101
|
Kamran F, Andrade AC, Nella AA, Clokie SJ, Rezvani G, Nilsson O, Baron J, Lui JC. Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration. Mol Endocrinol 2015; 29:921-32. [PMID: 25866874 DOI: 10.1210/me.2015-1047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age-down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3'-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth.
Collapse
Affiliation(s)
- Fariha Kamran
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anenisia C Andrade
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Aikaterini A Nella
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Samuel J Clokie
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Geoffrey Rezvani
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ola Nilsson
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jeffrey Baron
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Julian C Lui
- Section on Growth and Development (F.K., A.A.N., G.R., J.B., J.C.L.) and Section on Neuroendocrinology (S.J.C.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (A.C.A., O.N.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
102
|
LONG MEI, WAN XIAOHUI, LA XIAOLIN, GONG XIAOYUN, CAI XIA. miR-29c is downregulated in the ectopic endometrium and exerts its effects on endometrial cell proliferation, apoptosis and invasion by targeting c-Jun. Int J Mol Med 2015; 35:1119-25. [DOI: 10.3892/ijmm.2015.2082] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/16/2015] [Indexed: 11/06/2022] Open
|
103
|
Morishita A, Masaki T. miRNA in hepatocellular carcinoma. Hepatol Res 2015; 45:128-41. [PMID: 25040738 DOI: 10.1111/hepr.12386] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Despite improvements in HCC therapy, the prognosis for HCC patients remains poor due to a high incidence of recurrence. An improved understanding of the pathogenesis of HCC development would facilitate the development of more effective outcomes for the diagnosis and treatment of HCC at earlier stages. miRNA are small, endogenous, non-coding, ssRNA that are 21-30 nucleotides in length and modulate the expression of various target genes at the post-transcriptional and translational levels. Aberrant expression of miRNA is common in various human malignancies and modulates cancer-associated genomic regions or fragile sites. As for the relationship between miRNA and HCC, several studies have demonstrated that the aberrant expression of specific miRNA can be detected in HCC cells and tissues. However, little is known about the mechanisms of miRNA-related cell proliferation and development. In this review, we summarize the central and potential roles of miRNA in the pathogenesis of HCC and elucidate new possibilities that may be useful as diagnostic and prognostic markers, as well as novel therapeutic targets in HCC.
Collapse
Affiliation(s)
- Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| |
Collapse
|
104
|
Abstract
Inflammatory bowel disease (IBD), comprised of ulcerative colitis and Crohn's disease, is believed to develop as a result of a deregulated inflammatory response to environmental factors in genetically susceptible individuals. Despite advances in understanding the genetic risks of IBD, associated single nucleotide polymorphisms have low penetrance, monozygotic twin studies suggest a low concordance rate, and increasing worldwide IBD incidence leave gaps in our understanding of IBD heritability and highlight the importance of environmental influences. Operating at the interface between environment and heritable molecular and cellular phenotypes, microRNAs (miRNAs) are a class of endogenous, small noncoding RNAs that regulate gene expression. Studies to date have identified unique miRNA expression profile signatures in IBD and preliminary functional analyses associate these deregulated miRNAs to canonical pathways associated with IBD pathogenesis. In this review, we summarize and discuss the miRNA expression signatures associated with IBD in tissue and peripheral blood, highlight miRNAs with potential future clinical applications as diagnostic and therapeutic targets, and provide an outlook on how to develop miRNA based therapies.
Collapse
Affiliation(s)
| | - Joel Pekow
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, 900 East 57th Street, MB # 9, Chicago, IL 60637, USA
| |
Collapse
|
105
|
Zhang JX, Mai SJ, Huang XX, Wang FW, Liao YJ, Lin MC, Kung HF, Zeng YX, Xie D. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling. Ann Oncol 2014; 25:2196-2204. [PMID: 25193986 DOI: 10.1093/annonc/mdu439] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Distant metastasis is the major cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) has a critical role in this process. Accumulating evidence indicates that EMT can be regulated by microRNAs (miRNAs). miR-29c has been implicated as a tumor suppressor in several human cancers. However, the role of miR-29c in the progression of colorectal cancer (CRC) metastasis remains largely unknown. PATIENTS AND METHODS The expression of miR-29c was examined by qRT-PCR in a cohort of primary CRC (PC) and distant liver metastasis (LM) tissues. A series of in vivo and in vitro assays were carried out in order to elucidate the functions of miR-29c and the molecular mechanisms underlying the pathogenesis of metastatic CRC. RESULTS miR-29c was markedly downregulated in PCs with distant metastasis and determined to be an independent predictor of shortened patient survival. But LM tissues showed higher levels of miR-29c than that in PC tissues. In CRC cells, miR-29c dramatically suppressed cell migration and invasion abilities in vitro and cancer metastasis in vivo. In addition, miR-29c inhibited EMT and negatively regulated Wnt/β-catenin signaling pathway. Guanine nucleotide binding protein alpha13 (GNA13) and protein tyrosine phosphatase type IVA (PTP4A) were identified as direct targets of miR-29c, which acted through ERK/GSK3β/β-catenin and AKT/GSK3β/β-catenin pathways, respectively, to regulate EMT. Furthermore, significant associations between miR-29c, its target genes (GNA13 and PTP4A) and EMT markers were validated in both PC and LM tissues. CONCLUSION Our findings highlight the important role of miR-29c in regulating CRC EMT via GSK-3β/β-catenin signaling by targeting GNA13 and PTP4A and provide new insights into the metastatic basis of CRC.
Collapse
Affiliation(s)
- J X Zhang
- The State Key Laboratory of Oncology in South China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou
| | - S J Mai
- The State Key Laboratory of Oncology in South China
| | - X X Huang
- The State Key Laboratory of Oncology in South China
| | - F W Wang
- The State Key Laboratory of Oncology in South China
| | - Y J Liao
- The State Key Laboratory of Oncology in South China
| | - M C Lin
- The State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
| | - H F Kung
- The State Key Laboratory of Oncology in South China; The State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
| | - Y X Zeng
- The State Key Laboratory of Oncology in South China
| | - D Xie
- The State Key Laboratory of Oncology in South China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou.
| |
Collapse
|
106
|
Sun Z, Meng C, Wang S, Zhou N, Guan M, Bai C, Lu S, Han Q, Zhao RC. MicroRNA-1246 enhances migration and invasion through CADM1 in hepatocellular carcinoma. BMC Cancer 2014; 14:616. [PMID: 25159494 PMCID: PMC4150976 DOI: 10.1186/1471-2407-14-616] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The aberrant expression of microRNAs has been demonstrated to play a crucial role in the initiation and progression of hepatocarcinoma. miR-1246 expression in High invasive ability cell line than significantly higher than that in low invasive ability cell line. METHODS Transwell chambers (8-uM pore size; Costar) were used in the in vitro migration and invison anssay. Dual luciferase reporter gene construct and Dual luciferase reporter assay to identify the target of miR-1246. CADM1 expression was evaluated by immunohistochemistric staining. The clinical manifestations, treatments and survival were collected for statistical analysis. RESULTS Inhibition of miR-1246 effectively reduced migration and invasion of hepatocellular carcinoma cell lines. Bioinformatics and luciferase reporter assay revealed that miR-1246 specifically targeted the 3'-UTR of Cell adhesion molecule 1 and regulated its expression. Down-regulation of CADM1 enhanced migration and invasion of HCC cell lines. Furthermore, in tumor tissues obtained from liver cancer patients, the expression of miR-1246 was negatively correlated with CADM1 and the high expression of miR-1246 combined with low expression of CADM1 might serve as a risk factor for stage1 liver cancer patients. CONCLUSIONS Our study showed that miR-1246, by down-regulation CADM1, enhances migration and invasion in HCC cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China.
| | | |
Collapse
|
107
|
Cho M, Eze O, Xu R. Molecular genetics of gastric adenocarcinoma in clinical practice. World J Med Genet 2014; 4:58-68. [DOI: 10.5496/wjmg.v4.i3.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
The molecular genetics of gastric carcinoma (GC) dictates their biology and clinical behavior. The two morphologically distinct types of gastric carcinoma by Lauren classification, i.e., intestinal and diffuse cell types, have a significant difference in clinical outcome. These two types of GC have different molecular pathogenetic pathways with unique genetic alterations. In addition to environmental and other etiologies, intestinal type GC is associated with Helicobacter pylori (H. pylori) infection and involves a multistep molecular pathway driving the normal epithelium to intestinal metaplasia, dysplasia, and malignant transformation by chromosomal and/or microsatellite instability (MSI), mutation of tumor suppressor genes, and loss of heterozygosity among others. Diffuse type shows no clear causal relationship with H. pylori infection, but is commonly associated with deficiency of cell-cell adhesion due to mutation of the E-cadherin gene (CDH1), and a manifestation of the hereditary gastric cancer syndrome. Thus, detection of CDH1 mutation or loss of expression of E-cadherin may aid in early diagnosis or screening of diffuse type GC. Detection of certain genetic markers, for example, MSI and matrix metalloproteinases, may provide prognostic information, particularly for intestinal type. The common genetic alterations may offer therapeutic targets for treatment of GC. Polymorphisms in Thymidylate synthase to metabolize 5-fluorouracil, glutathione S-transferase for degradation of Cisplatin, and amplification/overexpression of human epidermal growth factor receptor 2 targeted by monoclonal antibody Trastuzumab, are a few examples. P13K/Akt/mTOR pathway, c-Met pathways, epidermal growth factor receptor, insulin-like growth factor receptor, vascular endothelial growth factor receptor fibroblast growth factor receptor, and micro RNAs are several potential therapeutic biomarkers for GC under investigation.
Collapse
|
108
|
Zhang H, Feng Z, Huang R, Xia Z, Xiang G, Zhang J. MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1. Int J Oncol 2014; 45:2143-52. [PMID: 25119660 DOI: 10.3892/ijo.2014.2596] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA or miR) inhibition of oncogenic related pathways has been shown to be a promising therapeutic approach for cancer. SIRT1 might be a promoter factor on tumorigenesis of hepatocellular carcinoma (HCC). However, the mechanism is unknown. We investigated whether miRNAs regulate the SIRT1 and its downstream SREBP-lipogenesis-cholesterogenesis metabolic pathway in hepatoma cells. Human hepatoma cells were transfected with miR-449 mimics and inhibitors, and the effects of miR-449 on cell proliferation was assessed. We identified the miRNAs, miR-449, that control lipogenesis and cholesterogenesis in hepatoma cells by inhibiting SIRT1 and SREBP-1c expression and downregulating their targeted genes, including fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). MiR-449 repressed DNA synthesis, mitotic entry and proliferation of hepatoma cells. Restoration of miR-449 led to suppression of SIRT1 expression and liver tumorigenesis. The newly identified miRNAs, miR-449 represents a novel targeting mechanism for HCC therapy.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Hepatobiliary Surgery, Air Force General Hospital, Beijing 100142, P.R. China
| | - Zhiqiang Feng
- Department of Hepatobiliary Surgery, Air Force General Hospital, Beijing 100142, P.R. China
| | - Rui Huang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Zhenglin Xia
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Guoan Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jinqian Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
109
|
Truscott M, Islam ABMMK, Lightfoot J, López-Bigas N, Frolov MV. An intronic microRNA links Rb/E2F and EGFR signaling. PLoS Genet 2014; 10:e1004493. [PMID: 25058496 PMCID: PMC4109884 DOI: 10.1371/journal.pgen.1004493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
The importance of microRNAs in the regulation of various aspects of biology and disease is well recognized. However, what remains largely unappreciated is that a significant number of miRNAs are embedded within and are often co-expressed with protein-coding host genes. Such a configuration raises the possibility of a functional interaction between a miRNA and the gene it resides in. This is exemplified by the Drosophila melanogaster dE2f1 gene that harbors two miRNAs, mir-11 and mir-998, within its last intron. miR-11 was demonstrated to limit the proapoptotic function of dE2F1 by repressing cell death genes that are directly regulated by dE2F1, however the biological role of miR-998 was unknown. Here we show that one of the functions of miR-998 is to suppress dE2F1-dependent cell death specifically in rbf mutants by elevating EGFR signaling. Mechanistically, miR-998 operates by repressing dCbl, a negative regulator of EGFR signaling. Significantly, dCbl is a critical target of miR-998 since dCbl phenocopies the effects of miR-998 on dE2f1-dependent apoptosis in rbf mutants. Importantly, this regulation is conserved, as the miR-998 seed family member miR-29 repressed c-Cbl, and enhanced MAPK activity and wound healing in mammalian cells. Therefore, the two intronic miRNAs embedded in the dE2f1 gene limit the apoptotic function of dE2f1, but operate in different contexts and act through distinct mechanisms. These results also illustrate that examining an intronic miRNA in the context of its host's function can be valuable in elucidating the biological function of the miRNA, and provide new information about the regulation of the host gene itself. Animal genomes encode hundreds of microRNA genes that impact all areas of biology by limiting the expression of their targets. What remains largely unappreciated is that a significant proportion of microRNA genes are embedded within protein-coding genes, and are often co-expressed with their hosts, which raises the possibility of a functional interaction between them. The mir-998 gene is located within an intron of the gene encoding Drosophila E2F1 transcription factor. E2F1 can induce the expression of cell death genes, and its activity is negatively regulated by the pRB tumour suppressor protein. In certain settings, unrestrained E2F1 activity is sufficient to induce cell death in cells lacking functional pRB. Here, we show that miR-998 limits cell death in Rb-deficient cells by repressing dCbl, a negative regulator of Epidermal Growth Factor Receptor signaling (EGFR). miR-998 also augments EGFR signaling in differentiating photoreceptor cells. Furthermore, we show that the interaction between miR-998 and Cbl is conserved: in human cells, miR-29, a mir-29/998 seed family member, enhances EGFR signaling by targeting c-Cbl. Therefore, by examining the role of an intronic microRNA in the context of its host's function, we identified an important microRNA target and uncovered a biological function of the microRNA.
Collapse
Affiliation(s)
- Mary Truscott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Abul B. M. M. K. Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
- Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - James Lightfoot
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Núria López-Bigas
- Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
110
|
Uppal A, Ferguson MK, Posner MC, Hellman S, Khodarev NN, Weichselbaum RR. Towards a molecular basis of oligometastatic disease: potential role of micro-RNAs. Clin Exp Metastasis 2014; 31:735-48. [PMID: 24968866 PMCID: PMC4138440 DOI: 10.1007/s10585-014-9664-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/09/2014] [Indexed: 02/06/2023]
Abstract
Oligometastasis is a cancer disease state characterized by a limited number of metastatic tumors involving single or few organs and with biological properties that make them potentially amenable to locoregional antitumor therapy. Current clinical data show that they are potentially curable with surgical resection or/and radiotherapy. Yet, mechanisms of progression from primary tumor to oligometastasis, rather than to polymetastases, is lacking in detail. In the current review we focus on the role of micro-RNAs in the regulation of metastases development and the role they may play in the differentiation of oligometastatic from polymetastatic progression. We also discuss the analyses of metastatic samples from oligo-and polymetastatic patients, which suggest that oligometastasis is a distinct biologic entity regulated in part by micro-RNAs. In addition, a review of the known functions of oligometastatic-specific micro-RNAs suggest that they regulate multiple steps in the metastatic cascade, including epithelial–mesenchymal transition, tumor invasion, intravasation, distant vascular extravasation and proliferation in a distant organ. Understanding the role of micro-RNAs and their target genes in oligometastatic disease may allow for the development of targeted therapies to effectively conrol the spread of metastases.
Collapse
Affiliation(s)
- Abhineet Uppal
- Department of Surgery, The University of Chicago, MC 5029, 5841 S. Maryland Ave, Chicago, IL, 60637, USA,
| | | | | | | | | | | |
Collapse
|
111
|
Li X, Yang W, Lou L, Chen Y, Wu S, Ding G. microRNA: a promising diagnostic biomarker and therapeutic target for hepatocellular carcinoma. Dig Dis Sci 2014; 59:1099-107. [PMID: 24390674 DOI: 10.1007/s10620-013-3006-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
microRNAs constitute a novel class of small, non-coding RNAs that negatively regulate gene expression via translational inhibition or mRNA degradation. Aberrant miRNA expression has been implicated in the initiation, progression, and metastasis of hepatocellular carcinoma (HCC). It is well-documented that miRNAs function as either tumor suppressor genes or oncogenes in the development and progression of HCC. Additionally, substantial evidence suggests that unique miRNA signatures can serve as valuable diagnostic and prognostic biomarkers for HCC. Interestingly, certain subsets of miRNAs have also been identified as potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Infectious Diseases, YiWu Central Hospital, Zhejiang, 322000, China,
| | | | | | | | | | | |
Collapse
|
112
|
Ma J, Hong L, Chen Z, Nie Y, Fan D. Epigenetic regulation of microRNAs in gastric cancer. Dig Dis Sci 2014; 59:716-23. [PMID: 24248419 DOI: 10.1007/s10620-013-2939-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/28/2013] [Indexed: 01/02/2023]
Abstract
Gastric cancer is one of the most common cancers and accounts for a large proportion of cancer-related deaths in the world, while the pathogenesis of it is still not clear. Epigenetic changes have been found to participate in the development and progression of gastric cancer. Epigenetic changes involve methylation of cytosines in DNA, modifications of histone, chromatin remodeling, and alterations in the expression of microRNAs. MicroRNAs, a family of small non-coding RNAs, have been demonstrated to participate in many fundamental biological processes including the carcinogenesis of gastric cancer. Previous studies have shown that the downregulation of microRNAs are often caused by the methylation in the CpG islands of microRNA promoters. Here, we have summarized the functions and molecular mechanisms of gastric cancer related methylated microRNAs in gastric carcinogenesis. We further envisage the clinical application of microRNA methylation in the early diagnosis, treatment and prognosis assessment of gastric cancer.
Collapse
Affiliation(s)
- Jiaojiao Ma
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | | | | | | | | |
Collapse
|
113
|
Otsuka M, Kishikawa T, Yoshikawa T, Ohno M, Takata A, Shibata C, Koike K. The role of microRNAs in hepatocarcinogenesis: current knowledge and future prospects. J Gastroenterol 2014; 49:173-184. [PMID: 24258409 DOI: 10.1007/s00535-013-0909-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate gene expression post-transcriptionally through complementary base pairing with thousands of messenger RNAs. Although the precise biological functions of individual miRNAs are still unknown, miRNAs are speculated to play important roles in diverse biological processes through fine regulation of their target gene expression. A growing body of data indicates the deregulation of miRNAs during hepatocarcinogenesis. In this review, we summarize recent findings regarding deregulated miRNA expression and their possible target genes in hepatocarcinogenesis, with emphasis on inflammation-related hepatocarcinogenesis. Because miRNA-based strategies are being applied to clinical therapeutics, precise knowledge of miRNA functions is crucial both scientifically and clinically. We discuss the current open questions from these points of view, which must be clarified in the near future.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 5-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan,
| | | | | | | | | | | | | |
Collapse
|
114
|
Macha MA, Seshacharyulu P, Krishn SR, Pai P, Rachagani S, Jain M, Batra SK. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des 2014; 20:5287-97. [PMID: 24479799 DOI: 10.2174/1381612820666140128213117] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/12/2014] [Indexed: 12/19/2022]
Abstract
Gastrointestinal (GI) cancers remain one of the most common malignancies and are the second common cause of cancer deaths worldwide. The limited effectiveness of therapy for patients with advanced stage and recurrent disease is a reflection of an incomplete understanding of the molecular basis of GI carcinogenesis. Major advancements have improved our understanding of pathology and pathogenesis of GI cancers, but high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate new sensitive and specific diagnostic and prognostic markers for GI cancers. MicroRNAs (miRNAs) are short (19-24 nucleotides) noncoding RNA molecules that regulate gene expression at the posttranscriptional level thus playing an important role in modulating various biological processes including, but not limited to developmental processes, proliferation, apoptosis, metabolism, differentiation, epithelial-mechenchymal transition and are involved in the initiation and progression of various human cancers. Unique miRNA expression profiles have been observed in various cancer types at different stages, suggesting their potential as diagnostic and prognostic biomarkers. Due to their tumor-specific and tissue-specific expression profiles, stability, robust clinical assays for detection in serum as well as in formalin-fixed tissue samples, miRNAs have emerged as attractive candidates for diagnostic and prognostic applications. This review summarizes recent research supporting the utility of miRNAs as novel diagnostic and prognostic tools for GI cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, USA
| |
Collapse
|
115
|
Yuan H, Su L, Chen WY. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 2013; 6:1399-416. [PMID: 24133372 PMCID: PMC3797239 DOI: 10.2147/ott.s37750] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD(+))-dependent protein lysine modifying enzymes with deacetylase, adenosine diphosphateribosyltransferase and other deacylase activities. Mammals have seven sirtuins, namely SIRT1-7. They are key regulators for a wide variety of cellular and physiological processes such as cell proliferation, differentiation, DNA damage and stress response, genome stability, cell survival, metabolism, energy homeostasis, organ development, aging, and cancer. Here we present an extensive literature review of the roles of mammalian sirtuins, particularly SIRT1 as that is the most studied sirtuin, in human epithelial, neuronal, hematopoietic, and mesenchymal malignancies, covering breast, prostate, lung, thyroid, liver, colon, gastric, pancreatic, ovarian, and cervical cancers, tumors of the central nervous system, leukemia and lymphoma, and soft tissue sarcomas. Collective evidence suggests sirtuins are involved in both promoting and suppressing tumorigenesis depending on cellular and molecular contexts. We discuss the potential use of sirtuin modulators, especially sirtuin inhibitors, in cancer treatment.
Collapse
Affiliation(s)
- Hongfeng Yuan
- Department of Cancer Biology, Beckman Research institute, City of Hope, Duarte, CA, USA
| | | | | |
Collapse
|
116
|
Di Francesco A, De Pittà C, Moret F, Barbieri V, Celotti L, Mognato M. The DNA-damage response to γ-radiation is affected by miR-27a in A549 cells. Int J Mol Sci 2013; 14:17881-96. [PMID: 24002026 PMCID: PMC3794758 DOI: 10.3390/ijms140917881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022] Open
Abstract
Perturbations during the cell DNA-Damage Response (DDR) can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs), small non-coding RNAs that act as post-transcriptional regulators of gene expression. The oncogenic miR-27a is over-expressed in several tumors and, in the present study, we investigated its interaction with ATM, the gene coding for the main kinase of DDR pathway. Experimental validation to confirm miR-27a as a direct regulator of ATM was performed by site-direct mutagenesis of the luciferase reporter vector containing the 3'UTR of ATM gene, and by miRNA oligonucleotide mimics. We then explored the functional miR-27a/ATM interaction under biological conditions, i.e., during the response of A549 cells to ionizing radiation (IR) exposure. To evaluate if miR-27a over-expression affects IR-induced DDR activation in A549 cells we determined cell survival, cell cycle progression and DNA double-strand break (DSB) repair. Our results show that up-regulation of miR-27a promotes cell proliferation of non-irradiated and irradiated cells. Moreover, increased expression of endogenous mature miR-27a in A549 cells affects DBS rejoining kinetics early after irradiation.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Cristiano De Pittà
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova via Gattamelata 64, Padova 35128, Italy; E-Mail:
| | - Lucia Celotti
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
- INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro 35020, Padova, Italy
| | - Maddalena Mognato
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| |
Collapse
|