101
|
Jørgensen TS, Petersen B, Petersen HCB, Browne PD, Prost S, Stillman JH, Hansen LH, Hansen BW. The Genome and mRNA Transcriptome of the Cosmopolitan Calanoid Copepod Acartia tonsa Dana Improve the Understanding of Copepod Genome Size Evolution. Genome Biol Evol 2019; 11:1440-1450. [PMID: 30918947 PMCID: PMC6526698 DOI: 10.1093/gbe/evz067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 11/14/2022] Open
Abstract
Members of the crustacean subclass Copepoda are likely the most abundant metazoans worldwide. Pelagic marine species are critical in converting planktonic microalgae to animal biomass, supporting oceanic food webs. Despite their abundance and ecological importance, only six copepod genomes are publicly available, owing to a number of factors including large genome size, repetitiveness, GC-content, and small animal size. Here, we report the seventh representative copepod genome and the first genome and the first transcriptome from the calanoid copepod species Acartia tonsa Dana, which is among the most numerous mesozooplankton in boreal coastal and estuarine waters. The ecology, physiology, and behavior of A. tonsa have been studied extensively. The genetic resources contributed in this work will allow researchers to link experimental results to molecular mechanisms. From PCR-free whole genome sequence and mRNA Illumina data, we assemble the largest copepod genome to date. We estimate that A. tonsa has a total genome size of 2.5 Gb including repetitive elements we could not resolve. The nonrepetitive fraction of the genome assembly is estimated to be 566 Mb. Our DNA sequencing-based analyses suggest there is a 14-fold difference in genome size between the six members of Copepoda with available genomic information. This finding complements nucleus staining genome size estimations, where 100-fold difference has been reported within 70 species. We briefly analyze the repeat structure in the existing copepod whole genome sequence data sets. The information presented here confirms the evolution of genome size in Copepoda and expands the scope for evolutionary inferences in Copepoda by providing several levels of genetic information from a key planktonic crustacean species.
Collapse
Affiliation(s)
- Tue Sparholt Jørgensen
- Department of Science and Environment, Roskilde University, Denmark
- Department of Environmental Science – Environmental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | - Bent Petersen
- Natural History Museum of Denmark, University of Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | | | - Patrick Denis Browne
- Department of Environmental Science – Environmental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | - Stefan Prost
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- Department of Integrative Biology, University of California, Berkeley
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
| | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, California
| | - Lars Hestbjerg Hansen
- Department of Environmental Science – Environmental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
102
|
Williams CF, George CH. Connect and Conquer: Collectivized Behavior of Mitochondria and Bacteria. Front Physiol 2019; 10:340. [PMID: 30984025 PMCID: PMC6450178 DOI: 10.3389/fphys.2019.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/13/2019] [Indexed: 01/21/2023] Open
Abstract
The connectedness of signaling components in network structures is a universal feature of biologic information processing. Such organization enables the transduction of complex input stimuli into coherent outputs and is essential in modulating activities as diverse as the cooperation of bacteria within populations and the dynamic organization of mitochondria within cells. Here, we highlight some common principles that underpin collectivization in bacteria and mitochondrial populations and the advantages conferred by such behavior. We discuss the concept that bacteria and mitochondria act as signal transducers of their localized metabolic environments to bring about energy-dependent clustering to modulate higher-order function across multiple scales.
Collapse
|
103
|
Harada AE, Healy TM, Burton RS. Variation in Thermal Tolerance and Its Relationship to Mitochondrial Function Across Populations of Tigriopus californicus. Front Physiol 2019; 10:213. [PMID: 30930787 PMCID: PMC6429002 DOI: 10.3389/fphys.2019.00213] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Variation in thermal tolerance plays a key role in determining the biogeographic distribution of organisms. Consequently, identifying the mechanistic basis for thermal tolerance is necessary for understanding not only current species range limits but also the capacity for range limits to shift in response to climate change. Although variation in mitochondrial function likely contributes to variation in thermal tolerance, the extent to which mitochondrial function underlies local thermal adaptation is not fully understood. In the current study, we examine variation in thermal tolerance and mitochondrial function among three populations of the intertidal copepod Tigriopus californicus found across a latitudinal thermal gradient along the coast of California, USA. We tested (1) acute thermal tolerance using survivorship and knockdown assays, (2) chronic thermal tolerance using survivorship of nauplii and developmental rate, and (3) mitochondrial performance at a range of temperatures using ATP synthesis fueled by complexes I, II, and I&II, as well as respiration of permeabilized fibers. We find evidence for latitudinal thermal adaptation: the southernmost San Diego population outperforms the northernmost Santa Cruz in measures of survivorship, knockdown temperature, and ATP synthesis rates during acute thermal exposures. However, under a chronic thermal regime, survivorship and developmental rate are more similar in the southernmost and northernmost population than in the mid-range population (Abalone Cove). Though this pattern is unexpected, it aligns well with population-specific rates of ATP synthesis at these chronic temperatures. Combined with the tight correlation of ATP synthesis decline and knockdown temperature, these data suggest a role for mitochondria in setting thermal range limits and indicate that divergence in mitochondrial function is likely a component of adaptation across latitudinal thermal gradients.
Collapse
Affiliation(s)
- Alice E Harada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
104
|
Lima TG, Burton RS, Willett CS. Genomic scans reveal multiple mito‐nuclear incompatibilities in population crosses of the copepod
Tigriopus californicus. Evolution 2019; 73:609-620. [DOI: 10.1111/evo.13690] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thiago G. Lima
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599
- Marine Biology Research Division Scripps Institution of Oceanography La Jolla California 92037
| | - Ronald S. Burton
- Marine Biology Research Division Scripps Institution of Oceanography La Jolla California 92037
| | - Christopher S. Willett
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599
| |
Collapse
|
105
|
Foley HB, Sun PY, Ramirez R, So BK, Venkataraman YR, Nixon EN, Davies KJA, Edmands S. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Exp Gerontol 2019; 119:146-156. [PMID: 30738921 DOI: 10.1016/j.exger.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.
Collapse
Affiliation(s)
- Helen B Foley
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Y Sun
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rocio Ramirez
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Brandon K So
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Yaamini R Venkataraman
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily N Nixon
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular & Computational Biology Division, Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
106
|
Gruber A. What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:123-133. [PMID: 30740457 PMCID: PMC6364258 DOI: 10.15698/mic2019.02.668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022]
Abstract
Mitochondria and plastids evolved from free-living bacteria, but are now considered integral parts of the eukaryotic species in which they live. Therefore, they are implicitly called by the same eukaryotic species name. Historically, mitochondria and plastids were known as "organelles", even before their bacterial origin became fully established. However, since organelle evolution by endosymbiosis has become an established theory in biology, more and more endosymbiotic systems have been discovered that show various levels of host/symbiont integration. In this context, the distinction between "host/symbiont" and "eukaryote/organelle" systems is currently unclear. The criteria that are commonly considered are genetic integration (via gene transfer from the endosymbiont to the nucleus), cellular integration (synchronization of the cell cycles), and metabolic integration (the mutual dependency of the metabolisms). Here, I suggest that these criteria should be evaluated according to the resulting coupling of genetic recombination between individuals and congruence of effective population sizes, which determines if independent speciation is possible for either of the partners. I would like to call this aspect of integration "sexual symbiont integration". If the partners lose their independence in speciation, I think that they should be considered one species. The partner who maintains its genetic recombination mechanisms and life cycle should then be the name giving "host"; the other one would be the organelle. Distinguishing between organelles and symbionts according to their sexual symbiont integration is independent of any particular mechanism or structural property of the endosymbiont/host system under investigation.
Collapse
Affiliation(s)
- Ansgar Gruber
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
107
|
Graham AM, Barreto FS. Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod. Mol Ecol 2018; 28:584-599. [PMID: 30548575 DOI: 10.1111/mec.14973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
The role of gene expression in adaptation to differing thermal environments has been assayed extensively. Yet, in most natural systems, analyses of gene expression reveal only one level of the complexity of regulatory machineries. MicroRNAs (miRNAs) are small noncoding RNAs which are key components of many gene regulatory networks, and they play important roles in a variety of cellular pathways by modulating post-transcriptional quantities of mRNA available for protein synthesis. The characterization of miRNA loci and their regulatory dynamics in nonmodel systems are still largely understudied. In this study, we examine the role of miRNAs in response to high thermal stress in the intertidal copepod Tigriopus californicus. Allopatric populations of this species show varying levels of local adaptation with respect to thermal regimes, and previous studies showed divergence in gene expression between populations from very different thermal environments. We examined the transcriptional response to temperature stress in two populations separated by only 8 km by utilizing RNA-seq to quantify both mRNA and miRNA levels. Using the currently available genome sequence, we first describe the repertoire of miRNAs in T. californicus and assess the degree to which transcriptional response to temperature stress is governed by miRNA activity. The two populations showed large differences in the number of genes involved, the magnitude of change in commonly used genes and in the number of miRNAs involved in transcriptional modulation during stress. Our results suggest that an increased level of regulatory network complexity may underlie improved survivorship under thermal stress in one of the populations.
Collapse
Affiliation(s)
- Allie M Graham
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
108
|
Haddad R, Meter B, Ross JA. The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis. Front Genet 2018; 9:481. [PMID: 30505316 PMCID: PMC6250786 DOI: 10.3389/fgene.2018.00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Genetic variants that are neutral within, but deleterious between, populations (Dobzhansky-Muller Incompatibilities) are thought to initiate hybrid dysfunction and then to accumulate and complete the speciation process. To identify the types of genetic differences that might initiate speciation, it is useful to study inter-population (intra-species) hybrids that exhibit reduced fitness. In Caenorhabditis briggsae, a close relative of the nematode C. elegans, such minor genetic incompatibilities have been identified. One incompatibility between the mitochondrial and nuclear genomes reduces the fitness of some hybrids. To understand the nuclear genetic architecture of this epistatic interaction, we constructed two sets of recombinant inbred lines by hybridizing two genetically diverse wild populations. In such lines, selection is able to eliminate deleterious combinations of alleles derived from the two parental populations. The genotypes of surviving hybrid lines thus reveal favorable allele combinations at loci experiencing selection. Our genotype data from the resulting lines are consistent with the interpretation that the X alleles participate in epistatic interactions with autosomes and the mitochondrial genome. We evaluate this possibility given predictions that mitochondria-X epistasis should be more prevalent than between mitochondria and autosomes. Our empirical identification of inter-genomic linkage disequilibrium supports the body of literature indicating that the accumulation of mito-nuclear genetic incompatibilities might initiate the speciation process through the generation of less-fit inter-population hybrids.
Collapse
Affiliation(s)
- Rania Haddad
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Brandon Meter
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Joseph A Ross
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| |
Collapse
|
109
|
Rand DM, Mossman JA, Zhu L, Biancani LM, Ge JY. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila. IUBMB Life 2018; 70:1275-1288. [PMID: 30394643 PMCID: PMC6268205 DOI: 10.1002/iub.1954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
Abstract
Mitochondrial function requires the coordinated expression of dozens of gene products from the mitochondrial genome and hundreds from the nuclear genomes. The systems that emerge from these interactions convert the food we eat and the oxygen we breathe into energy for life, while regulating a wide range of other cellular processes. These facts beg the question of whether the gene-by-gene interactions (G x G) that enable mitochondrial function are distinct from the gene-by-environment interactions (G x E) that fuel mitochondrial activity. We examine this question using a Drosophila model of mitonuclear interactions in which experimental combinations of mtDNA and nuclear chromosomes generate pairs of mitonuclear genotypes to test for epistatic interactions (G x G). These mitonuclear genotypes are then exposed to altered dietary or oxygen environments to test for G x E interactions. We use development time to assess dietary effects, and genome wide RNAseq analyses to assess hypoxic effects on transcription, which can be partitioned in to mito, nuclear, and environmental (G x G x E) contributions to these complex traits. We find that mitonuclear epistasis is universal, and that dietary and hypoxic treatments alter the epistatic interactions. We further show that the transcriptional response to alternative mitonuclear interactions has significant overlap with the transcriptional response to alternative oxygen environments. Gene coexpression analyses suggest that these shared genes are more central in networks of gene interactions, implying some functional overlap between epistasis and genotype by environment interactions. These results are discussed in the context of evolutionary fitness, the genetic basis of complex traits, and the challenge of achieving precision in personalized medicine. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1275-1288, 2018.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Lei Zhu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Leann M Biancani
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Jennifer Y Ge
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
110
|
Affiliation(s)
- Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|