101
|
Liang Z, Tian W, Liu Y, Du Y, Zhang W, Lin L, Chen M, Cao D. Preparation of Co
3
O
4
Electrodes with Different Morphologies for the Investigation of Magnetic Response in Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhiwei Liang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wensheng Tian
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuan Liu
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuanzhen Du
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wenxin Zhang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Lihua Lin
- Department of Physics Fuzhou University Fuzhou 350002 P.R.China
| | - Mingming Chen
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Dawei Cao
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| |
Collapse
|
102
|
Banbela HM, Alharbi LM, Al-Dahiri RH, Jaremko M, Abdel Salam M. Preparation, Characterization, and Electrochemical Performance of the Hematite/Oxidized Multi-Walled Carbon Nanotubes Nanocomposite. Molecules 2022; 27:molecules27092708. [PMID: 35566063 PMCID: PMC9102378 DOI: 10.3390/molecules27092708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
In this research work, a hematite (α-Fe2O3) nanoparticle was prepared and then mixed with oxidized multi-walled carbon nanotubes (O-MWCNT) to form a stable suspension of an α-Fe2O3/O-MWCNTs nanocomposite. Different characterization techniques were used to explore the chemical and physical properties of the α-Fe2O3/O-MWCNTs nanocomposite, including XRD, FT-IR, UV-Vis, and SEM. The results revealed the successful formation of the α-Fe2O3 nanoparticles, and the oxidation of the MWCNT, as well as the formation of stable α-Fe2O3/O-MWCNTs nanocomposite. The electrochemical behaviour of the α-Fe2O3/O-MWCNTs nanocomposite was investigated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV), and the results revealed that modification of α-Fe2O3 nanoparticles with O-MWCNTs greatly enhanced electrochemical performance and capacitive behaviour, as well as cycling stability.
Collapse
Affiliation(s)
- Hadeel M. Banbela
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (H.M.B.); (L.M.A.)
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, P.O. Box 355, Jeddah 21959, Saudi Arabia
| | - Laila M. Alharbi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (H.M.B.); (L.M.A.)
| | - Reema H. Al-Dahiri
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 34, Jeddah 21959, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI), Red Sea Research Center (RSRC), Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia;
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (H.M.B.); (L.M.A.)
- Correspondence: ; Tel.: +966-541886660; Fax: +966-2-6952292
| |
Collapse
|
103
|
Valvo M, Floraki C, Paillard E, Edström K, Vernardou D. Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries. NANOMATERIALS 2022; 12:nano12091436. [PMID: 35564145 PMCID: PMC9101958 DOI: 10.3390/nano12091436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
The necessity for large scale and sustainable energy storage systems is increasing. Lithium-ion batteries have been extensively utilized over the past decades for a range of applications including electronic devices and electric vehicles due to their distinguishing characteristics. Nevertheless, their massive deployment can be questionable due to use of critical materials as well as limited lithium resources and growing costs of extraction. One of the emerging alternative candidates is potassium-ion battery technology due to potassium’s extensive reserves along with its physical and chemical properties similar to lithium. The challenge to develop anode materials with good rate capability, stability and high safety yet remains. Iron oxides are potentially promising anodes for both battery systems due to their high theoretical capacity, low cost and abundant reserves, which aligns with the targets of large-scale application and limited environmental footprint. However, they present relevant limitations such as low electronic conductivity, significant volume changes and inadequate energy efficiency. In this review, we discuss some recent design strategies of iron oxide-based materials for both electrochemical systems and highlight the relationships of their structure performance in nanostructured anodes. Finally, we outline challenges and opportunities for these materials for possible development of KIBs as a complementary technology to LIBs.
Collapse
Affiliation(s)
- Mario Valvo
- Ångström Laboratory, Department of Chemistry, Uppsala University, SE-751 21 Uppsala, Sweden;
- Correspondence: (M.V.); (D.V.)
| | - Christina Floraki
- Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece;
| | - Elie Paillard
- Politecnico di Milano, Department of Energy, Via Lambruschini 4, 20156 Milan, Italy;
| | - Kristina Edström
- Ångström Laboratory, Department of Chemistry, Uppsala University, SE-751 21 Uppsala, Sweden;
| | - Dimitra Vernardou
- Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece;
- Institute of Emerging Technologies, Hellenic Mediterranean University, 71410 Heraklion, Greece
- Correspondence: (M.V.); (D.V.)
| |
Collapse
|
104
|
Pian C, Peng W, Ren H, Ma C, Su Y, Ti R, Chen X, Zhu L, Liu J, Sun X, Wang B, Niu B, Wu D. Robust α-Fe2O3@TiO2 Core–Shell Structures With Tunable Buffer Chambers for High-Performance Lithium Storage. Front Chem 2022; 10:866369. [PMID: 35464221 PMCID: PMC9021487 DOI: 10.3389/fchem.2022.866369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
α-Fe2O3 has high potential energy storage capacity and can serve as a green and low-cost anode material for lithium-ion batteries. However, α-Fe2O3 suffers large volume expansion and pulverization. Based on DFT calculations, TiO2 can effectively maintain the integrity of the crystal structure during the discharge/charge process. Well-defined cubic α-Fe2O3 is coated with a TiO2 layer using the hydrothermal method with the assistance of oxalic acid surface treatment, and then α-Fe2O3@TiO2 with tunable buffer chambers is obtained by altering the hydrochloric acid etching time. With the joint efforts of the buffer chamber and the robust structure of the TiO2 layer, α-Fe2O3@TiO2 alleviates the expansion of α-Fe2O3 during the discharge/charge process. The optimized sample (FT-1h) achieves good cycling performance. The reversible specific capacity remains at 893.7 mA h g-1, and the Coulombic efficiency still reaches up to 98.47% after 150 cycles at a current density of 100 mA g−1. Furthermore, the reversible specific capacity can return to 555.5 mA h g−1 at 100 mA g−1 after cycling at a high current density. Hence, the buffer chamber and the robust TiO2 layer can effectively improve the cycling stability and rate performance of α-Fe2O3.
Collapse
Affiliation(s)
- Chunyuan Pian
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
| | - Weichao Peng
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Haoyu Ren
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Chao Ma
- School of Mechanical and Electrical Engineering, Xinxiang University, Xinxiang, China
| | - Yun Su
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
| | - Ruixia Ti
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
| | - Xiuyu Chen
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
| | - Lixia Zhu
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
| | - Jingjing Liu
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
| | - Xinzhi Sun
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
| | - Bin Wang
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang, China
- *Correspondence: Bin Wang, ; Bingxuan Niu, ; Dapeng Wu,
| | - Bingxuan Niu
- Collage of Pharmacy, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Bin Wang, ; Bingxuan Niu, ; Dapeng Wu,
| | - Dapeng Wu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- School of Environment, Henan Normal University, Xinxiang, China
- *Correspondence: Bin Wang, ; Bingxuan Niu, ; Dapeng Wu,
| |
Collapse
|
105
|
Li X, Su J, Li Z, Zhao Z, Zhang F, Zhang L, Ye W, Li Q, Wang K, Wang X, Li H, Hu H, Yan S, Miao GX, Li Q. Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Sci Bull (Beijing) 2022; 67:1145-1153. [DOI: 10.1016/j.scib.2022.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 01/28/2023]
|
106
|
Sun C, Liu M, Wang L, Xie L, Zhao W, Li J, Liu S, Yan D, Zhao Q. Revisiting lithium-storage mechanisms of molybdenum disulfide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
107
|
Zhang X, Hui Z, King ST, Wu J, Ju Z, Takeuchi KJ, Marschilok AC, West AC, Takeuchi ES, Wang L, Yu G. Gradient Architecture Design in Scalable Porous Battery Electrodes. NANO LETTERS 2022; 22:2521-2528. [PMID: 35254075 DOI: 10.1021/acs.nanolett.2c00385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because it has been demonstrated to be effective toward faster ion diffusion inside the pore space, low-tortuosity porous architecture has become the focus in thick electrode designs, and other possibilities are rarely investigated. To advance current understanding in the structure-affected electrochemistry and to broaden horizons for thick electrode designs, we present a gradient electrode design, where porous channels are vertically aligned with smaller openings on one end and larger openings on the other. With its 3D morphology carefully visualized by Raman mapping, the electrochemical properties between opposite orientations of the gradient electrodes are compared, and faster energy storage kinetics is found in larger openings and more concentrated active material near the separator. As further verified by simulation, this study on gradient electrode design deepens the knowledge of structure-related electrochemistry and brings perspectives in high-energy battery electrode designs.
Collapse
Affiliation(s)
- Xiao Zhang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zeyu Hui
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Steven T King
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingyi Wu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengyu Ju
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kenneth J Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alan C West
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Esther S Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lei Wang
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
108
|
Wu J, Ju Z, Zhang X, Xu X, Takeuchi KJ, Marschilok AC, Takeuchi ES, Yu G. Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage. ACS NANO 2022; 16:4805-4812. [PMID: 35234442 DOI: 10.1021/acsnano.2c00129] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ever-growing energy demand of modern society calls for the development of high-loading and high-energy-density batteries, and substantial research efforts are required to optimize electrode microstructures for improved energy storage. Low-tortuosity architecture proves effective in promoting charge transport kinetics in thick electrodes; however, heterogeneous electrochemical mass transport along the depth direction is inevitable, especially at high C-rates. In this work, we create an active material gradient in low-tortuosity electrodes along ion-transport direction to compensate for uneven reaction kinetics and the nonuniform lithiation/delithiation process in thick electrodes. The gradual decrease of active material concentration from the separator to the current collector reduces the integrated ion diffusion distance and accelerates the electrochemical reaction kinetics, leading to improved rate capabilities. The structure advantages combining low-tortuosity pores and active material gradient offer high mass loading (60 mg cm-2) and enhanced performance. Comprehensive understanding of the effect of active material gradient architecture on electrode kinetics has been elucidated by electrochemical characterization and simulations, which can be useful for development of batteries with high-energy/power densities.
Collapse
Affiliation(s)
- Jingyi Wu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengyu Ju
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiao Zhang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiao Xu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kenneth J Takeuchi
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther S Takeuchi
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
109
|
Liu Y, Li X, Zhang F, Zhang L, Zhang T, Li C, Jin Z, Wu Y, Du Z, Jiao H, Jiang Y, Yan Y, Li Q, Kong W. Hollow CoS/C Structures for High-Performance Li, Na, K Ion Batteries. Front Chem 2022; 10:845742. [PMID: 35360542 PMCID: PMC8960294 DOI: 10.3389/fchem.2022.845742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Alkali ion (Li, Na, and K) batteries as a new generation of energy storage devices are widely applied in portable electronic devices and large-scale energy storage equipment. The recent focus has been devoted to develop universal anodes for these alkali ion batteries with superior performance. Transition metal sulfides can accommodate alkaline ions with large radius to travel freely between layers due to its large interlayer spacing. Moreover, the composite with carbon material can further improve electrical conductivity of transition metal sulfides and reduce the electron transfer resistance, which is beneficial for the transport of alkali ions. Herein, we designed zeolitic imidazolate framework (ZIF)–derived hollow structures CoS/C for excellent alkali ion (Li, Na, and K) battery anodes. The porous carbon framework can improve the conductivity and effectively buffer the stress-induced structural damage. The ZIF-derived CoS/C anodes maintain a reversible capacity of 648.9, and 373.2, 224.8 mAh g−1 for Li, Na, and K ion batteries after 100 cycles, respectively. Its outstanding electrochemical performance is considered as a universal anode material for Li, Na, and K ion batteries.
Collapse
Affiliation(s)
- Yan Liu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Xiangkun Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Fengling Zhang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Leqing Zhang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Tao Zhang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Changshuan Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Zhicheng Jin
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Yueying Wu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Zhongyu Du
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Huiwen Jiao
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Ying Jiang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Yuliang Yan
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| | - Qiang Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
- Weihai Innovation Institute, Qingdao University, Weihai, China
- *Correspondence: Qiang Li, ; Weijin Kong,
| | - Weijin Kong
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
- *Correspondence: Qiang Li, ; Weijin Kong,
| |
Collapse
|
110
|
Jiang B, Zhu W, Cai Z, Zeng Y, Xiao R. Graphene‐Based Conductive Networks to Enhance the Performance of Polyimide Anode Materials for Dual‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202200092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Jiang
- School of Chemistry and Chemical Engineering Guizhou University Guizhou 550025 P. R. China
| | - Weichen Zhu
- School of Chemistry and Chemical Engineering Guizhou University Guizhou 550025 P. R. China
| | - Zehua Cai
- School of Chemistry and Chemical Engineering Guizhou University Guizhou 550025 P. R. China
| | - Yong Zeng
- School of Chemistry and Chemical Engineering Guizhou University Guizhou 550025 P. R. China
| | - Rengui Xiao
- School of Chemistry and Chemical Engineering Guizhou University Guizhou 550025 P. R. China
| |
Collapse
|
111
|
Wang S, Lv S, Wang G, Feng K, Xie S, Yuan G, Nie K, Sha M, Sun X, Zhang L. Construction of Novel Bimetallic Oxyphosphide as Advanced Anode for Potassium Ion Hybrid Capacitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105193. [PMID: 35040580 PMCID: PMC8948644 DOI: 10.1002/advs.202105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 05/31/2023]
Abstract
Potassium ion hybrid capacitors (PIHCs) have attracted considerable interest due to their low cost, competitive power/energy densities, and ultra-long lifespan. However, the more sluggish insertion kinetics of battery-type anodes than capacitor-type cathodes in PIHCs seriously limits their practical application. Therefore, developing advanced anodes with high capacitor and suitable K+ intercalation is imperative and significant. A novel core-shell structure of NiCo oxide/NiCo oxyphosphide (NCOP) nanowires are designed and constructed in this study via efficient and facile strategy. Combining the merits of the core-shell structure and the massive active sites in the oxyphosphide layer, the as-prepared NCOP composites manifest highly reversible capacitors and outstanding rate capability. Meanwhile, the insertion and conversion potassium storage mechanisms of the NCOP are successfully revealed through in situ X-ray diffraction and density functional theory calculations, respectively. Furthermore, the PIHC was assembled with NCOP anode and borocarbonitride cathode, which displays a large energy density and high-power density, along with an exceptional capacity retention of ≈90% over 10 000 cycles at 1.0 A g-1 . This work provides the anion regulation strategy for modifying the transition metal oxide and constructing the advancing electrode materials for next-generation energy storage and beyond.
Collapse
Affiliation(s)
- Shouzhi Wang
- Institute of Novel SemiconductorsState Key Lab of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Suzhou Research InstituteShandong UniversitySuzhou215123P. R. China
| | - Songyang Lv
- Institute of Novel SemiconductorsState Key Lab of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Guodong Wang
- Institute of Novel SemiconductorsState Key Lab of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123P. R. China
| | - Shoutian Xie
- School of Public AdministrationShandong Normal UniversityJinan250100P. R. China
| | - Guotao Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123P. R. China
| | - Kaiqi Nie
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123P. R. China
| | - Mo Sha
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123P. R. China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123P. R. China
| | - Lei Zhang
- Institute of Novel SemiconductorsState Key Lab of Crystal MaterialsShandong UniversityJinan250100P. R. China
| |
Collapse
|
112
|
Celik E, Cop P, Negi RS, Mazilkin A, Ma Y, Klement P, Schörmann J, Chatterjee S, Brezesinski T, Elm MT. Design of Ordered Mesoporous CeO 2-YSZ Nanocomposite Thin Films with Mixed Ionic/Electronic Conductivity via Surface Engineering. ACS NANO 2022; 16:3182-3193. [PMID: 35138801 DOI: 10.1021/acsnano.1c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mixed ionic and electronic conductors represent a technologically relevant materials system for electrochemical device applications in the field of energy storage and conversion. Here, we report about the design of mixed-conducting nanocomposites by facile surface modification using atomic layer deposition (ALD). ALD is the method of choice, as it allows coating of even complex surfaces. Thermally stable mesoporous thin films of 8 mol-% yttria-stabilized zirconia (YSZ) with different pore sizes of 17, 24, and 40 nm were prepared through an evaporation-induced self-assembly process. The free surface of the YSZ films was uniformly coated via ALD with a ceria layer of either 3 or 7 nm thickness. Electrochemical impedance spectroscopy was utilized to probe the influence of the coating on the charge-transport properties. Interestingly, the porosity is found to have no effect at all. In contrast, the thickness of the ceria surface layer plays an important role. While the nanocomposites with a 7 nm coating only show ionic conductivity, those with a 3 nm coating exhibit mixed conductivity. The results highlight the possibility of tailoring the electrical transport properties by varying the coating thickness, thereby providing innovative design principles for the next-generation electrochemical devices.
Collapse
Affiliation(s)
- Erdogan Celik
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Pascal Cop
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Rajendra S Negi
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Andrey Mazilkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yanjiao Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philip Klement
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Jörg Schörmann
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Sangam Chatterjee
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Torsten Brezesinski
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias T Elm
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
113
|
Wang LH, Ren LL, Qin YF, Li Q. Hydrothermal Preparation and High Electrochemical Performance of NiS Nanospheres as Anode for Lithium-Ion Batteries. Front Chem 2022; 9:812274. [PMID: 35186895 PMCID: PMC8851523 DOI: 10.3389/fchem.2021.812274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Nickel sulfide has been widely studied as an anode material for lithium-ion batteries due to its environmental friendliness, low cost, high conductivity, and high theoretical capacity. A simple hydrothermal method was used to prepare NiS nanospheres materials with the size in the range of 100–500 nm. The NiS nanospheres electrodes exhibited a high reversible capacity of 1402.3 mAh g−1 at 200 mA g−1 after 280 cycles and a strong rate capability of 814.8 mAh g−1 at 0.8 A g−1 and 1130.5 mAh g−1 when back to 0.1 A g−1. Excellent electrochemical properties and the simple preparation method of the NiS nanospheres make it possible to prepare NiS on a large scale as the anode of lithium-ion batteries.
Collapse
Affiliation(s)
- Lin-Hui Wang
- College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Long-Long Ren
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, China
| | - Yu-Feng Qin
- College of Information Science and Engineering, Shandong Agricultural University, Taian, China
- *Correspondence: Yu-Feng Qin,
| | - Qiang Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, China
| |
Collapse
|
114
|
Dong X, Liu Y, Zhu S, Ou Y, Zhang X, Lan W, Guo H, Zhang C, Liu Z, Ju S, Miao Y, Zhang Y, Li H. Architecting Hierarchical WO3 Agglomerates Assembled With Straight and Parallel Aligned Nanoribbons Enabling High Capacity and Robust Stability of Lithium Storage. Front Chem 2022; 9:834418. [PMID: 35186900 PMCID: PMC8847682 DOI: 10.3389/fchem.2021.834418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022] Open
Abstract
The pursuit of electrochemical energy storage has led to a pressing need on materials with high capacities and energy densities; however, further progress is plagued by the restrictive capacity (372 mAh g−1) of conventional graphite materials. Tungsten trioxide (WO3)-based anodes feature high theoretical capacity (693 mAh g−1), suitable potential, and affordable cost, arousing ever-increasing attention and intense efforts. Nonetheless, developing high-performance WO3 electrodes that accommodate lithium ions remains a daunting challenge on account of sluggish kinetics characteristics and large volume strain. Herein, the well-designed hierarchical WO3 agglomerates assembled with straight and parallel aligned nanoribbons are fabricated and evaluated as an anode of lithium-ion batteries (LIBs), which exhibits an ultra-high capacity and excellent rate capability. At a current density of 1,000 mA g−1, a reversible capacity as high as 522.7 mAh g−1 can be maintained after 800 cycles, corresponding to a high capacity retention of ∼80%, demonstrating an exceptional long-durability cyclic performance. Furthermore, the mechanistic studies on the lithium storage processes of WO3 are probed, providing a foundation for further optimizations and rational designs. These results indicate that the well-designed hierarchical WO3 agglomerates display great potential for applications in the field of high-performance LIBs.
Collapse
Affiliation(s)
- Xiaotong Dong
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Yongshuai Liu
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Shikai Zhu
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Yike Ou
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Xiaoyu Zhang
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Wenhao Lan
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Haotian Guo
- School of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Bimolecular Reorganization and Sensing, Shangqiu Normal University, Shangqiu, China
| | - Cunliang Zhang
- School of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Bimolecular Reorganization and Sensing, Shangqiu Normal University, Shangqiu, China
- *Correspondence: Hongsen Li, ; Yongcheng Zhang, ; Cunliang Zhang,
| | - Zhaoguo Liu
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Shuai Ju
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Yuan Miao
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
| | - Yongcheng Zhang
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
- *Correspondence: Hongsen Li, ; Yongcheng Zhang, ; Cunliang Zhang,
| | - Hongsen Li
- Center for Marine Observation and Communications, College of Physics, Qingdao University, Qingdao, China
- *Correspondence: Hongsen Li, ; Yongcheng Zhang, ; Cunliang Zhang,
| |
Collapse
|
115
|
Choi YS, Choi W, Yoon WS, Kim JM. Unveiling the Genesis and Effectiveness of Negative Fading in Nanostructured Iron Oxide Anode Materials for Lithium-Ion Batteries. ACS NANO 2022; 16:631-642. [PMID: 35029370 DOI: 10.1021/acsnano.1c07943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iron oxide anode materials for rechargeable lithium-ion batteries have garnered extensive attention because of their inexpensiveness, safety, and high theoretical capacity. Nanostructured iron oxide anodes often undergo negative fading, that is, unconventional capacity increase, which results in a capacity increasing upon cycling. However, the detailed mechanism of negative fading still remains unclear, and there is no consensus on the provenance. Herein, we comprehensively investigate the negative fading of iron oxide anodes with a highly ordered mesoporous structure by utilizing advanced synchrotron-based analysis. Electrochemical and structural analyses identified that the negative fading originates from an optimization of the electrolyte-derived surface layer, and the thus formed layer significantly contributes to the structural stability of the nanostructured electrode materials, as well as their cycle stability. This work provides an insight into understanding the origin of negative fading and its influence on nanostructured anode materials.
Collapse
Affiliation(s)
- Yun Seok Choi
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woosung Choi
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won-Sub Yoon
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
116
|
Ren LL, Wang LH, Qin YF, Li Q. One-Pot Synthesized Amorphous Cobalt Sulfide With Enhanced Electrochemical Performance as Anodes for Lithium-Ion Batteries. Front Chem 2022; 9:818255. [PMID: 35071194 PMCID: PMC8766978 DOI: 10.3389/fchem.2021.818255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
In order to solve the poor cycle stability and the pulverization of cobalt sulfides electrodes, a series of amorphous and crystalline cobalt sulfides were prepared by one-pot solvothermal synthesis through controlling the reaction temperatures. Compared to the crystalline cobalt sulfide electrodes, the amorphous cobalt sulfide electrodes exhibited superior electrochemical performance. The high initial discharge and charge capacities of 2,132 mAh/g and 1,443 mAh/g at 200 mA/g were obtained. The reversible capacity was 1,245 mAh/g after 200 cycles, which is much higher than the theoretical capacity. The specific capability was 815 mAh/g at 800 mA/g and increased to 1,047 mAh/g when back to 100 mA/g, indicating the excellent rate capability. The outstanding electrochemical performance of the amorphous cobalt sulfide electrodes could result from the unique characteristics of more defects, isotropic nature, and the absence of grain boundaries for amorphous nanostructures, indicating the potential application of amorphous cobalt sulfide as anodes for lithium-ion batteries.
Collapse
Affiliation(s)
- Long-Long Ren
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, China
| | - Lin-Hui Wang
- College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yu-Feng Qin
- College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Qiang Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, China
| |
Collapse
|
117
|
Zhong J, Wang T, Wang L, Peng L, Fu S, Zhang M, Cao J, Xu X, Liang J, Fei H, Duan X, Lu B, Wang Y, Zhu J, Duan X. A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity. NANO-MICRO LETTERS 2022; 14:50. [PMID: 35076763 PMCID: PMC8789978 DOI: 10.1007/s40820-022-00790-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 05/24/2023]
Abstract
Silicon monoxide (SiO) is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g-1. The studies to date have been limited to electrodes with a relatively low mass loading (< 3.5 mg cm-2), which has seriously restricted the areal capacity and its potential in practical devices. Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practical technologies. Herein, we report a monolithic three-dimensional (3D) large-sheet holey graphene framework/SiO (LHGF/SiO) composite for high-mass-loading electrode. By specifically using large-sheet holey graphene building blocks, we construct LHGF with super-elasticity and exceptional mechanical robustness, which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading. Additionally, the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport. By systematically tailoring microstructure design, we show the LHGF/SiO anode with a mass loading of 44 mg cm-2 delivers a high areal capacity of 35.4 mAh cm-2 at a current of 8.8 mA cm-2 and retains a capacity of 10.6 mAh cm-2 at 17.6 mA cm-2, greatly exceeding those of the state-of-the-art commercial or research devices. Furthermore, we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm-2 delivers an unprecedented areal capacity up to 140.8 mAh cm-2. The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.
Collapse
Affiliation(s)
- Jiang Zhong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Tao Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Lei Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Lele Peng
- International Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518057, People's Republic of China
| | - Shubin Fu
- Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Meng Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Jinhui Cao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiang Xu
- Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Junfei Liang
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Bingan Lu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Yiliu Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Jian Zhu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Engineering Research Center of Advanced Catalysis of the Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
118
|
Ren L, Wang L, Qin Y, Li Q. High Cycle Stability of Hybridized Co(OH)2 Nanomaterial Structures Synthesized by the Water Bath Method as Anodes for Lithium-Ion Batteries. MICROMACHINES 2022; 13:mi13020149. [PMID: 35208274 PMCID: PMC8877691 DOI: 10.3390/mi13020149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
Cobalt oxides have been intensely explored as anodes of lithium-ion batteries to resolve the intrinsic disadvantages of low electrical conductivity and volume change. However, as a precursor of preparing cobalt oxides, Co(OH)2 has rarely been investigated as the anode material of lithium-ion batteries, perhaps because of the complexity of hydroxides. Hybridized Co(OH)2 nanomaterial structures were synthesized by the water bath method and exhibited high electrochemical performance. The initial discharge and charge capacities were 1703.2 and 1262.9 mAh/g at 200 mA/g, respectively. The reversible capacity was 1050 mAh/g after 150 cycles. The reversible capability was 1015 mAh/g at 800 mA/g and increased to 1630 mAh/g when driven back to 100 mA/g. The electrochemical reaction kinetics study shows that the lithium-ion diffusion-controlled contribution is dominant in the energy storage mechanism. The superior electrochemical performance could result from the water bath method and the hybridization of nanosheets and nanoparticles structures. These hybridized Co(OH)2 nanomaterial structures with high electrochemical performance are promising anodes for lithium-ion batteries.
Collapse
Affiliation(s)
- Longlong Ren
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271018, China;
| | - Linhui Wang
- College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China;
| | - Yufeng Qin
- College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China;
- Correspondence:
| | - Qiang Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
119
|
Wang J, Hu Q, Hu W, Zhu W, Wei Y, Pan K, Zheng M, Pang H. Preparation of Hollow Core-Shell Fe 3O 4/Nitrogen-Doped Carbon Nanocomposites for Lithium-Ion Batteries. Molecules 2022; 27:396. [PMID: 35056710 PMCID: PMC8781802 DOI: 10.3390/molecules27020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 01/06/2023] Open
Abstract
Iron oxides are potential electrode materials for lithium-ion batteries because of their high theoretical capacities, low cost, rich resources, and their non-polluting properties. However, iron oxides demonstrate large volume expansion during the lithium intercalation process, resulting in the electrode material being crushed, which always results in poor cycle performance. In this paper, to solve the above problem, iron oxide/carbon nanocomposites with a hollow core-shell structure were designed. Firstly, an Fe2O3@polydopamine nanocomposite was prepared using an Fe2O3 nanocube and dopamine hydrochloride as precursors. Secondly, an Fe3O4@N-doped C composite was obtained by means of further carbonization treatment. Finally, Fe3O4@void@N-Doped C-x composites with core-shell structures with different void sizes were obtained by means of Fe3O4 etching. The effect of the etching time on the void size was studied. The electrochemical properties of the composites when used as lithium-ion battery materials were studied in more detail. The results showed that the sample that was obtained via etching for 5 h using 2 mol L-1 HCl solution at 30 °C demonstrated better electrochemical performance. The discharge capacity of the Fe3O4@void@N-Doped C-5 was able to reach up to 1222 mA g h-1 under 200 mA g-1 after 100 cycles.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.W.); (Q.H.); (W.H.); (W.Z.); (Y.W.)
| | - Qin Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.W.); (Q.H.); (W.H.); (W.Z.); (Y.W.)
- Hengshanqiao Senior Middle School, Wujin District, Changzhou 213119, China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.W.); (Q.H.); (W.H.); (W.Z.); (Y.W.)
| | - Wei Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.W.); (Q.H.); (W.H.); (W.Z.); (Y.W.)
| | - Ying Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.W.); (Q.H.); (W.H.); (W.Z.); (Y.W.)
| | - Kunming Pan
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials & Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471003, China
| | - Mingbo Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.W.); (Q.H.); (W.H.); (W.Z.); (Y.W.)
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.W.); (Q.H.); (W.H.); (W.Z.); (Y.W.)
| |
Collapse
|
120
|
Wang J, Kirlikovali KO, Kim SY, Kim DW, Varma RS, Jang HW, Farha OK, Shokouhimehr M. Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm 2022. [DOI: 10.1039/d1ce01737c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-lithium ion (e.g., Al3+, Ca2+, K+, Mg2+, Na+, and Zn2+) batteries have emerged as a promising platform for next-generation energy storage systems.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston 60208, Illinois, USA
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston 60208, Illinois, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
121
|
Yang L, Liu J, Liu Y, Li Y, Xu Y, Zuo F, Wu Y, Li Q, Li H. Long life of exceeding 10000 cycles for aluminum-ion batteries based on FeTe2@GO composite as cathode. Chem Commun (Camb) 2022; 58:10981-10984. [DOI: 10.1039/d2cc04109j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron telluride wrapped with graphene oxide (GO) nanocomposite via a hydrothermal method is introduced as the cathode material for aluminum-ion batteries (AIBs), exhibiting best cyclability ( 120.4 mA h g-1...
Collapse
|
122
|
Cheng W, Guo Z, Chen G, Wang Y, Yin L, Li J, Kong X, Feng Q. Electrochemical reaction mechanism of porous Zn2Ti3O8 as a high-performance pseudocapacitive anode for Li-ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
123
|
zhang Y, Zhou N, Liu X, Gao X, Fang S. Three-dimensional porous structured germanium anode materials for High-Performance Lithium-Ion Full-cell. Dalton Trans 2022; 51:14767-14774. [DOI: 10.1039/d2dt01528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Germanium (Ge) has a high specific capacity when used as an alloying anode in lithium ion batteries. Despite this, the large volume of expansion that occurs during charging and discharging...
Collapse
|
124
|
Wang P, Jiang Y, Cao Y, Wu X, Liu X. MOF-Derived ZnS/NC yolk-shell Composites for Highly Reversible Lithium Storage. NEW J CHEM 2022. [DOI: 10.1039/d2nj01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of ZnS-based anode materials in lithium-ion batteries (LIBs) has some severe challenges, such as the insulating nature of ZnS, the pronounced polarization caused by conversion reactions and alloying...
Collapse
|
125
|
Zhang Y, Wu B, Mu D, Ma C, Zhang X, Wang Y, Zhao Z, Liu T, Liu C. Construction of N, P doped 3D dendritic-free lithium metal anode by using silicon-containing lithium metal. Dalton Trans 2022; 51:13210-13226. [DOI: 10.1039/d2dt01387h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium is thought to be an excellent anode material for next-generation Li metal batteries (LMBs). However, some problems with lithium anode often lead to serious safety concerns and catastrophic failures...
Collapse
|
126
|
Li X, Li Z, Liu Y, Liu H, Zhao Z, Zheng Y, Chen L, Ye W, Li H, Li Q. Transition metal catalysis in lithium-ion batteries studied by operando magnetometry. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63867-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
127
|
Liu Y, Qie Y, Kong F, Yang Z, Yang H. (Fe xNi 1−x) 4N nanoparticles: magnetism and electrocatalytic properties for the oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01147f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(FexNi1−x)4N nanoparticles (NPs) encased within amorphous carbon were prepared by a facile route and the positive effect of nickel doping content on the magnetic and OER catalytic performance of γ′-Fe4N was investigated.
Collapse
Affiliation(s)
- Yixuan Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaqin Qie
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Fanqi Kong
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhilin Yang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hua Yang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
128
|
Ling J, Karuppiah C, Das S, Singh VK, Misnon II, Ab Rahim MH, Peng S, Yang CC, Jose R. Quasi-anisotropic benefits in electrospun nickel–cobalt–manganese oxide nano-octahedron as anode for lithium-ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01462a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A polyhedral Ni–Co–Mn–O nano-octahedron anode for lithium-ion batteries was synthesized, which demonstrated enhanced lithium storage properties as compared to the nanofiber counterpart.
Collapse
Affiliation(s)
- Jinkiong Ling
- Center of Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
| | - Chelladurai Karuppiah
- Battery Research Centre of Green Energy (BRCGE), Ming Chi University of Technology, New Taipei City, 24301, Taiwan, Republic of China
| | - Santanu Das
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Vivek Kumar Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Izan Izwan Misnon
- Center of Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Hasbi Ab Rahim
- Center of Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
| | - Shengjie Peng
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Chun-Chen Yang
- Battery Research Centre of Green Energy (BRCGE), Ming Chi University of Technology, New Taipei City, 24301, Taiwan, Republic of China
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, Republic of China
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-shan, Taoyuan 333, Taiwan, Republic of China
| | - Rajan Jose
- Center of Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
129
|
Wu J, Ju Z, Zhang X, Quilty C, Takeuchi KJ, Bock DC, Marschilok AC, Takeuchi ES, Yu G. Ultrahigh-Capacity and Scalable Architected Battery Electrodes via Tortuosity Modulation. ACS NANO 2021; 15:19109-19118. [PMID: 34410706 DOI: 10.1021/acsnano.1c06491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A thick electrode with high areal capacity is a straightforward approach to maximize the energy density of batteries, but the development of thick electrodes suffers from both fabrication challenges and electron/ion transport limitations. In this work, a low-tortuosity LiFePO4 (LFP) electrode with ultrahigh loadings of active materials and a highly efficient transport network was constructed by a facile and scalable templated phase inversion method. The instant solidification of polymers during phase inversion enables the fabrication of ultrathick yet robust electrodes. The open and aligned microchannels with interconnected porous walls provide direct and short ion transport pathways, while the encapsulation of active materials in the carbon framework offers a continuous pathway for electron transport. Benefiting from the structural advantages, the ultrathick bilayer LiFePO4 electrodes (up to 1.2 mm) demonstrate marked improvements in rate performance and cycling stability under high areal loadings (up to 100 mg cm-2). Simulation and operando structural characterization also reveal fast transport kinetics. Combined with the scalable fabrication, our proposed strategy presents an effective alternative for designing practical high energy/power density electrodes at low cost.
Collapse
Affiliation(s)
- Jingyi Wu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengyu Ju
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiao Zhang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Calvin Quilty
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
| | - David C Bock
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther S Takeuchi
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
130
|
Guo Y, Zhang D, Bai Z, Yang Y, Wang Y, Cheng J, Chu PK, Luo Y. MXene nanofibers confining MnO x nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton Trans 2021; 51:1423-1433. [PMID: 34951612 DOI: 10.1039/d1dt03718h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electron and ion conductivities of anode materials such as MnOx affect critically the properties of anodes in Li-ion batteries. Herein, a three-dimensional (3D) nanofiber network (MnOx-MXene/CNFs) for high-speed electron and ion transport with a MnOx surface anchored and embedded inside is designed via electrospinning manganese ion-modified MXene nanosheets and subsequent carbonization. Ion transport analysis reveals improved Li+ transport on the MnOx-MXene/CNF electrode and first-principles density functional theory (DFT) calculation elucidates the Li+ adsorption and storage mechanism. The surface-anchored MnOx nanoparticles form extremely strong bonds with the nanofibers, and the internally embedded MnOx nanoparticles, due to the fiber confinement effect, ensure the structural stability during charging and discharging, achieving the so-called dual stabilization strategies for cyclic fluctuation. By electrospinning, self-restacking of MXene flakes can be prevented, thereby giving rise to a larger surface area and more accessible active sites on the flexible anode. Benefiting from the 3D network with excellent conductivity and stability, at high current densities, the MnOx-MXene/CNF anode exhibits outstanding electrochemical characteristics. Even after 2000 cycles, a reversible capacity of 1098 mA h g-1 can be obtained at 2 A g-1 with only 0.007208% decay rate. The MnOx-MXene/CNF anode also shows a significant rate performance such as 1268 mA h g-1 at 2 A g-1 and 1137 mA h g-1 at 5 A g-1 corresponding to an area specific capacity of 2.536 mA h cm-2 at 4 mA cm-2 and 2.274 mA h cm-2 at 10 mA cm-2, respectively. The results indicate that the MnOx-MXene/CNF anode has excellent Li-ion storage properties and great commercial potential.
Collapse
Affiliation(s)
- Ying Guo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Deyang Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Zuxue Bai
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ya Yang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Yangbo Wang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Jinbing Cheng
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science & Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yongsong Luo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China. .,Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
131
|
Zhao Y, Yin Y, Liang S, Huang F. Utilization of Interfacial Charge Storage toward Ultra-high Capacity: Li 2SO 4 Sealed Micron Sized Iron Oxides as Anode for Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60063-60071. [PMID: 34889603 DOI: 10.1021/acsami.1c20534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interfacial charge storage is derived from spin-polarized electrons stored on the surface of iron metal nanoparticles, and reasonable utilization can achieve a capacity far beyond the traditional conversion mechanism. Generally, iron oxide is easy to crack, pulverize, and fall off due to its poor conductivity and large volume change during cycling, and causes serious side reactions with the electrolyte. Herein, this pulverization phenomenon was intentionally utilized to in situ form nano-sized iron particles and create a large number of Fe/Li2O interfaces. Specifically, a Li+ conductor like Li2SO4 was utilized to seal micron sized iron oxides and also work as an aggregation barrier. Thus, the in situ formed nanoparticles were separated from the electrolyte and could provide huge capacity through interfacial charge storage. Therefore, the specific capacity of this unique composite continues to rise upon activation cycling and finally reaches 1708 mA h g-1, which is more than twice its theoretical capacity based on the conversion mechanism. The gradually increasing interfacial charge storage capacity was also directly confirmed by X-ray photoelectron spectroscopy tests. This novel strategy provides new opportunities for the design and commercialization of advanced energy storage systems.
Collapse
Affiliation(s)
- Yantao Zhao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Yanfei Yin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Song Liang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Fuqiang Huang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| |
Collapse
|
132
|
Kim H, Kim DI, Yoon WS. Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2021.00920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
133
|
Wang LH, Gao S, Ren LL, Zhou EL, Qin YF. The Synergetic Effect Induced High Electrochemical Performance of CuO/Cu 2O/Cu Nanocomposites as Lithium-Ion Battery Anodes. Front Chem 2021; 9:790659. [PMID: 34881227 PMCID: PMC8645576 DOI: 10.3389/fchem.2021.790659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the high theoretical capability, copper-based oxides were widely investigated. A facile water bath method was used to synthesis CuO nanowires and CuO/Cu2O/Cu nanocomposites. Owing to the synergetic effect, the CuO/Cu2O/Cu nanocomposites exhibit superior electrochemical performance compared to the CuO nanowires. The initial discharge and charge capacities are 2,660.4 mAh/g and 2,107.8 mAh/g, and the reversible capacity is 1,265.7 mAh/g after 200 cycles at 200 mA/g. Moreover, the reversible capacity is 1,180 mAh/g at 800 mA/g and 1,750 mAh/g when back to 100 mA/g, indicating the excellent rate capability. The CuO/Cu2O/Cu nanocomposites also exhibit relatively high electric conductivity and lithium-ion diffusion coefficient, especially after cycling. For the energy storage mechanism, the capacitive controlled mechanism is predominance at the high scan rates, which is consistent with the excellent rate capability. The outstanding electrochemical performance of the CuO/Cu2O/Cu nanocomposites indicates the potential application of copper-based oxides nanomaterials in future lithium-ion batteries.
Collapse
Affiliation(s)
- Lin-Hui Wang
- College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Shang Gao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Long-Long Ren
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, China
| | - En-Long Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Yu-Feng Qin
- College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| |
Collapse
|
134
|
Kim SS, Jung SM, Senthil C, Jung HY. Unlocking Rapid Charging and Extended Lifetimes for Li-Ion Batteries Using Freestanding Quantum Conversion-Type Aerofilm Anode. ACS NANO 2021; 15:18437-18447. [PMID: 34676766 DOI: 10.1021/acsnano.1c08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Batteries capable of quick charging as fast as fossil fuel vehicles are becoming a vital issue in the electric vehicle market. However, conversion-type materials promising as a next-generation anode have many problems to satisfy fast charging and long-term cycles due to their low conductivity and large irreversibility despite a high theoretical capacity. Here, we report effective strategies for a SnO2-based anode to enable rapid-charging, long-cycle, and high reversible capacity. The quantum size of SnO2 nanoparticles uniformly embedded within a 3D conductive carbon matrix as a prerequisite for high reversible capacity increases the interdiffusion layer and facilitates a highly reversible conversion reaction between Li2O/Sn and SnO2. In particular, the Sn-C chemical bond achieves ion-site control and direct electron transfer, enabling boost charging. Further, the robust and porous structure of the binder-free three-dimensional electrode buffers the massive volume expansion during Li insertion/desertion and allows for multidimensional rapid-ion diffusion. As a result, our quantum SnO2 anode delivers a high reversible capacity of about 753 mAh g-1 with a 468% capacity increase after 4000 cycles at 10 C. It also presents a gradually increasing capacity up to 548 mAh g-1 even at 20 C and superior cyclability over 20 000 cycles in capacity stabilization. This study will contribute to designing aerofilm-based conversion-type electrodes for fast charging devices.
Collapse
Affiliation(s)
- Sun-Sik Kim
- Department of Energy Engineering, Gyeongsang National University, Jinju-si, Gyeongnam 52725, South Korea
| | - Sung Mi Jung
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, South Korea
| | - Chenrayan Senthil
- Department of Energy Engineering, Gyeongsang National University, Jinju-si, Gyeongnam 52725, South Korea
| | - Hyun Young Jung
- Department of Energy Engineering, Gyeongsang National University, Jinju-si, Gyeongnam 52725, South Korea
- Future Convergence Technology Research Institute, Gyeongsang National University, Jinju-si, Gyeongnam 52725, South Korea
| |
Collapse
|
135
|
Wang C, Yan J, Li T, Lv Z, Hou X, Tang Y, Zhang H, Zheng Q, Li X. A Coral‐Like FeP@NC Anode with Increasing Cycle Capacity for Sodium‐Ion and Lithium‐Ion Batteries Induced by Particle Refinement. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Canpei Wang
- Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jitong Yan
- Hebei Key Laboratory of Applied Chemistry School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Tianyu Li
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhiqiang Lv
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xin Hou
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yongfu Tang
- Hebei Key Laboratory of Applied Chemistry School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Huamin Zhang
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Qiong Zheng
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xianfeng Li
- Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
136
|
Wang C, Yan J, Li T, Lv Z, Hou X, Tang Y, Zhang H, Zheng Q, Li X. A Coral-Like FeP@NC Anode with Increasing Cycle Capacity for Sodium-Ion and Lithium-Ion Batteries Induced by Particle Refinement. Angew Chem Int Ed Engl 2021; 60:25013-25019. [PMID: 34523206 DOI: 10.1002/anie.202110177] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Indexed: 11/08/2022]
Abstract
We present a coral-like FeP composite with FeP nanoparticles anchored and dispersed on a nitrogen-doped 3D carbon framework (FeP@NC). Due to the highly continuous N-doped carbon framework and a spring-buffering graphitized carbon layer around the FeP nanoparticle, a sodium-ion battery with the FeP@NC composite exhibits an ultra-stable cycling performance at 10 A g-1 with a capacity retention of 82.0 % in 10 000 cycles. Also, particle refinement leads to a capacity increase during cycling. The FeP nanoparticles go through a refining-recombination process during the first cycle and present a global refining trend after dozens of cycles, which results in a gradually increase in graphitization degree and interface magnetization, and further provides more active sites for Na+ storage and contributes to a rising capacity with cycling. The capacity ascending phenomenon can also extend to lithium-ion batteries.
Collapse
Affiliation(s)
- Canpei Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jitong Yan
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Tianyu Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhiqiang Lv
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Hou
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yongfu Tang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Huamin Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qiong Zheng
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianfeng Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
137
|
Wu J, Ju Z, Zhang X, Takeuchi KJ, Marschilok AC, Takeuchi ES, Yu G. Building Efficient Ion Pathway in Highly Densified Thick Electrodes with High Gravimetric and Volumetric Energy Densities. NANO LETTERS 2021; 21:9339-9346. [PMID: 34669404 DOI: 10.1021/acs.nanolett.1c03724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A common practice in thick electrode design is to increase porosity to boost charge transport kinetics. However, a high porosity offsets the advantages of thick electrodes in both gravimetric and volumetric energy densities. Here we design a freestanding thick electrode composed of highly densified active material regions connected by continuous electrolyte-buffering voids. By wet calendering of the phase-inversion electrode, the continuous compact active material region and continuous ion transport network are controllably formed. Rate capabilities and cycling stability at high LiFePO4 loading of 126 mg cm-2 were achieved for the densified cathode with porosity as low as 38%. The decreased porosity and efficient void utilization enable high gravimetric/volumetric energy densities of 330 Wh kg-1 and 614 Wh L-1, as well as improved power densities. The versatility of this method and the industrial compatible "roll-to-roll" fabrication demonstrate an important step toward the practical application of thick electrodes.
Collapse
Affiliation(s)
- Jingyi Wu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengyu Ju
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiao Zhang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kenneth J Takeuchi
- Department of Chemistry and Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Amy C Marschilok
- Department of Chemistry and Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Department of Chemistry and Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
138
|
Yan J, Cui Y, Xie M, Yang GZ, Bin DS, Li D. Immobilizing Redox-Active Tricycloquinazoline into a 2D Conductive Metal-Organic Framework for Lithium Storage. Angew Chem Int Ed Engl 2021; 60:24467-24472. [PMID: 34519413 DOI: 10.1002/anie.202110373] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Indexed: 12/21/2022]
Abstract
Heteroaromatic-conjugated aromatic molecules have inspired numerous interests in rechargeable batteries like Li-ion batteries, but were limited by low conductivity and easy dissolution in electrolytes. Herein, we immobilize a nitrogen-rich aromatic molecule tricycloquinazoline (TQ) and CuO4 unit into a two-dimensional (2D) conductive metal-organic framework (MOF) to unlock their potential for Li+ storage. TQ was identified redox activity with Li+ for the first time. With a synergistic effect of TQ and CuO4 unit, the 2D conductive MOF, named Cu-HHTQ (HHTQ=2,3,7,8,12,13-hexahydroxytricycloquinazoline), can facilitate the Li+ /e- transport and ensure a resilient electrode, resulting in a high capacity of 657.6 mAh g-1 at 600 mA g-1 with extraordinary high-rate capability and impressive cyclability. Our findings highlight an efficient strategy of constructing electrode materials for energy storage with combining multiple redox-active moieties into conductive MOFs.
Collapse
Affiliation(s)
- Jie Yan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Yutao Cui
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Guo-Zhan Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - De-Shan Bin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
139
|
Yan J, Cui Y, Xie M, Yang G, Bin D, Li D. Immobilizing Redox‐Active Tricycloquinazoline into a 2D Conductive Metal–Organic Framework for Lithium Storage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Yan
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 P. R. China
| | - Yutao Cui
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 P. R. China
| | - Guo‐Zhan Yang
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 P. R. China
| | - De‐Shan Bin
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
140
|
Liu Y, Li X, Zhang F, Long G, Fan S, Zheng Y, Ye W, Li Q, Wang X, Li H, Hu H, Li Q, Kong W, Miao GX. Fe, N co-doped amorphous carbon as efficient electrode materials for fast and stable Na/K-storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Liu Z, Wang X, Lai F, Wang C, Yu N, Sun H, Geng B. Implanting MnO into a three-dimensional carbon network as superior anode materials for lithium-ion batteries. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
142
|
Klein J, Kampermann L, Saddeler S, Korte J, Kowollik O, Smola T, Schulz S, Bacher G. Atmosphere-sensitive photoluminescence of Co x Fe 3-x O 4 metal oxide nanoparticles. RSC Adv 2021; 11:33905-33915. [PMID: 35497307 PMCID: PMC9042345 DOI: 10.1039/d1ra06228j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
In this work the photoluminescence (PL) of Co x Fe3-x O4 spinel oxide nanoparticles under pulsed UV laser irradiation (λ exc = 270 nm) is investigated for varying Co/Fe ratios (x = 0.4⋯2.5). A broad emission in the green spectral range is observed, exhibiting two maxima at around 506 nm, which is dominant for Fe-rich nanoparticles (x = 0.4, 0.9), and at around 530 nm, that is more pronounced for Co-rich nanoparticles (x > 1.6). As examinations in different atmospheres show that the observed emission reacts sensitively to the presence of water, it is proposed that the emission is mainly caused by OH groups with terminal or bridging metal-O bonds on the Co x Fe3-x O4 surface. Raman spectroscopy supports that the emission maximum at 506 nm corresponds to terminal OH groups bound to metal cations on tetrahedral sites (i.e., Fe3+), while the maximum around 530 nm corresponds to terminal OH groups bound to metal cations on octahedral sites (i.e., Co3+). Photoinduced dehydroxylation shows that OH groups can be removed on Fe-rich nanoparticles more easily, leading to a conversion process and the formation of new OH groups with different bonds to the surface. As such behavior is not observed for Co x Fe3-x O4 with x > 1.6, we conclude that the OH groups are more stable against dehydroxylation on Co-rich nanoparticles. The higher OH stability is expected to lead to a higher catalytic activity of Co-rich cobalt ferrites in the electrochemical generation of oxygen.
Collapse
Affiliation(s)
- Julian Klein
- Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-Essen Bismarckstraße 81 47057 Duisburg Germany
| | - Laura Kampermann
- Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-Essen Bismarckstraße 81 47057 Duisburg Germany
| | - Sascha Saddeler
- Institute of Inorganic Chemistry and CENIDE, University of Duisburg-Essen Universitätsstraße 7 45141 Essen Germany
| | - Jannik Korte
- Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-Essen Bismarckstraße 81 47057 Duisburg Germany
| | - Oliver Kowollik
- Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-Essen Bismarckstraße 81 47057 Duisburg Germany
| | - Tim Smola
- Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-Essen Bismarckstraße 81 47057 Duisburg Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and CENIDE, University of Duisburg-Essen Universitätsstraße 7 45141 Essen Germany
| | - Gerd Bacher
- Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-Essen Bismarckstraße 81 47057 Duisburg Germany
| |
Collapse
|
143
|
Sun Z, Zhang Y, Liu Y, Hou L, Yuan C. Recent Progress on In Situ/Operando Characterization of Rechargeable Alkali Ion Batteries. Chempluschem 2021; 86:1487-1496. [PMID: 34674379 DOI: 10.1002/cplu.202100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The specific chemical and physical evolutions of electrode materials under operating conditions should be understood to optimize their electrochemical performances. The in-situ/operando techniques including Raman spectrum, transmission electron microscope, X-ray diffraction, X-ray absorption spectrum, and magnetization are powerful tools, which can provide the real-time surficial/interfacial changes of electrodes, the transformation of crystal lattice structures, the adjustment of electronic states and even the influence of magnetic properties under operating conditions. In this Review, the advantages and limitations of these in-situ/operando techniques in investigating the inner energy storage mechanisms of various type electrode materials are analyzed. The representative research results such as the ion dependent storage mechanism, step-alloying processes and space charge storage theory are highlighted. In addition, the challenges and opportunities of in-situ/operando characterizations are proposed as well.
Collapse
Affiliation(s)
- Zehang Sun
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yamin Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
144
|
Camacho RAP, Tian R, Liu J, Zhou S, Wu A, Huang H. Superior lithium-ion storage of V-doped MoO3 nanosheets via plasma evaporation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
145
|
Tian G, Huang C, Luo X, Zhao Z, Peng Y, Gao Y, Tang N, Dsoke S. Study of the Lithium Storage Mechanism of N-Doped Carbon-Modified Cu 2 S Electrodes for Lithium-Ion Batteries. Chemistry 2021; 27:13774-13782. [PMID: 34318954 PMCID: PMC9400886 DOI: 10.1002/chem.202101818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/03/2022]
Abstract
Owing to their high specific capacity and abundant reserve, CuxS compounds are promising electrode materials for lithium‐ion batteries (LIBs). Carbon compositing could stabilize the CuxS structure and repress capacity fading during the electrochemical cycling, but the corresponding Li+ storage mechanism and stabilization effect should be further clarified. In this study, nanoscale Cu2S was synthesized by CuS co‐precipitation and thermal reduction with polyelectrolytes. High‐temperature synchrotron radiation diffraction was used to monitor the thermal reduction process. During the first cycle, the conversion mechanism upon lithium storage in the Cu2S/carbon was elucidated by operando synchrotron radiation diffraction and in situ X‐ray absorption spectroscopy. The N‐doped carbon‐composited Cu2S (Cu2S/C) exhibits an initial discharge capacity of 425 mAh g−1 at 0.1 A g−1, with a higher, long‐term capacity of 523 mAh g−1 at 0.1 A g−1 after 200 cycles; in contrast, the bare CuS electrode exhibits 123 mAh g−1 after 200 cycles. Multiple‐scan cyclic voltammetry proves that extra Li+ storage can mainly be ascribed to the contribution of the capacitive storage.
Collapse
Affiliation(s)
- Guiying Tian
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China.,Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Chuanfeng Huang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Xianlin Luo
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zijian Zhao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Yong Peng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Yuqin Gao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Na Tang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
| |
Collapse
|
146
|
Peng P, Zhao Q, Zhu P, Liu W, Yuan Y, Ding R, Gao P, Sun X, Liu E. Amorphous Fe2O3 film-coated mesoporous Fe2O3 core-shell nanosphere prepared by quenching as a high-performance anode material for lithium-ion batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
147
|
Song K, Liu J, Dai H, Zhao Y, Sun S, Zhang J, Qin C, Yan P, Guo F, Wang C, Cao Y, Li S, Chen W. Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
148
|
Yan T, Huang Y, Ding R, Shi W, Ying D, Jia Z, Tan C, Huang Y, Sun X, Liu E. Pseudocapacitive trimetallic NiCoMn-111 perovskite fluorides for advanced Li-ion supercabatteries. NANOSCALE ADVANCES 2021; 3:5703-5710. [PMID: 36133260 PMCID: PMC9419713 DOI: 10.1039/d1na00329a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 06/16/2023]
Abstract
Exploring advanced electrochemical energy storage systems and clarifying their charge storage mechanisms are key scientific frontiers presenting a great challenge. Herein, we demonstrate a novel concept of Li-ion supercabatteries (i.e., Li-ion capacitors/batteries, LICBs), which were realized using a novel trimetallic Ni-Co-Mn perovskite fluoride (K0.97Ni0.31Co0.34Mn0.35F2.98, denoted as KNCMF-111 (8#)) anode and a high-performance activated carbon/LiFePO4 (AC/LFP) cathode, which makes the boundary between LICs and LIBs less distinctive. Thanks to the pseudocapacitive conversion mechanism of the KNCMF-111 (8#) anode with superior kinetics and the enhanced capacity of the capacitor/battery hybrid AC/LFP cathode, the designed KNCMF-111 (8#)//AC/LFP LICBs, integrating the synergistic superiority of pseudocapacitive, capacitive and faradaic characteristics, exhibit remarkable energy/power densities and a long cycle life, indicating a high-efficiency energy storage application. Overall, this work provides new insights into exploring advanced Li-ion supercabatteries and clarifying their charge storage mechanisms based on trimetallic Ni-Co-Mn perovskite fluoride electrode materials, which sheds light on the development of advanced electrochemical energy storage systems and in-depth understanding of their charge storage mechanisms.
Collapse
Affiliation(s)
- Tong Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Yongfa Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Wei Shi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Danfeng Ying
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Ziyang Jia
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Caini Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Yuxi Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 P. R. China
| |
Collapse
|
149
|
Guo M, Qu Z, Zhou J, Han C, Liu X, Liu H, Zhao L. Dramatically comprehensive improved electrochemical performances of symmetric and asymmetric supercapacitors under external magnetic field. Chem Commun (Camb) 2021; 57:9216-9219. [PMID: 34519314 DOI: 10.1039/d1cc03289e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, magnetic field (MF) has been described as a potential way to improve the properties of electrode materials, which significantly enhances the ion diffusion behavior and material wettability. We first synthezised for the first time a comparable carbon-based electrode material (GCA) including active carbon, reduced graphene and carbon nanotubes through a facile stirring method for further research under MF. Herein, 0.15 T of MF induced by two NdFeB magnets was applied on the supercapacitor devices to enhance the energy density, which increased by about 62% for the symmetric supercapacitor (SSC: from 11.2 to 18.1 W h kg-1). An asymmetric supercapacitor composed of the prepared GCA as the anode and NiCoFe/NiCoFe-OH as the cathode was also assembled for research. And it was found that the whole electrochemical performance significantly improved (for example, energy density increased by about 22% for the asymmetric supercapacitor, i.e., from 50.6 to 61.4 W h kg-1).
Collapse
Affiliation(s)
- Manying Guo
- Jilin University, School of Materials Science and Engineering, Changchun, Jilin, China.
| | - Zihan Qu
- Jilin University, School of Materials Science and Engineering, Changchun, Jilin, China.
| | - Juan Zhou
- Jilin University, School of Materials Science and Engineering, Changchun, Jilin, China.
| | - Chengdong Han
- Jilin University, School of Materials Science and Engineering, Changchun, Jilin, China.
| | - Xu Liu
- Jilin University, School of Materials Science and Engineering, Changchun, Jilin, China.
| | - Hongbin Liu
- Jilin University, School of Materials Science and Engineering, Changchun, Jilin, China.
| | - Lijun Zhao
- Jilin University, School of Materials Science and Engineering, Changchun, Jilin, China.
| |
Collapse
|
150
|
Tan C, Ding R, Huang Y, Yan T, Huang Y, Yang F, Sun X, Gao P, Liu E. Conversion/insertion pseudocapacitance-driven vacancy defective perovskite fluorides K0.82Co0.43Mn0.57F2.66@reduced graphene oxide anode for powerful Na-based dual-ion batteries and capacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|