101
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
102
|
Lancia F, Ryabchun A, Nguindjel AD, Kwangmettatam S, Katsonis N. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat Commun 2019; 10:4819. [PMID: 31645565 PMCID: PMC6811622 DOI: 10.1038/s41467-019-12786-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
The motion of artificial molecular machines has been amplified into the shape transformation of polymer materials that have been compared to muscles, where mechanically active molecules work together to produce a contraction. In spite of this progress, harnessing cooperative molecular motion remains a challenge in this field. Here, we show how the light-induced action of artificial molecular switches modifies not only the shape but also, simultaneously, the stiffness of soft materials. The heterogeneous design of these materials features inclusions of free liquid crystal in a liquid crystal polymer network. When the magnitude of the intrinsic interfacial tension is modified by the action of the switches, photo-stiffening is observed, in analogy with the mechanical response of activated muscle fibers, and in contrast to melting mechanisms reported so far. Mechanoadaptive materials that are capable of active tuning of rigidity will likely contribute to a bottom-up approach towards human-friendly and soft robotics.
Collapse
Affiliation(s)
- Federico Lancia
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 207, Enschede, 7500 AE, The Netherlands
| | - Alexander Ryabchun
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 207, Enschede, 7500 AE, The Netherlands
| | - Anne-Déborah Nguindjel
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 207, Enschede, 7500 AE, The Netherlands
| | - Supaporn Kwangmettatam
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 207, Enschede, 7500 AE, The Netherlands
| | - Nathalie Katsonis
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 207, Enschede, 7500 AE, The Netherlands.
| |
Collapse
|
103
|
Chang J, Romei MG, Boxer SG. Structural Evidence of Photoisomerization Pathways in Fluorescent Proteins. J Am Chem Soc 2019; 141:15504-15508. [PMID: 31533429 PMCID: PMC7036281 DOI: 10.1021/jacs.9b08356] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of cis and trans rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the trans state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas, in a tighter packing (7% smaller unit cell size), the hula-twist occurs.
Collapse
Affiliation(s)
- Jeffrey Chang
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Matthew G. Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
104
|
Goswami A, Paululat T, Schmittel M. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery. J Am Chem Soc 2019; 141:15656-15663. [DOI: 10.1021/jacs.9b07737] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
105
|
Matsuno T, Fukunaga K, Sato S, Isobe H. Retarded Solid-State Rotations of an Oval-Shaped Guest in a Deformed Cylinder with CH-π Arrays. Angew Chem Int Ed Engl 2019; 58:12170-12174. [PMID: 31270917 DOI: 10.1002/anie.201907040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/02/2019] [Indexed: 01/11/2023]
Abstract
Upon encapsulating an oval-shaped hydrocarbon guest, a cylindrical host deforms its shape to maximize intermolecular contacts. Structure-assembly relationship studies with a series of hydrocarbon guests disclosed the importance of molecular shapes and CH-π contacts. Multiple contacts and weak CH-π hydrogen bonds resulted in an optimal assembly; however, the shape deformation resulted in severe retardation of rotational motions in the crystal. Thus, unlike a circular guest, the oval-shaped guest did not change its orientation in the host. Unexpectedly, the planar guest did not affect the packing structure to form a double helix in intertwined host arrays.
Collapse
Affiliation(s)
- Taisuke Matsuno
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST, ERATO, Isobe Degenerate π-Integration Project, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kengo Fukunaga
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sota Sato
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST, ERATO, Isobe Degenerate π-Integration Project, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST, ERATO, Isobe Degenerate π-Integration Project, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
106
|
Wang XQ, Li WJ, Wang W, Wen J, Zhang Y, Tan H, Yang HB. Construction of Type III-C Rotaxane-Branched Dendrimers and Their Anion-Induced Dimension Modulation Feature. J Am Chem Soc 2019; 141:13923-13930. [PMID: 31411028 DOI: 10.1021/jacs.9b06739] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Starting from a novel rotaxane building block with dendrimer growth sites being located at both the wheel and axle component, we realized the successful construction of a new family of rotaxane-branched dendrimers, i.e., Type III-C rotaxane-branched dendrimers, up to fourth generation as a highly branched [46]rotaxane through a controllable divergent approach. In the resultant rotaxane-branched dendrimers, the wheel components of the rotaxane units are located on the branches as well as at the branching points, making them excellent candidates to mimic the amplified collective molecular motions. Thus, taking advantage of the urea moiety inserted into the axle components of the rotaxane units as the binding sites, the addition or removal of acetate anion as stimulus endows the individual rotaxane unit a switchable feature that lead to a collective expansion-contraction motion of the integrated rotaxane-branched dendrimers, thus allowing for the remarkable and reversible size modulation. Such a three-dimensional size switching feature makes Type III-C rotaxane-branched dendrimers a very promising platform toward the fabrication of novel dynamic smart materials.
Collapse
Affiliation(s)
- Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Jin Wen
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , 16610 Prague 6 , Czech Republic
| | - Ying Zhang
- Department of Chemistry , Beijing Normal University , Beijing 100050 , People's Republic of China
| | - Hongwei Tan
- Department of Chemistry , Beijing Normal University , Beijing 100050 , People's Republic of China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| |
Collapse
|
107
|
Abstract
Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| |
Collapse
|
108
|
|
109
|
Matsuno T, Fukunaga K, Sato S, Isobe H. Retarded Solid‐State Rotations of an Oval‐Shaped Guest in a Deformed Cylinder with CH–π Arrays. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Taisuke Matsuno
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- JST ERATO Isobe Degenerate π-Integration Project Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kengo Fukunaga
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Sota Sato
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- JST ERATO Isobe Degenerate π-Integration Project Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroyuki Isobe
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- JST ERATO Isobe Degenerate π-Integration Project Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
110
|
Abstract
Molecular machines are an important and emerging frontier in research encompassing interdisciplinary subjects of chemistry, physics, biology, and nanotechnology. Although there has been major interest in creating synthetic molecular machines, research on natural molecular machines is also crucial. Biomolecular motors are natural molecular machines existing in nearly every living systems. They play a vital role in almost every essential process ranging from intracellular transport to cell division, muscle contraction and the biosynthesis of ATP that fuels life processes. The construction of biomolecular motor-based biomimetic systems can help not only to deeply understand the mechanisms of motor proteins in the biological process but also to push forward the development of bionics and biomolecular motor-based devices or nanomachines. From combination of natural biomolecular motors with supramolecular chemistry, great opportunities could emerge toward the development of intelligent molecular machines and biodevices. In this Account, we describe our efforts to design and reconstitute biomolecular motor-based active biomimetic systems, in particular, the combination of motor proteins with layer-by-layer (LbL) assembled cellular structures. They are divided into two parts: (i) reconstitution of rotary molecular motor FOF1-ATPase, which is coated on the surface of LbL assembled microcapsules or multilayers and synthesizes adenosine triphosphate (ATP) through creating a proton gradient; (ii) molecular assembly of linear molecular motors, the kinesin-based active biomimetic systems, which are coated on a planar surface or LbL assembled tubular structure and drive the movement of microtubules. LbL assembled structures offer motor proteins with an environment that resembles the natural cell. This enables high activity and optimized function of the motor proteins. The assembled biomolecular motors can mimic their functionalities from the natural system. In addition, LbL assembly provides facile integration of functional components into motor protein-based active biomimetic systems and achieves the manipulation of FOF1-ATPase and kinesin. For FOF1-ATPase, the light-driven proton gradient and controlled ATP synthesis are highlighted. For kinesin, the strategies used for the direction and velocity control of kinesin-based molecular shuttles are discussed. We hope this research can inspire new ideas and propel the actual applications of biomolecular motor-based devices in the future.
Collapse
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
111
|
Light-driven molecular switch for reconfigurable spin filters. Nat Commun 2019; 10:2455. [PMID: 31165729 PMCID: PMC6549145 DOI: 10.1038/s41467-019-10423-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 11/08/2022] Open
Abstract
Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches. The chirality provides new route for organic materials to be implemented in the spintronics applications. Here the authors show a solid-state spin-filtering device in an organic spin-valve structure enabled by light irradiation induced change in the chirality of molecule.
Collapse
|
112
|
|
113
|
Gole B, Kauffmann B, Maurizot V, Huc I, Ferrand Y. Light‐Controlled Conformational Switch of an Aromatic Oligoamide Foldamer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bappaditya Gole
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Université de Bordeaux CNRS INSERM, UMS3033 Institut Européen de Chimie et Biologie (IECB) 2 rue Robert Escarpit 33600 Pessac France
| | - Victor Maurizot
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Yann Ferrand
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| |
Collapse
|
114
|
Gole B, Kauffmann B, Maurizot V, Huc I, Ferrand Y. Light‐Controlled Conformational Switch of an Aromatic Oligoamide Foldamer. Angew Chem Int Ed Engl 2019; 58:8063-8067. [DOI: 10.1002/anie.201902378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Bappaditya Gole
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Université de Bordeaux CNRS INSERM, UMS3033 Institut Européen de Chimie et Biologie (IECB) 2 rue Robert Escarpit 33600 Pessac France
| | - Victor Maurizot
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Yann Ferrand
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| |
Collapse
|
115
|
Danowski W, van Leeuwen T, Abdolahzadeh S, Roke D, Browne WR, Wezenberg SJ, Feringa BL. Unidirectional rotary motion in a metal-organic framework. NATURE NANOTECHNOLOGY 2019; 14:488-494. [PMID: 30886378 DOI: 10.1038/s41565-019-0401-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/06/2019] [Indexed: 05/20/2023]
Abstract
Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal-organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These 'moto-MOFs' could in the future be used to control dynamic function in crystalline materials.
Collapse
Affiliation(s)
- Wojciech Danowski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Thomas van Leeuwen
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Shaghayegh Abdolahzadeh
- Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Diederik Roke
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Wesley R Browne
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Sander J Wezenberg
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
116
|
Roke D, Sen M, Danowski W, Wezenberg SJ, Feringa BL. Visible-Light-Driven Tunable Molecular Motors Based on Oxindole. J Am Chem Soc 2019; 141:7622-7627. [PMID: 31017421 PMCID: PMC6509644 DOI: 10.1021/jacs.9b03237] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Molecular rotary
motors based on oxindole which can be driven by
visible light are presented. This novel class of motors can be easily
synthesized via a Knoevenagel condensation, and the choice of different
upper halves allows for the facile tuning of their rotational speed.
The four-step rotational cycle was explored using DFT calculations,
and the expected photochemical and thermal isomerization behavior
was confirmed by NMR, UV/vis, and CD spectroscopy. These oxindole
motors offer attractive prospects for functional materials responsive
to light.
Collapse
Affiliation(s)
- Diederik Roke
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Metin Sen
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Wojciech Danowski
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Sander J Wezenberg
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| |
Collapse
|
117
|
Jung J, Liu W, Kim S, Lee D. Redox-Driven Folding, Unfolding, and Refolding of Bis(tetrathiafulvalene) Molecular Switch. J Org Chem 2019; 84:6258-6269. [DOI: 10.1021/acs.joc.9b00541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiyoung Jung
- Penn State Scranton, 120 Ridge View Drive, Dunmore, Pennsylvania 18512, United States
| | - Wenjun Liu
- Analytical Research & Development, Merck Research Laboratories, Merck & Company, Incorporation, Rahway, New Jersey 07065, United States
| | - Seyong Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
118
|
|
119
|
Heinrich B, Bouazoune K, Wojcik M, Bakowsky U, Vázquez O. ortho-Fluoroazobenzene derivatives as DNA intercalators for photocontrol of DNA and nucleosome binding by visible light. Org Biomol Chem 2019; 17:1827-1833. [PMID: 30604825 DOI: 10.1039/c8ob02343c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a high-affinity photoswitchable DNA binder, which displays different nucleosome-binding capacities upon visible-light irradiation. Both photochemical and DNA-recognition properties were examined by UV-Vis, HPLC, CD spectroscopy, NMR, FID assays, EMSA and DLS. Our probe sets the basis for developing new optoepigenetic tools for conditional modulation of nucleosomal DNA accessibility.
Collapse
Affiliation(s)
- Benedikt Heinrich
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
| | | | | | | | | |
Collapse
|
120
|
Zhao Q, Chen Y, Sun B, Qian C, Cheng M, Jiang J, Lin C, Wang L. Pillar[5]arene Based Pseudo[1]rotaxane Operating as Acid/Base-Controllable Two State Molecular Shuttle. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Zhao
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Yuan Chen
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Baobao Sun
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Cheng Qian
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Ming Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Juli Jiang
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Chen Lin
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
- School of Petrochemical Engineering; School of Chemistry and Chemical Engineering; Changzhou University; 213164 Changzhou China
| |
Collapse
|
121
|
Dorel R, Feringa BL. Photoswitchable catalysis based on the isomerisation of double bonds. Chem Commun (Camb) 2019; 55:6477-6486. [DOI: 10.1039/c9cc01891c] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoswitchable catalysis is a young but rapidly evolving field that offers great potential for non-invasive dynamic control of both activity and selectivity in catalysis. This Feature Article summarises the key developments accomplished over the past years through the incorporation of photoswitchable double bonds into the structure of catalytically competent molecules.
Collapse
Affiliation(s)
- Ruth Dorel
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
122
|
Groppi J, Baroncini M, Venturi M, Silvi S, Credi A. Design of photo-activated molecular machines: highlights from the past ten years. Chem Commun (Camb) 2019; 55:12595-12602. [DOI: 10.1039/c9cc06516d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Researchers continue to generate ingenious (supra)molecular structures in which light can trigger controlled and directed movements of the components.
Collapse
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated Nanostructures
- Istituto ISOF-CNR
- 40129 Bologna
- Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures
- Istituto ISOF-CNR
- 40129 Bologna
- Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari
| | - Margherita Venturi
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Serena Silvi
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures
- Istituto ISOF-CNR
- 40129 Bologna
- Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari
| |
Collapse
|
123
|
Gómez S, Ibele LM, González L. The 3s Rydberg state as a doorway state in the ultrafast dynamics of 1,1-difluoroethylene. Phys Chem Chem Phys 2019; 21:4871-4878. [DOI: 10.1039/c8cp07766e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deactivation dynamics of 1,1-difluoroethylene after light excitation is studied within the surface hopping formalism in the presence of 3s and 3p Rydberg states using multi-state second order perturbation theory (MS-CASPT2).
Collapse
Affiliation(s)
- Sandra Gómez
- Institute for Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Lea M. Ibele
- Institute for Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Leticia González
- Institute for Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| |
Collapse
|
124
|
Muñoz-Castro A. Potential of N-heterocyclic carbene derivatives from Au13(dppe)5Cl2gold superatoms. Evaluation of electronic, optical and chiroptical properties from relativistic DFT. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00513g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-heterocyclic carbene (NHC) introduction into well-defined atomically precise gold superatoms allows efficient control of structural, optical, chiroptical and emission features of the Au13Cl2core, related to the classical chiral [Au13Cl2(dppe)5]3+nanocluster.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares
- Facultad de Ingeniería
- Universidad Autonoma de Chile
- Santiago
- Chile
| |
Collapse
|
125
|
Ghosh A, Paul I, Saha S, Paululat T, Schmittel M. Machine Metathesis: Thermal and Catalyzed Exchange of Piston Rods in Multicomponent Nanorotor/Nanoslider Ensemble. Org Lett 2018; 20:7973-7976. [PMID: 30525699 DOI: 10.1021/acs.orglett.8b03541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three-component nanorotor R1 ( k298 = 80 kHz) and two-component slider-on-deck DS2 ( k298 = 440 kHz) were prepared from rotator S1 and stator [Cu3(1)]3+ and from S2 and deck D, respectively. Mixing of R1 with DS2 leads to clean metathesis, furnishing the slower nanodevices R2 ( k298 = 29.6 kHz) and DS1 ( k298 = 32.2 kHz). Exchange of the piston rods S1 and S2 is completed within 22 min (uncatalyzed) or 3 min (catalyzed) at 298 K.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Thomas Paululat
- University of Siegen, Organische Chemie II , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| |
Collapse
|
126
|
Zhang H, Zheng X, Kwok RTK, Wang J, Leung NLC, Shi L, Sun JZ, Tang Z, Lam JWY, Qin A, Tang BZ. In situ monitoring of molecular aggregation using circular dichroism. Nat Commun 2018; 9:4961. [PMID: 30470749 PMCID: PMC6251920 DOI: 10.1038/s41467-018-07299-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
The aggregation of molecules plays an important role in determining their function. Electron microscopy and other methods can only characterize the variation of microstructure, but are not capable of monitoring conformational changes. These techniques are also complicated, expensive and time-consuming. Here, we demonstrate a simple method to monitor in-situ and in real-time the conformational change of (R)-1,1'-binaphthyl-based polymers during the aggregation process using circular dichroism. Based on results from molecular dynamics simulations and experimental circular dichroism measurements, polymers with "open" binaphthyl rings are found to show stronger aggregation-annihilated circular dichroism effects, with more negative torsion angles between the two naphthalene rings. In contrast, the polymers with "locked" rings show a more restrained aggregation-annihilated circular dichroism effect, with only a slight change of torsion angle. This work provides an approach to monitor molecular aggregation in a simple, accurate, and efficient way.
Collapse
Affiliation(s)
- Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jia Wang
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Nelson L C Leung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lin Shi
- Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zhiyong Tang
- Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anjun Qin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China.
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China.
| |
Collapse
|
127
|
Ousaka N, Shimizu K, Suzuki Y, Iwata T, Itakura M, Taura D, Iida H, Furusho Y, Mori T, Yashima E. Spiroborate-Based Double-Stranded Helicates: Meso-to-Racemo Isomerization and Ion-Triggered Springlike Motion of the Racemo-Helicate. J Am Chem Soc 2018; 140:17027-17039. [DOI: 10.1021/jacs.8b08268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kaori Shimizu
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshimasa Suzuki
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takuya Iwata
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Manabu Itakura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroki Iida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshio Furusho
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
128
|
|
129
|
Wiley TE, Konar A, Miller NA, Spears KG, Sension RJ. Primed for Efficient Motion: Ultrafast Excited State Dynamics and Optical Manipulation of a Four Stage Rotary Molecular Motor. J Phys Chem A 2018; 122:7548-7558. [DOI: 10.1021/acs.jpca.8b06472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Theodore E. Wiley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Nicholas A. Miller
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kenneth G. Spears
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J. Sension
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| |
Collapse
|
130
|
Abstract
Molecular motors are Nature's solution for (supra)molecular transport and muscle functioning and are involved in most forms of directional motion at the cellular level. Their synthetic counterparts have also found a myriad of applications, ranging from molecular machines and smart materials to catalysis and anion transport. Although light-driven rotary molecular motors are likely to be suitable for use in an artificial cell, as well as in bionanotechnology, thus far they are not readily applied under physiological conditions. This results mainly from their inherently aromatic core structure, which makes them insoluble in aqueous solution. Here, the study of the dynamic behavior of these motors in biologically relevant media is described. Two molecular motors were equipped with solubilizing substituents and studied in aqueous solutions. Additionally, the behavior of a previously reported molecular motor was studied in micelles, as a model system for the biologically relevant confined environment. Design principles were established for molecular motors in these media, and insights are given into pH-dependent behavior. The work presented herein may provide a basis for the application of the remarkable properties of molecular motors in more advanced biohybrid systems.
Collapse
Affiliation(s)
- Anouk S Lubbe
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Christian Böhmer
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Filippo Tosi
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Wiktor Szymanski
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Department of Radiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Ben L Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
131
|
Zhan C, Chen XJ, Yi J, Li JF, Wu DY, Tian ZQ. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0031-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
132
|
Multidimensional Vibrational Coherence Spectroscopy. Top Curr Chem (Cham) 2018; 376:35. [DOI: 10.1007/s41061-018-0213-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
133
|
Gossel GH, Agostini F, Maitra NT. Coupled-Trajectory Mixed Quantum-Classical Algorithm: A Deconstruction. J Chem Theory Comput 2018; 14:4513-4529. [DOI: 10.1021/acs.jctc.8b00449] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Graeme H. Gossel
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Federica Agostini
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, 91405 Orsay, France
| | - Neepa T. Maitra
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- The Physics Program and the Chemistry Program of the Graduate Center, City University of New York, 365 Fifth Avenue, New York, United States
| |
Collapse
|
134
|
Chen L, Lim KJC, Babra TS, Taylor JO, PiŽl M, Evans R, Chippindale AM, Hartl F, Colquhoun HM, Greenland BW. A macrocyclic receptor containing two viologen species connected by conjugated terphenyl groups. Org Biomol Chem 2018; 16:5006-5015. [PMID: 29946600 DOI: 10.1039/c8ob00919h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A macrocyclic receptor molecule containing two viologen species connected by conjugated terphenyl groups has been designed and synthesised. The single-crystal X-ray structure shows that the two viologen residues have a transannular NN separation of ca. 7.4 Å. Thus, the internal cavity dimensions are suitable for the inclusion of π-electron-rich species. The macrocycle is redox active, and can accept electrons from suitable donor species including triethylamine, resulting in a dramatic colour change from pale yellow to dark green as a consequence of the formation of a paramagnetic bis(radical cationic) species. Cyclic voltammetry shows that the macrocycle can undergo two sequential and reversible reduction processes (E1/2 = -0.65 and -0.97 V vs. Fc/Fc+). DFT and TD-DFT studies accurately replicate the structure of the tetracationic macrocycle and the electronic absorption spectra of the three major redox states of the system. These calculations also showed that during electrochemical reduction, the unpaired electron density of the radical cations remained relatively localised within the heterocyclic rings. The ability of the macrocycle to form supramolecular complexes was confirmed by the formation of a pseudorotaxane with a guest molecule containing a π-electron-rich 1,5-dihydroxynaphthalene derivative. Threading and dethreading of the pseudorotaxane was fast on the NMR timescale, and the complex exhibited an association constant of 150 M-1 (±30 M-1) as calculated from 1H NMR titration studies.
Collapse
Affiliation(s)
- Long Chen
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Dorel R, Miró C, Wei Y, Wezenberg SJ, Feringa BL. Cation-Modulated Rotary Speed in a Light-Driven Crown Ether Functionalized Molecular Motor. Org Lett 2018; 20:3715-3718. [PMID: 29878791 PMCID: PMC6038094 DOI: 10.1021/acs.orglett.8b00969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
design and synthesis of an overcrowded-alkene based molecular
motor featuring a crown ether integrated in its stator structure has
been accomplished. The photostationary state ratios and rotational
speed of this motor can be modulated by cation coordination to the
crown ether moiety, which can be reversed upon the addition of a competing
chelating agent, thus achieving a dynamic control over the rotational
behavior of the motor.
Collapse
Affiliation(s)
- Ruth Dorel
- Center for Systems Chemistry, Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Carla Miró
- Center for Systems Chemistry, Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Yuchen Wei
- Center for Systems Chemistry, Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Sander J Wezenberg
- Center for Systems Chemistry, Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Ben L Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
136
|
Abstract
The field of synthetic molecular machines has quickly evolved in recent years, growing from a fundamental curiosity to a highly active field of chemistry. Many different applications are being explored in areas such as catalysis, self-assembled and nanostructured materials, and molecular electronics. Rotary molecular motors hold great promise for achieving dynamic control of molecular functions as well as for powering nanoscale devices. However, for these motors to reach their full potential, many challenges still need to be addressed. In this paper we focus on the design principles of rotary motors featuring a double-bond axle and discuss the major challenges that are ahead of us. Although great progress has been made, further design improvements, for example in terms of efficiency, energy input, and environmental adaptability, will be crucial to fully exploit the opportunities that these rotary motors offer.
Collapse
|
137
|
Orlova T, Lancia F, Loussert C, Iamsaard S, Katsonis N, Brasselet E. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. NATURE NANOTECHNOLOGY 2018; 13:304-308. [PMID: 29434262 DOI: 10.1038/s41565-017-0059-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/20/2017] [Indexed: 05/20/2023]
Abstract
Molecular machines operated by light have been recently shown to be able to produce oriented motion at the molecular scale1,2 as well as do macroscopic work when embedded in supramolecular structures3-5. However, any supramolecular movement irremediably ceases as soon as the concentration of the interconverting molecular motors or switches reaches a photo-stationary state6,7. To circumvent this limitation, researchers have typically relied on establishing oscillating illumination conditions-either by modulating the source intensity8,9 or by using bespoke illumination arrangements10-13. In contrast, here we report a supramolecular system in which the emergence of oscillating patterns is encoded at the molecular level. Our system comprises chiral liquid crystal structures that revolve continuously when illuminated, under the action of embedded light-driven molecular motors. The rotation at the supramolecular level is sustained by the diffusion of the motors away from a localized illumination area. Above a critical irradiation power, we observe a spontaneous symmetry breaking that dictates the directionality of the supramolecular rotation. The interplay between the twist of the supramolecular structure and the diffusion 14 of the chiral molecular motors creates continuous, regular and unidirectional rotation of the liquid crystal structure under non-equilibrium conditions.
Collapse
Affiliation(s)
| | - Federico Lancia
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | - Supitchaya Iamsaard
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Nathalie Katsonis
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| | | |
Collapse
|