicing regulators to the AS regulatory network in EMT require further investigation. Here, we used a robust in vitro EMT model to comprehensively characterize splicing switches during EMT in a temporal manner. These investigations revealed that the ESRPs are the major regulators of some but not all AS events during EMT. We determined that the splicing factor RBM47 is downregulated during EMT and also regulates numerous transcripts that switch splicing during EMT. We also determined that Quaking (QKI) broadly promotes mesenchymal splicing patterns. Our study highlights the broad role of posttranscriptional regulation during the EMT and the important role of combinatorial regulation by different splicing factors to fine tune gene expression programs during these physiological and developmental transitions.
Collapse
|
122
|
Sen A, Kumar P, Garg R, Lindsey SH, Katakam PVG, Bloodworth M, Pandey KN. Transforming growth factor β1 antagonizes the transcription, expression and vascular signaling of guanylyl cyclase/natriuretic peptide receptor A - role of δEF1. FEBS J 2016; 283:1767-81. [PMID: 26934489 DOI: 10.1111/febs.13701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/20/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
The objective of this study was to determine the role of transforming growth factor β1 (TGF-β1) in transcriptional regulation and function of the guanylyl cyclase A/natriuretic peptide receptor A gene (Npr1) and whether cross-talk exists between these two hormonal systems in target cells. After treatment of primary cultured rat thoracic aortic vascular smooth muscle cells and mouse mesangial cells with TGF-β1, the Npr1 promoter construct containing a δ-crystallin enhancer binding factor 1 (δEF1) site showed 85% reduction in luciferase activity in a time- and dose-dependent manner. TGF-β1 also significantly attenuated luciferase activity of the Npr1 promoter by 62%, and decreased atrial natriuretic peptide-mediated relaxation of mouse denuded aortic rings ex vivo. Treatment of cells with TGF-β1 increased the protein levels of δEF1 by 2.4-2.8-fold, and also significantly enhanced the phosphorylation of Smad 2/3, but markedly reduced Npr1 mRNA and receptor protein levels. Over-expression of δEF1 showed a reduction in Npr1 promoter activity by 75%, while deletion or site-directed mutagenesis of δEF1 sites in the Npr1 promoter eliminated the TGF-β1-mediated repression of Npr1 transcription. TGF-β1 significantly increased the expression of α-smooth muscle actin and collagen type I α2 in rat thoracic aortic vascular smooth muscle cells, which was markedly attenuated by atrial natriuretic peptide in cells over-expressing natriuretic peptide receptor A. Together, the present results suggest that an antagonistic cascade exists between the TGF-β1/Smad/δEF1 pathways and Npr1 expression and receptor signaling that is relevant to renal and vascular remodeling, and may be critical in the regulation of blood pressure and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Anagha Sen
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Meaghan Bloodworth
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| |
Collapse
|
123
|
Sakurai T, Isogaya K, Sakai S, Morikawa M, Morishita Y, Ehata S, Miyazono K, Koinuma D. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene 2016; 35:5000-9. [PMID: 26923328 PMCID: PMC5036161 DOI: 10.1038/onc.2016.35] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/27/2023]
Abstract
RNA-binding proteins provide a new layer of posttranscriptional regulation of RNA during cancer progression. We identified RNA-binding motif protein 47 (RBM47) as a target gene of transforming growth factor (TGF)-β in mammary gland epithelial cells (NMuMG cells) that have undergone the epithelial-to-mesenchymal transition. TGF-β repressed RBM47 expression in NMuMG cells and lung cancer cell lines. Expression of RBM47 correlated with good prognosis in patients with lung, breast and gastric cancer. RBM47 suppressed the expression of cell metabolism-related genes, which were the direct targets of nuclear factor erythroid 2-related factor 2 (Nrf2; also known as NFE2L2). RBM47 bound to KEAP1 and Cullin 3 mRNAs, and knockdown of RBM47 inhibited their protein expression, which led to enhanced binding of Nrf2 to target genomic regions. Knockdown of RBM47 also enhanced the expression of some Nrf2 activators, p21/CDKN1A and MafK induced by TGF-β. Both mitochondrial respiration rates and the side population cells in lung cancer cells increased in the absence of RBM47. Our findings, together with the enhanced tumor formation and metastasis of xenografted mice by knockdown of the RBM47 expression, suggested tumor-suppressive roles for RBM47 through the inhibition of Nrf2 activity.
Collapse
Affiliation(s)
- T Sakurai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - K Isogaya
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - S Sakai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - M Morikawa
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Y Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - S Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - K Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - D Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
124
|
Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep 2016; 6:21117. [PMID: 26887353 PMCID: PMC4758077 DOI: 10.1038/srep21117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Whereas miR-200 family is known to be involved in the epithelial-to-mesenchymal transition (EMT), a crucial biological process observed in normal and pathological contexts, it has been largely unclear how far the functional levels of these tiny RNAs alone can propagate the molecular events to accomplish this process within several days. By developing a potent inhibitor of miR-200 family members (TuD-141/200c), the expression of which is strictly regulatable by the Tet (tetracycline)-On system, we found using a human colorectal cell line, HCT116, that several direct gene target mRNAs (Zeb1/Zeb2, ESRP1, FN1and FHOD1) of miR-200 family were elevated with distinct kinetics. Prompt induction of the transcriptional suppressors, Zeb1/Zeb2 in turn reduced the expression levels of miR-200c/-141 locus, EpCAM, ESRP1 and E-Cad. The loss of ESRP1 subsequently switched the splicing isoforms of CD44 and p120 catenin mRNAs to mesenchymal type. Importantly, within 9 days after the release from the inhibition of miR-200 family, all of the expression changes in the 14 genes observed in this study returned to their original levels in the epithelial cells. This suggests that the inherent epithelial plasticity is supported by a weak retention of key regulatory gene expression in either the epithelial or mesenchymal states through epigenetic regulation.
Collapse
|
125
|
Tian Y, Yu Y, Hou LK, Chi JR, Mao JF, Xia L, Wang X, Wang P, Cao XC. Serum deprivation response inhibits breast cancer progression by blocking transforming growth factor-β signaling. Cancer Sci 2016; 107:274-80. [PMID: 26749136 PMCID: PMC4814251 DOI: 10.1111/cas.12879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/28/2015] [Accepted: 01/02/2016] [Indexed: 12/24/2022] Open
Abstract
Serum deprivation response (SDPR), a key substrate for protein kinase C, play a critical role in inducing membrane curvature and participate in the formation of caveolae. However, the function of SDPR in cancer development and progression is still not clear. Here, we found that SDPR is downregulated in human breast cancer. Overexpression of SDPR suppresses cell proliferation and invasion in MDA‐MB‐231 cells, while depletion of SDPR promotes cell proliferation and invasion in MCF10A cells. Subsequently, SDPR depletion induces epithelial–mesenchymal transition (EMT)‐like phenotype. Finally, knockdown of SDPR activates transforming growth factor‐β (TGF‐β) signaling by upregulation of TGF‐β1 expression. In conclusion, our results showed that SDPR inhibits breast cancer progression by blocking TGF‐β signaling. Serum deprivation response suppresses cell proliferation and invasion in breast cancer cells. SDPR depletion induces epithelial–mesenchymal transition by activation of TGF‐β signaling.
Collapse
Affiliation(s)
- Yao Tian
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Li-Kun Hou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jiang-Rui Chi
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jie-Fei Mao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Li Xia
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ping Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Radiobiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
126
|
Hoshi Y, Endo K, Shirakihara T, Fukagawa A, Miyazawa K, Saitoh M. The potential role of regulator of G-protein signaling 16 in cell motility mediated by δEF1 family proteins. FEBS Lett 2016; 590:270-8. [PMID: 26823172 PMCID: PMC4819697 DOI: 10.1002/1873-3468.12042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023]
Abstract
The epithelial–mesenchymal transition (EMT) is associated with tumor progression. We reported previously that expression of the δEF1 family proteins (δEF1/ZEB1 and SIP1/ZEB2), key regulators of the EMT, is positively correlated with EMT phenotypes and aggressiveness of breast cancer. Here, we show that the expression levels of regulator of G‐protein signaling 16 (RGS16) are negatively correlated with those of the δEF1 family proteins. On the basis of the results of gain‐ and loss‐of‐function analyses, we suggest that δEF1 family proteins promote cell motility of breast cancer cells directly or indirectly through repressing expression of RGS16.
Collapse
Affiliation(s)
- Yuta Hoshi
- Research Training Program for Undergraduates, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kaori Endo
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takuya Shirakihara
- Division of Metastasis & Invasion Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Akihiko Fukagawa
- Research Training Program for Undergraduates, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
127
|
RNA-seq analysis of impact of PNN on gene expression and alternative splicing in corneal epithelial cells. Mol Vis 2016; 22:40-60. [PMID: 26900324 PMCID: PMC4734150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The specialized corneal epithelium requires differentiated properties, specific for its role at the anterior surface of the eye. Thus, tight maintenance of the differentiated qualities of the corneal epithelial is essential. Pinin (PNN) is an exon junction component (EJC) that has dramatic implications for corneal epithelial cell differentiation and may act as a stabilizer of the corneal epithelial cell phenotype. Our studies revealed that PNN is involved in transcriptional repression complexes and spliceosomal complexes, placing PNN at the fulcrum between chromatin and mRNA splicing. Transcriptome analysis of PNN-knockdown cells revealed clear and reproducible alterations in transcript profiles and splicing patterns of a subset of genes that would significantly impact the epithelial cell phenotype. We further investigated PNN's role in the regulation of gene expression and alternative splicing (AS) in a corneal epithelial context. METHODS Human corneal epithelial (HCET) cells that carry the doxycycline-inducible PNN-knockdown shRNA vector were used to perform RNA-seq to determine differential gene expression and differential AS events. RESULTS Multiple genes and AS events were identified as differentially expressed between PNN-knockdown and control cells. Genes upregulated by PNN knockdown included a large proportion of genes that are associated with enhanced cell migration and ECM remodeling processes, such as MMPs, ADAMs, HAS2, LAMA3, CXCRs, and UNC5C. Genes downregulated in response to PNN depletion included IGFBP5, FGD3, FGFR2, PAX6, RARG, and SOX10. AS events in PNN-knockdown cells compared to control cells were also more likely to be detected, and upregulated. In particular, 60% of exon-skipping events, detected in only one condition, were detected in PNN-knockdown cells and of the shared exon-skipping events, 92% of those differentially expressed were more frequent in the PNN knockdown. CONCLUSIONS These data suggest that lowering of PNN levels in epithelial cells results in dramatic transformation in the number and composition of splicing variants and that PNN plays a crucial role in the selection of which RNA isoforms differentiating cells produce. Many of the genes affected by PNN knockdown are known to affect the epithelial phenotype. This window into the complexity of RNA splicing in the corneal epithelium implies that PNN exerts broad influence over the regulation and maintenance of the epithelial cell phenotype.
Collapse
|
128
|
Hayakawa A, Saitoh M, Miyazawa K. Dual Roles for Epithelial Splicing Regulatory Proteins 1 (ESRP1) and 2 (ESRP2) in Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:33-40. [DOI: 10.1007/5584_2016_50] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
129
|
Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 2015; 14:481-7. [PMID: 25607528 DOI: 10.1080/15384101.2015.1006048] [Citation(s) in RCA: 454] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a transcription factor that promotes tumor invasion and metastasis by inducing epithelial-mesenchymal transition (EMT) in carcinoma cells. EMT not only plays an important role in embryonic development and malignant progression, but is also implicated in cancer therapy resistance. It has been hypothesized that carcinoma cells that have undergone EMT acquire cancer stem cell properties including self-renewal, chemoresistance and radioresistance. However, our recent data indicate that ZEB1 regulates radioresistance in breast cancer cells through an EMT-independent mechanism. In this Perspective, we review different mechanisms by which ZEB1 regulates tumor progression and treatment resistance. Based on studies by us and others, we propose that it is specific EMT inducers like ZEB1, but not the epithelial or mesenchymal state itself, that dictate cancer stem cell properties.
Collapse
|
130
|
Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F, Ren X, Yu J. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol 2015; 48:5-12. [PMID: 26548401 DOI: 10.3892/ijo.2015.3234] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a process through which epithelial cells trans-differentiate and acquire an aggressive mesenchymal phenotype. In tumor cells, EMT is a vital step of tumor progression and metastasis. Amid the increasing interest in tumor EMT, only a few studies focused on the soluble mediators secreted by tumor cells passing through this phenotypic switch. In this review, we focus on the essential role of interleukin-8 (IL-8) signaling for the acquisition and maintenance of tumor EMT via direct and indirect mechanisms. Besides the autocrine loop between IL-8 and tumor cells that have gone through EMT, IL-8 could potentiate adjacent epithelial tumor cells into a mesenchymal phenotype via a paracrine mode. Moreover, understanding the role of IL-8 in EMT will provide insight into the pathogenesis of tumor progression and may facilitate the development of an effective strategy for the prevention and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Xinxin Long
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yingnan Ye
- Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lijie Zhang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Pengpeng Liu
- Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenwen Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Feng Wei
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xiubao Ren
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
131
|
The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene 2015; 35:3514-23. [PMID: 26522722 PMCID: PMC5399154 DOI: 10.1038/onc.2015.412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023]
Abstract
Tumor-specific alternative splicing is implicated in the progression of cancer, including clear-cell renal cell carcinoma (ccRCC). Using ccRCC RNA sequencing data from The Cancer Genome Atlas, we found that epithelial splicing regulatory protein 2 (ESRP2), one of the key regulators of alternative splicing in epithelial cells, is expressed in ccRCC. ESRP2 mRNA expression did not correlate with the overall survival rate of ccRCC patients, but the expression of some ESRP-target exons correlated with the good prognosis and with the expression of Arkadia (also known as RNF111) in ccRCC. Arkadia physically interacted with ESRP2, induced polyubiquitination and modulated its splicing function. Arkadia and ESRP2 suppressed ccRCC tumor growth in a coordinated manner. Lower expression of Arkadia correlated with advanced tumor stages and poor outcomes in ccRCC patients. This study thus reveals a novel tumor-suppressive role of the Arkadia-ESRP2 axis in ccRCC.
Collapse
|
132
|
Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci 2015; 107:5-11. [PMID: 26362755 PMCID: PMC4724810 DOI: 10.1111/cas.12817] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are undifferentiated cancer cells with a high tumorigenic activity, the ability to undergo self-renewal, and a multilineage differentiation potential. Cancer stem cells are responsible for the development of tumor cell heterogeneity, a key feature for resistance to anticancer treatments including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Furthermore, minimal residual disease, the major cause of cancer recurrence and metastasis, is enriched in CSCs. Cancer stem cells also possess the property of "robustness", which encompasses several characteristics including a slow cell cycle, the ability to detoxify or mediate the efflux of cytotoxic agents, resistance to oxidative stress, and a rapid response to DNA damage, all of which contribute to the development of therapeutic resistance. The identification of mechanisms underlying such characteristics and the development of novel approaches to target them will be required for the therapeutic elimination of CSCs and the complete eradication of tumors. In this review, we focus on two prospective therapeutic approaches that target CSCs with the aim of disrupting their quiescence or redox defense capability.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
133
|
Barbáchano A, Fernández-Barral A, Pereira F, Segura MF, Ordóñez-Morán P, Carrillo-de Santa Pau E, González-Sancho JM, Hanniford D, Martínez N, Costales-Carrera A, Real FX, Pálmer HG, Rojas JM, Hernando E, Muñoz A. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene 2015; 35:2991-3003. [PMID: 26455323 DOI: 10.1038/onc.2015.366] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/02/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
Abstract
SPROUTY-2 (SPRY2) is a modulator of tyrosine kinase receptor signaling with receptor- and cell type-dependent inhibitory or enhancing effects. Studies on the action of SPRY2 in major cancers are conflicting and its role remains unclear. Here we have dissected SPRY2 action in human colon cancer. Global transcriptomic analyses show that SPRY2 downregulates genes encoding tight junction proteins such as claudin-7 and occludin and other cell-to-cell and cell-to-matrix adhesion molecules in human SW480-ADH colon carcinoma cells. Moreover, SPRY2 represses LLGL2/HUGL2, PATJ1/INADL and ST14, main regulators of the polarized epithelial phenotype, and ESRP1, an epithelial-to-mesenchymal transition (EMT) inhibitor. A key action of SPRY2 is the upregulation of the major EMT inducer ZEB1, as these effects are reversed by ZEB1 knock-down by means of RNA interference. Consistently, we found an inverse correlation between the expression level of claudin-7 and those of SPRY2 and ZEB1 in human colon tumors. Mechanistically, ZEB1 upregulation by SPRY2 results from the combined induction of ETS1 transcription factor and the repression of microRNAs (miR-200 family, miR-150) that target ZEB1 RNA. Moreover, SPRY2 increased AKT activation by epidermal growth factor, whereas AKT and also Src inhibition reduced the induction of ZEB1. Altogether, these data suggest that AKT and Src are implicated in SPRY2 action. Collectively, these results show a tumorigenic role of SPRY2 in colon cancer that is based on the dysregulation of tight junction and epithelial polarity master genes via upregulation of ZEB1. The dissection of the mechanism of action of SPRY2 in colon cancer cells is important to understand the upregulation of this gene in a subset of patients with this neoplasia that have poor prognosis.
Collapse
Affiliation(s)
- A Barbáchano
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - A Fernández-Barral
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F Pereira
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - M F Segura
- Department of Pathology, New York University School of Medicine, New York, USA
| | - P Ordóñez-Morán
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - E Carrillo-de Santa Pau
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - J M González-Sancho
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - D Hanniford
- Department of Pathology, New York University School of Medicine, New York, USA
| | - N Martínez
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - A Costales-Carrera
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F X Real
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - H G Pálmer
- Stem cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - J M Rojas
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - E Hernando
- Department of Pathology, New York University School of Medicine, New York, USA
| | - A Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
134
|
Li L, Liu C, Amato RJ, Chang JT, Du G, Li W. CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget 2015; 5:10840-53. [PMID: 25333262 PMCID: PMC4279414 DOI: 10.18632/oncotarget.2535] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/28/2014] [Indexed: 12/15/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by epithelial cancer cells. To identify novel regulators of EMT, we carried out cDNA screens that covered 500 human kinases. Subsequent characterization of candidate kinases led us to uncover cyclin-dependent kinase-like 2 (CDKL2) as a novel potent promoter for EMT and breast cancer progression. CDKL2-expressing human mammary gland epithelial cells displayed enhanced mesenchymal traits and stem cell-like phenotypes, which was acquired through activating a ZEB1/E-cadherin/β-catenin positive feedback loop and regulating CD44 mRNA alternative splicing to promote conversion of CD24high cells to CD44high cells. Furthermore, CDKL2 enhanced primary tumor formation and metastasis in a breast cancer xenograft model. Notably, CDKL2 is expressed significantly higher in mesenchymal human breast cancer cell lines than in epithelial lines, and its over-expression/amplification in human breast cancers is associated with shorter disease-free survival. Taken together, our study uncovered a major role for CDKL2 in promoting EMT and breast cancer progression.
Collapse
Affiliation(s)
- Linna Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas. Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chunping Liu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Robert J Amato
- Division of Oncology, Department of Internal Medicine, and Memorial Hermann Cancer Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas. School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas. Division of Oncology, Department of Internal Medicine, and Memorial Hermann Cancer Center, University of Texas Health Science Center at Houston, Houston, Texas. Cancer Biology Program, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
135
|
Splicing Regulation: A Molecular Device to Enhance Cancer Cell Adaptation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:543067. [PMID: 26273627 PMCID: PMC4529921 DOI: 10.1155/2015/543067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/23/2015] [Indexed: 01/23/2023]
Abstract
Alternative splicing (AS) represents a major resource for eukaryotic cells to expand the coding potential of their genomes and to finely regulate gene expression in response to both intra- and extracellular cues. Cancer cells exploit the flexible nature of the mechanisms controlling AS in order to increase the functional diversity of their proteome. By altering the balance of splice isoforms encoded by human genes or by promoting the expression of aberrant oncogenic splice variants, cancer cells enhance their ability to adapt to the adverse growth conditions of the tumoral microenvironment. Herein, we will review the most relevant cancer-related splicing events and the underlying regulatory mechanisms allowing tumour cells to rapidly adapt to the harsh conditions they may face during the occurrence and development of cancer.
Collapse
|
136
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
137
|
Preca BT, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, Wellner U, Hopt UT, Brummer T, Brabletz S, Brabletz T, Stemmler MP. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer 2015; 137:2566-77. [PMID: 26077342 DOI: 10.1002/ijc.29642] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis.
Collapse
Affiliation(s)
- Bogdan-Tiberius Preca
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Karolina Bajdak
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Kerstin Mock
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Vignesh Sundararajan
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Jessica Pfannstiel
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany
| | - Jochen Maurer
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Wellner
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Ulrich T Hopt
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany
| | - Tilman Brummer
- Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Germany
| | - Simone Brabletz
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Marc P Stemmler
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054, Erlangen, Germany
| |
Collapse
|
138
|
Saitoh M, Endo K, Furuya S, Minami M, Fukasawa A, Imamura T, Miyazawa K. STAT3 integrates cooperative Ras and TGF-β signals that induce Snail expression. Oncogene 2015; 35:1049-57. [PMID: 25961936 DOI: 10.1038/onc.2015.161] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/04/2015] [Accepted: 03/20/2015] [Indexed: 01/05/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial morphological event that occurs during the progression of epithelial tumors. EMT can be induced by transforming growth factor β (TGF-β) in certain kinds of cancer cells through the induction of Snail, a key regulator of EMT. We have previously found that TGF-β remarkably induces Snail expression in cooperation with Ras signals; however, the underlying mechanism of this synergism has not yet been determined. Here, we demonstrate that signal transducer and activator of transcription 3 (STAT3) acts as a mediator that synergizes TGF-β and Ras signals. The overexpression of STAT3 enhanced Snail induction, whereas siRNA-mediated knockdown of STAT3 inhibited it. The STAT3-YF mutant, which has Tyr 705 substituted with Phe, did not enhance Snail induction. Several STAT3 mutants lacking transcriptional activity also failed to enhance it; however, the putative STAT3-binding elements in the Snail promoter regions were not required for STAT3-mediated Snail induction. Protein inhibitor of activated STAT3 (PIAS3) inhibited the enhanced Snail promoter activity induced by TGF-β and Ras. The interaction between PIAS3 and STAT3 was reduced by TGF-β in cells harboring oncogenic Ras, whereas TGF-β promoted the binding of PIAS3 to Smad3, a crucial mediator of TGF-β signaling. Therefore, these findings suggest that STAT3 enhances Snail induction when it is dissociated from PIAS3 by TGF-β in cooperation with Ras signals.
Collapse
Affiliation(s)
- M Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - K Endo
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - S Furuya
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan.,Research Training Program for Undergraduates, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - M Minami
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan.,Research Training Program for Undergraduates, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - A Fukasawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - T Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - K Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| |
Collapse
|
139
|
Saitoh M. Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-β signaling during tumor progression. Cancer Sci 2015; 106:481-8. [PMID: 25664423 PMCID: PMC4452147 DOI: 10.1111/cas.12630] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor (TGF)-β acts as a tumor suppressor during cancer initiation, but as a tumor promoter during tumor progression. It has become increasingly clear that TGF-β plays fundamental roles in multiple steps of tumor progression, including epithelial-mesenchymal transition (EMT). The EMT, first described by developmental biologists at the beginning of the 1980s, plays crucial roles in appropriate embryonic development, but also functions in adults during wound healing, organ fibrosis, and tumor progression. During EMT, epithelial cells lose their epithelial polarity and acquire mesenchymal phenotypes, endowing them with migratory and invasive properties. Many secreted polypeptides are implicated in this process, and act in a sequential or cooperative manner. TGF-β induces EMT by propagating intracellular signaling pathways and activating transcriptional factors. Here, I discuss new insights into the molecular mechanisms underlying induction of EMT by TGF-β in cooperation with Ras or growth factors, along with the signals that induce EMT through transcriptional and post-transcriptional regulation.
Collapse
Affiliation(s)
- Masao Saitoh
- Department of Biochemistry, Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| |
Collapse
|
140
|
Mathow D, Chessa F, Rabionet M, Kaden S, Jennemann R, Sandhoff R, Gröne HJ, Feuerborn A. Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism. EMBO Rep 2015; 16:321-31. [PMID: 25643708 DOI: 10.15252/embr.201439333] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study proposes that the transcription factor Zeb1 modulates epithelial cell adhesion by diverting glycosphingolipid metabolism. Zeb1 promotes expression of a-series glycosphingolipids via regulating expression of GM3 synthase (St3gal5), which mechanistically involves Zeb1 binding to the St3gal5 promoter as well as suppressing microRNA-mediated repression of St3gal5. Functionally, the repression of St3gal5 suffices to elevate intercellular adhesion and expression of distinct junction-associated proteins, reminiscent of knockdown of Zeb1. Conversely, overexpressing St3gal5 sensitizes cells towards TGF-β1-induced disruption of cell-cell interaction and partially antagonizes elevation of intercellular adhesion imposed by Zeb1 knockdown. These results highlight a direct connection of glycosphingolipid metabolism and epithelial cell adhesion via Zeb1.
Collapse
Affiliation(s)
- Daniel Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federica Chessa
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mariona Rabionet
- Department of Cellular and Molecular Pathology, Lipid Pathobiochemistry Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sylvia Kaden
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, Lipid Pathobiochemistry Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany h.-
| | - Alexander Feuerborn
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany Sir William Dunn School of Pathology, University of Oxford, Oxford, UK h.-
| |
Collapse
|
141
|
Lu ZX, Huang Q, Park JW, Shen S, Lin L, Tokheim CJ, Henry MD, Xing Y. Transcriptome-wide landscape of pre-mRNA alternative splicing associated with metastatic colonization. Mol Cancer Res 2015; 13:305-18. [PMID: 25274489 PMCID: PMC4336826 DOI: 10.1158/1541-7786.mcr-14-0366] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Metastatic colonization is an ominous feature of cancer progression. Recent studies have established the importance of pre-mRNA alternative splicing (AS) in cancer biology. However, little is known about the transcriptome-wide landscape of AS associated with metastatic colonization. Both in vitro and in vivo models of metastatic colonization were utilized to study AS regulation associated with cancer metastasis. Transcriptome profiling of prostate cancer cells and derivatives crossing in vitro or in vivo barriers of metastasis revealed splicing factors with significant gene expression changes associated with metastatic colonization. These include splicing factors known to be differentially regulated in epithelial-mesenchymal transition (ESRP1, ESRP2, and RBFOX2), a cellular process critical for cancer metastasis, as well as novel findings (NOVA1 and MBNL3). Finally, RNA-seq indicated a large network of AS events regulated by multiple splicing factors with altered gene expression or protein activity. These AS events are enriched for pathways important for cell motility and signaling, and affect key regulators of the invasive phenotype such as CD44 and GRHL1. IMPLICATIONS Transcriptome-wide remodeling of AS is an integral regulatory process underlying metastatic colonization, and AS events affect the metastatic behavior of cancer cells.
Collapse
Affiliation(s)
- Zhi-xiang Lu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Qin Huang
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Pathology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Shihao Shen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Lan Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Collin J Tokheim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Pathology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
142
|
A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis. Mol Cell Biol 2014; 35:758-68. [PMID: 25512611 DOI: 10.1128/mcb.01040-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The output of alternative splicing depends on the cooperative or antagonistic activities of several RNA-binding proteins (RBPs), like Ptbp1 and Esrp1 in Xenopus. Fine-tuning of the RBP abundance is therefore of prime importance to achieve tissue- or cell-specific splicing patterns. Here, we addressed the mechanisms leading to the high expression of the ptbp1 gene, which encodes Ptbp1, in Xenopus epidermis. Two splice isoforms of ptbp1 mRNA differ by the presence of an alternative exon 11, and only the isoform including exon 11 can be translated to a full-length protein. In vivo minigene assays revealed that the nonproductive isoform was predominantly produced. Knockdown experiments demonstrated that Esrp1, which is specific to the epidermis, strongly stimulated the expression of ptbp1 by favoring the productive isoform. Consequently, knocking down esrp1 phenocopied ptbp1 inactivation. Conversely, Ptbp1 repressed the expression of its own gene by favoring the nonproductive isoform. Hence, a complex posttranscriptional mechanism controls Ptbp1 abundance in Xenopus epidermis: skipping of exon 11 is the default splicing pattern, but Esrp1 stimulates ptbp1 expression by favoring the inclusion of exon 11 up to a level that is limited by Ptbp1 itself. These results decipher a posttranscriptional mechanism that achieves various abundances of the ubiquitous RBP Ptbp1 in different tissues.
Collapse
|
143
|
Ranieri D, Belleudi F, Magenta A, Torrisi MR. HPV16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial‐mesenchymal transition. Int J Cancer 2014; 137:61-72. [DOI: 10.1002/ijc.29373] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Danilo Ranieri
- Istituto Pasteur‐Fondazione Cenci BolognettiDipartimento di Medicina Clinica e MolecolareSapienza Università di Roma Italy
| | - Francesca Belleudi
- Istituto Pasteur‐Fondazione Cenci BolognettiDipartimento di Medicina Clinica e MolecolareSapienza Università di Roma Italy
| | - Alessandra Magenta
- Istituto Pasteur‐Fondazione Cenci BolognettiDipartimento di Medicina Clinica e MolecolareSapienza Università di Roma Italy
| | - Maria Rosaria Torrisi
- Istituto Pasteur‐Fondazione Cenci BolognettiDipartimento di Medicina Clinica e MolecolareSapienza Università di Roma Italy
- Azienda Ospedaliera S. AndreaRome Italy
| |
Collapse
|
144
|
Fukagawa A, Ishii H, Miyazawa K, Saitoh M. δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells. Cancer Med 2014; 4:125-35. [PMID: 25315069 PMCID: PMC4312126 DOI: 10.1002/cam4.347] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Abnormal DNA methylation at the C-5 position of cytosine (5mC) of CpG dinucleotides is a well-known epigenetic feature of cancer. Levels of E-cadherin, which is regularly expressed in epithelial tissues, are frequently reduced in epithelial tumors due to transcriptional repression, sometimes accompanied by hypermethylation of the promoter region. δEF1 family proteins (δEF1/ZEB1 and SIP1/ZEB2), key regulators of the epithelial-mesenchymal transition (EMT), suppress E-cadherin expression at the transcriptional level. We recently showed that levels of mRNAs encoding δEF1 proteins are regulated reciprocally with E-cadherin level in breast cancer cells. Here, we examined the mechanism underlying downregulation of E-cadherin expression in three basal-type breast cancer cells in which the E-cadherin promoter region is hypermethylated (Hs578T) or moderately methylated (BT549 and MDA-MB-231). Regardless of methylation status, treatment with 5-aza-2′-deoxycytidine (5-aza), which inhibits DNA methyltransferases, had no effect on E-cadherin expression. Knockdown of δEF1 and SIP1 resulted in recovery of E-cadherin expression in cells lacking hypermethylation, whereas combined treatment with 5-aza synergistically restored E-cadherin expression, especially when the E-cadherin promoter was hypermethylated. Moreover, δEF1 interacted with DNA methyltransferase 1 (DNMT1) through the Smad-binding domain. Sustained knockdown of δEF1 family proteins reduced the number of 5mC sites in the E-cadherin promoter region, suggesting that these proteins maintain 5mC through interaction with DNMT1 in breast cancer cells. Thus, δEF1 family proteins appear to repress expression of E-cadherin during cancer progression, both directly at the transcriptional level and indirectly at the epigenetic level.
Collapse
Affiliation(s)
- Akihiko Fukagawa
- Department of Biochemistry, University of Yamanashi Yamanashi, Yamanashi, Chuo, 409-3898, Japan; Research Training Program for Undergraduates, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi Yamanashi, Yamanashi, Chuo, 409-3898, Japan
| | | | | | | |
Collapse
|
145
|
Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, Motizuki M, Masuyama K, Miyazawa K. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 2014; 289:27386-99. [PMID: 25143390 DOI: 10.1074/jbc.m114.589432] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ESRP1 (epithelial splicing regulatory protein 1) and ESRP2 regulate alternative splicing events associated with epithelial phenotypes of cells, and both are down-regulated during the epithelial-mesenchymal transition. However, little is known about their expression and functions during carcinogenesis. In this study, we found that expression of both ESRP1 and ESRP2 is plastic: during oral squamous cell carcinogenesis, these proteins are up-regulated relative to their levels in normal epithelium but down-regulated in invasive fronts. Importantly, ESRP1 and ESRP2 are re-expressed in the lymph nodes, where carcinoma cells metastasize and colonize. In head and neck carcinoma cell lines, ESRP1 and ESRP2 suppress cancer cell motility through distinct mechanisms: knockdown of ESRP1 affects the dynamics of the actin cytoskeleton through induction of Rac1b, whereas knockdown of ESRP2 attenuates cell-cell adhesion through increased expression of epithelial-mesenchymal transition-associated transcription factors. Down-regulation of ESRP1 and ESRP2 is thus closely associated with a motile phenotype of cancer cells.
Collapse
Affiliation(s)
- Hiroki Ishii
- From the Departments of Biochemistry, Otolaryngology, Head and Neck Surgery, and
| | | | - Kei Sakamoto
- the Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Tetsuo Kondo
- Human Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 and
| | - Ryohei Katoh
- Human Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 and
| | | | | | | | | |
Collapse
|
146
|
Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal 2014; 26:2234-9. [PMID: 25025570 DOI: 10.1016/j.cellsig.2014.07.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023]
Abstract
CD44 is a hyaluronan binding cell surface signal transducing receptor that influences motility, cell survival and proliferation as well as the formation of tumor microenvironment. CD44 contains two variable regions encoded by variable exons. Alternative splicing, which is often deregulated in cancer, can produce various isoforms of CD44 with properties that may have different tissue specific effects and therefore even diverse effects on cancer progression. This review summarizes and puts together all major regulators of alternative splicing of CD44 in cancer that have been documented so far and that have an experimentally proved effect on CD44 isoform switching. It is important to better understand the mechanisms of alternative splicing of CD44, where all the variability of CD44 originates, to be able to explain the isoform switching and occurrence of variant isoforms of CD44 (CD44v) in cancer.
Collapse
Affiliation(s)
- Lubomir Prochazka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic.
| | - Radek Tesarik
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
147
|
Rasche A, Lienhard M, Yaspo ML, Lehrach H, Herwig R. ARH-seq: identification of differential splicing in RNA-seq data. Nucleic Acids Res 2014; 42:e110. [PMID: 24920826 PMCID: PMC4132698 DOI: 10.1093/nar/gku495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The computational prediction of alternative splicing from high-throughput sequencing data is inherently difficult and necessitates robust statistical measures because the differential splicing signal is overlaid by influencing factors such as gene expression differences and simultaneous expression of multiple isoforms amongst others. In this work we describe ARH-seq, a discovery tool for differential splicing in case–control studies that is based on the information-theoretic concept of entropy. ARH-seq works on high-throughput sequencing data and is an extension of the ARH method that was originally developed for exon microarrays. We show that the method has inherent features, such as independence of transcript exon number and independence of differential expression, what makes it particularly suited for detecting alternative splicing events from sequencing data. In order to test and validate our workflow we challenged it with publicly available sequencing data derived from human tissues and conducted a comparison with eight alternative computational methods. In order to judge the performance of the different methods we constructed a benchmark data set of true positive splicing events across different tissues agglomerated from public databases and show that ARH-seq is an accurate, computationally fast and high-performing method for detecting differential splicing events.
Collapse
Affiliation(s)
- Axel Rasche
- Max-Planck-Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Matthias Lienhard
- Max-Planck-Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Marie-Laure Yaspo
- Max-Planck-Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans Lehrach
- Max-Planck-Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ralf Herwig
- Max-Planck-Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 63-73, 14195 Berlin, Germany
| |
Collapse
|
148
|
Xu Y, Gao XD, Lee JH, Huang H, Tan H, Ahn J, Reinke LM, Peter ME, Feng Y, Gius D, Siziopikou KP, Peng J, Xiao X, Cheng C. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes Dev 2014; 28:1191-203. [PMID: 24840202 PMCID: PMC4052765 DOI: 10.1101/gad.241968.114] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRNPM potentiates TGFβ signaling and identifies CD44 as a key downstream target of hnRNPM. hnRNPM ablation prevents TGFβ-induced EMT and inhibits breast cancer metastasis in mice, whereas enforced expression of the specific CD44 standard (CD44s) splice isoform overrides the loss of hnRNPM and permits EMT and metastasis. Mechanistically, we demonstrate that the ubiquitously expressed hnRNPM acts in a mesenchymal-specific manner to precisely control CD44 splice isoform switching during EMT. This restricted cell-type activity of hnRNPM is achieved by competition with ESRP1, an epithelial splicing regulator that binds to the same cis-regulatory RNA elements as hnRNPM and is repressed during EMT. Importantly, hnRNPM is associated with aggressive breast cancer and correlates with increased CD44s in patient specimens. These findings demonstrate a novel molecular mechanism through which tumor metastasis is endowed by the hnRNPM-mediated splicing program.
Collapse
Affiliation(s)
- Yilin Xu
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xin D Gao
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Huilin Huang
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; Department of Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jaegyoon Ahn
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Lauren M Reinke
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Marcus E Peter
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yue Feng
- Department of Pharmacology, Emory University, Atlanta, Georgia 30322, USA
| | - David Gius
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Kalliopi P Siziopikou
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; Department of Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Chonghui Cheng
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
149
|
Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J, Zhang HT. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol 2014; 44:1643-51. [PMID: 24573038 DOI: 10.3892/ijo.2014.2310] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a key step in the early stages of cancer metastasis, is orchestrated by several signaling pathways, including IL-6/JAK/STAT3 and TGF-β/Smad signaling. However, an association between the two signaling pathways during the EMT process is largely unknown. Here, we focused on lung cancer and demonstrated that TGF-β1 induced the phosphorylation of Smad3 (p-Smad3), upregulation of Snail, a fibroblast-like morphology, and downregulation of E-cadherin as well as upregulation of vimentin in lung cancer cell lines. SIS3 (an inhibitor of Smad3) suppressed TGF-β1-induced activation of Smad3, upregulation of Snail and the EMT process. Importantly, the JAK2/STAT3-specific inhibitor AG490 blocked Stat3 phosphorylation, resulting in attenuated levels of TGF-β1-induced p-Smad3, Snail, MMP2, and Smad-mediated PAI-1 promoter reporter gene activity in A549 and H1650 cells. Subsequently, AG490 inhibited TGF-β-induced cell migration and invasion. Moreover, exogenous IL-6 treatment stimulated Stat3 activation, enhanced TGF-β-induced expression of p-Smad3 and Snail, aggravated the EMT process, and increased lung cancer cell migration and invasion induced by TGF-β1. Our findings show that the JAK/STAT3 pathway is required for TGF-β-induced EMT and cancer cell migration and invasion via upregulation of the expression of p-Smad3 and Snail, and the IL-6/JAK/STAT3 and TGF-β/Smad signaling synergistically enhance EMT in lung carcinomas. The present study suggests a novel rationale for inhibiting cancer metastasis using anti-IL-6/JAK/STAT3 and anti-TGF-β/Smad therapeutic strategies.
Collapse
Affiliation(s)
- Reng-Yun Liu
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Yuanyuan Zeng
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Haiping Yang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Zeyi Liu
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou 215123, P.R. China
| | - Jun Zhao
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
150
|
Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta Gen Subj 2014; 1840:2621-34. [PMID: 24561266 DOI: 10.1016/j.bbagen.2014.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial-mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM). SCOPE OF THE REVIEW Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer. MAJOR CONCLUSIONS Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal-epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET. GENERAL SIGNIFICANCE Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|