101
|
Kim SS, Lee SC, Lim B, Shin SH, Kim MY, Kim SY, Lim H, Charton C, Shin D, Moon HW, Kim J, Park D, Park WY, Lee JY. DNA methylation biomarkers distinguishing early-stage prostate cancer from benign prostatic hyperplasia. Prostate Int 2023. [DOI: 10.1016/j.prnil.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
102
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
103
|
Feng E, Rydzewski NR, Zhang M, Lundberg A, Bootsma M, Helzer KT, Lang JM, Aggarwal R, Small EJ, Quigley DA, Sjöström M, Zhao SG. Intrinsic Molecular Subtypes of Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:5396-5404. [PMID: 36260524 PMCID: PMC9890931 DOI: 10.1158/1078-0432.ccr-22-2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Although numerous biology-driven subtypes have been described previously in metastatic castration-resistant prostate cancer (mCRPC), unsupervised molecular subtyping based on gene expression has been less studied, especially using large cohorts. Thus, we sought to identify the intrinsic molecular subtypes of mCRPC and assess molecular and clinical correlates in the largest combined cohort of mCRPC samples with gene expression data available to date. EXPERIMENTAL DESIGN We combined and batch-effect corrected gene expression data from four mCRPC cohorts from the Fred Hutchinson Cancer Research Center (N = 157), a small-cell neuroendocrine (NE) prostate cancer (SCNC)-enriched cohort from Weill Cornell Medicine (N = 49), and cohorts from the Stand Up 2 Cancer/Prostate Cancer Foundation East Coast Dream Team (N = 266) and the West Coast Dream Team (N = 162). RESULTS Hierarchical clustering of RNA-sequencing data from these 634 mCRPC samples identified two distinct adenocarcinoma subtypes, one of which (adeno-immune) was characterized by higher gene expression of immune pathways, higher CIBERSORTx immune scores, diminished ASI benefit, and non-lymph node metastasis tropism compared with an adeno-classic subtype. We also identified two distinct subtypes with enrichment for an NE phenotype, including an NE-liver subgroup characterized by liver metastasis tropism, PTEN loss, and APC and SPOP mutations compared with an NE-classic subgroup. CONCLUSIONS Our results emphasize the heterogeneity of mCRPC beyond currently accepted molecular phenotypes, and suggest that future studies should consider incorporating transcriptome-wide profiling to better understand how these differences impact treatment responses and outcomes.
Collapse
Affiliation(s)
- Eric Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Nicholas R Rydzewski
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
- Radiation Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Arian Lundberg
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Matthew Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David A Quigley
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Division of Oncology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin
- William S. Middleton Memorial Hospital, Madison, Wisconsin
| |
Collapse
|
104
|
Yuan J, Houlahan KE, Ramanand SG, Lee S, Baek G, Yang Y, Chen Y, Strand DW, Zhang MQ, Boutros PC, Mani RS. Prostate Cancer Transcriptomic Regulation by the Interplay of Germline Risk Alleles, Somatic Mutations, and 3D Genomic Architecture. Cancer Discov 2022; 12:2838-2855. [PMID: 36108240 PMCID: PMC9722594 DOI: 10.1158/2159-8290.cd-22-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Prostate cancer is one of the most heritable human cancers. Genome-wide association studies have identified at least 185 prostate cancer germline risk alleles, most noncoding. We used integrative three-dimensional (3D) spatial genomics to identify the chromatin interaction targets of 45 prostate cancer risk alleles, 31 of which were associated with the transcriptional regulation of target genes in 565 localized prostate tumors. To supplement these 31, we verified transcriptional targets for 56 additional risk alleles using linear proximity and linkage disequilibrium analysis in localized prostate tumors. Some individual risk alleles influenced multiple target genes; others specifically influenced only distal genes while leaving proximal ones unaffected. Several risk alleles exhibited widespread germline-somatic interactions in transcriptional regulation, having different effects in tumors with loss of PTEN or RB1 relative to those without. These data clarify functional prostate cancer risk alleles in large linkage blocks and outline a strategy to model multidimensional transcriptional regulation. SIGNIFICANCE Many prostate cancer germline risk alleles are enriched in the noncoding regions of the genome and are hypothesized to regulate transcription. We present a 3D genomics framework to unravel risk SNP function and describe the widespread germline-somatic interplay in transcription control. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Jiapei Yuan
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Kathleen E Houlahan
- Department of Human Genetics, University of California, Los Angeles, California,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada,Vector Institute, Toronto, ON M5G 1M1, Canada,Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | | | - Sora Lee
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - GuemHee Baek
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas,MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department Automation, Tsinghua University, Beijing 100084, China
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada,Vector Institute, Toronto, ON M5G 1M1, Canada,Department of Urology, University of California, Los Angeles, California,Institute for Precision Health, University of California, Los Angeles, California
| | - Ram S. Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas,Department of Urology, UT Southwestern Medical Center, Dallas, Texas,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
105
|
Liquid Biopsy in Diagnosis and Prognosis of Non-Metastatic Prostate Cancer. Biomedicines 2022; 10:biomedicines10123115. [PMID: 36551871 PMCID: PMC9776104 DOI: 10.3390/biomedicines10123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, sensitive and specific methods for the detection and prognosis of early stage PCa are lacking. To establish the diagnosis and further identify an appropriate treatment strategy, prostate specific antigen (PSA) blood test followed by tissue biopsy have to be performed. The combination of tests is justified by the lack of a highly sensitive, specific, and safe single test. Tissue biopsy is specific but invasive and may have severe side effects, and therefore is inappropriate for screening of the disease. At the same time, the PSA blood test, which is conventionally used for PCa screening, has low specificity and may be elevated in the case of noncancerous prostate tumors and inflammatory conditions, including benign prostatic hyperplasia and prostatitis. Thus, diverse techniques of liquid biopsy have been investigated to supplement or replace the existing tests of prostate cancer early diagnosis and prognostics. Here, we provide a review on the advances in diagnosis and prognostics of non-metastatic prostate cancer by means of various biomarkers extracted via liquid biopsy, including circulating tumor cells, exosomal miRNAs, and circulating DNAs.
Collapse
|
106
|
He W, Xiao Y, Yan S, Zhu Y, Ren S. Cell-free DNA in the management of prostate cancer: Current status and future prospective. Asian J Urol 2022. [PMID: 37538150 PMCID: PMC10394290 DOI: 10.1016/j.ajur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective With the escalating prevalence of prostate cancer (PCa) in China, there is an urgent demand for novel diagnostic and therapeutic approaches. Extensive investigations have been conducted on the clinical implementation of circulating free DNA (cfDNA) in PCa. This review aims to provide a comprehensive overview of the present state of cfDNA as a biomarker for PCa and to examine its merits and obstacles for future clinical utilization. Methods Relevant peer-reviewed manuscripts on cfDNA as a PCa marker were evaluated by PubMed search (2010-2022) to evaluate the roles of cfDNA in PCa diagnosis, prognosis, and prediction, respectively. Results cfDNA is primarily released from cells undergoing necrosis and apoptosis, allowing for non-invasive insight into the genomic, transcriptomic, and epigenomic alterations within various PCa disease states. Next-generation sequencing, among other detection methods, enables the assessment of cfDNA abundance, mutation status, fragment characteristics, and epigenetic modifications. Multidimensional analysis based on cfDNA can facilitate early detection of PCa, risk stratification, and treatment monitoring. However, standardization of cfDNA detection methods is still required to expedite its clinical application. Conclusion cfDNA provides a non-invasive, rapid, and repeatable means of acquiring multidimensional information from PCa patients, which can aid in guiding clinical decisions and enhancing patient management. Overcoming the application barriers of cfDNA necessitates increased data sharing and international collaboration.
Collapse
|
107
|
DiNatale A, Worrede A, Iqbal W, Marchioli M, Toth A, Sjöström M, Zhu X, Corey E, Feng FY, Zhou W, Fatatis A. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1545-1557. [PMID: 36561929 PMCID: PMC9770512 DOI: 10.1158/2767-9764.crc-22-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
We report the inverse association between the expression of androgen receptor (AR) and interleukin-1beta (IL-1β) in a cohort of patients with metastatic castration resistant prostate cancer (mCRPC). We also discovered that AR represses the IL-1β gene by binding an androgen response element (ARE) half-site located within the promoter, which explains the IL-1β expression in AR-negative (ARNEG) cancer cells. Consistently, androgen-depletion or AR-pathway inhibitors (ARIs) de-repressed IL-1β in ARPOS cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone de-acetylation at the H3K27 mark in the IL-1β promoter. Notably, patients' data suggest that DNA methylation prevents IL-1β expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL-1β supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in prostate cancer patients harboring ARNEG tumor cells or treated with ADT/ARIs, and with the IL-1β gene unmethylated, IL-1β could condition the metastatic microenvironment to sustain disease progression.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Janssen Oncology, Spring House, Pennsylvania
| | - Asurayya Worrede
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- AstraZeneca, Baltimore, Maryland
| | - Waleed Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Allison Toth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Martin Sjöström
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Xiaolin Zhu
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Felix Y. Feng
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
108
|
Sjöström M, Zhao SG, Levy S, Zhang M, Ning Y, Shrestha R, Lundberg A, Herberts C, Foye A, Aggarwal R, Hua JT, Li H, Bergamaschi A, Maurice-Dror C, Maheshwari A, Chen S, Ng SWS, Ye W, Petricca J, Fraser M, Chesner L, Perry MD, Moreno-Rodriguez T, Chen WS, Alumkal JJ, Chou J, Morgans AK, Beer TM, Thomas GV, Gleave M, Lloyd P, Phillips T, McCarthy E, Haffner MC, Zoubeidi A, Annala M, Reiter RE, Rettig MB, Witte ON, Fong L, Bose R, Huang FW, Luo J, Bjartell A, Lang JM, Mahajan NP, Lara PN, Evans CP, Tran PT, Posadas EM, He C, Cui XL, Huang J, Zwart W, Gilbert LA, Maher CA, Boutros PC, Chi KN, Ashworth A, Small EJ, He HH, Wyatt AW, Quigley DA, Feng FY. The 5-Hydroxymethylcytosine Landscape of Prostate Cancer. Cancer Res 2022; 82:3888-3902. [PMID: 36251389 PMCID: PMC9627125 DOI: 10.1158/0008-5472.can-22-1123] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.
Collapse
Affiliation(s)
- Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Oncology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans' Hospital, Madison, WI
| | | | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Corinne Maurice-Dror
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver, BC, Canada
| | - Ashutosh Maheshwari
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wenbin Ye
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Automation, Xiamen University, Xiamen, Fujian, China
| | - Jessica Petricca
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Chesner
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marc D Perry
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Joshi J Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Alicia K Morgans
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Robert E Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Matthew B Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Franklin W Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Anders Bjartell
- Department of Translational Medicine, Medical Faculty, Lund University, Malmö, Sweden
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Primo N Lara
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
| | - Christopher P Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
- Department of Urologic Surgery, University of California Davis, Sacramento, CA
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland, College Park, Baltimore, MD
| | - Edwin M Posadas
- Urologic Oncology Program & Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Arc Institute, Palo Alto, CA
| | - Christopher A Maher
- Siteman Cancer Center, Washington University, St. Louis, MO
- McDonnell Genome Institute, Washington University, St. Louis, MO
- Department of Internal Medicine, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, Departments of Human Genetics and Urology, University of California Los Angeles, Los Angeles, CA
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
109
|
Accidentals of the DNA Symphony. Cancer Res 2022; 82:3880-3881. [DOI: 10.1158/0008-5472.can-22-2750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022]
Abstract
Abstract
Cancer epigenome profiling such as DNA methylation (5mC) and DNA hydroxymethylation (5hmC) is emerging as a sensitive approach for cancer detection and risk stratification. 5mC modification has been widely described in many cancer types including prostate cancer; however, the 5hmC landscape is yet to be explored. In this issue of Cancer Research, Sjöström and colleagues have comprehensively incorporated genomic, transcriptomic, and epigenomic, including 5hmC, data to interrogate the molecular evolution of prostate cancer.
See related article by Sjöström et al., p. 3888
Collapse
|
110
|
Li C, Liu Z, Xu G, Wu S, Peng Y, Wu R, Zhao S, Liao X, Lin R. Aberrant DNA methylation and expression of EYA4 in gastric cardia intestinal metaplasia. Saudi J Gastroenterol 2022; 28:456-465. [PMID: 36453428 PMCID: PMC9843510 DOI: 10.4103/sjg.sjg_228_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) of the gastric cardia is an important premalignant lesion. However, there is limited information concerning its epidemiological and molecular features. Herein, we aimed to provide an overview of the epidemiological data for gastric cardiac IM and evaluate the role of EYA transcriptional coactivator and phosphatase 4 (EYA4) as an epigenetic biomarker for gastric cardiac IM. METHODS The study was conducted in the context of the gastric cardiac precancerous lesion program in southern China, which included 718 non-cancer participants, who undertook endoscopic biopsy and pathological examination in three endoscopy centers, between November 2018 and November 2021. Pyrosequencing and immunohistochemistry were performed to examine the DNA methylation status and protein expression level of EYA4. RESULTS Gastric cardiac IM presented in 14.1% (101/718) of participants and was more common among older (>50 years; 22.0% [95% CI: 17.8-26.8]) than younger participants (≤50 years; 6.7% [95% CI: 4.5-9.9]; P < 0.001). IM was more common in male participants (16.9% [95% CI: 13.2-21.3] vs. 11.3% [95% CI: 8.3-15.1]; P = 0.04). Pyrosequencing revealed that IM tissues exhibited significantly higher DNA methylation levels in EYA4 gene than normal tissues (P = 0.016). Further, the protein expression level of EYA4 was reduced in IM and absent in intraepithelial neoplasia tissues compared to normal tissues (P < 0.001). CONCLUSIONS Detection rates of gastric cardiac IM increase with age and are higher in men. Our findings highlight the important role of promoter hypermethylation and downregulation of EYA4 in gastric cardiac IM development.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
| | - Zhaohui Liu
- Department of Gastroenterology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, P.R. China
| | - Guohua Xu
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, P.R. China
| | - Shibin Wu
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, P.R. China
| | - Yunhui Peng
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, P.R. China
| | - Ruinuan Wu
- Department of Pathology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, P.R. China
| | - Shukun Zhao
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
| | - Xiaoqi Liao
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
| | - Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, P.R. China
- Address for correspondence: Dr. Runhua Lin, Department of Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, P.R. China. E-mail:
| |
Collapse
|
111
|
Zhang M, Zong W, Zou D, Wang G, Zhao W, Yang F, Wu S, Zhang X, Guo X, Ma Y, Xiong Z, Zhang Z, Bao Y, Li R. MethBank 4.0: an updated database of DNA methylation across a variety of species. Nucleic Acids Res 2022; 51:D208-D216. [PMID: 36318250 PMCID: PMC9825483 DOI: 10.1093/nar/gkac969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
DNA methylation, as the most intensively studied epigenetic mark, regulates gene expression in numerous biological processes including development, aging, and disease. With the rapid accumulation of whole-genome bisulfite sequencing data, integrating, archiving, analyzing, and visualizing those data becomes critical. Since its first publication in 2015, MethBank has been continuously updated to include more DNA methylomes across more diverse species. Here, we present MethBank 4.0 (https://ngdc.cncb.ac.cn/methbank/), which reports an increase of 309% in data volume, with 1449 single-base resolution methylomes of 23 species, covering 236 tissues/cell lines and 15 biological contexts. Value-added information, such as more rigorous quality evaluation, more standardized metadata, and comprehensive downstream annotations have been integrated in the new version. Moreover, expert-curated knowledge modules of featured differentially methylated genes associated with biological contexts and methylation analysis tools have been incorporated as new components of MethBank. In addition, MethBank 4.0 is equipped with a series of new web interfaces to browse, search, and visualize DNA methylation profiles and related information. With all these improvements, we believe the updated MethBank 4.0 will serve as a fundamental resource to provide a wide range of data services for the global research community.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China
| | - Song Wu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xutong Guo
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingke Ma
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China
| | - Zhuang Xiong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- Correspondence may also be addressed to Zhang Zhang. Tel: +86 10 84097261;
| | - Yiming Bao
- Correspondence may also be addressed to Yiming Bao. Tel: +86 10 84097858;
| | - Rujiao Li
- To whom correspondence should be addressed. Tel: +86 10 84097638;
| |
Collapse
|
112
|
Zhao SG, Sperger JM, Schehr JL, McKay RR, Emamekhoo H, Singh A, Schultz ZD, Bade RM, Stahlfeld CN, Gilsdorf CS, Hernandez CI, Wolfe SK, Mayberry RD, Krause HM, Bootsma M, Helzer KT, Rydzewski N, Bakhtiar H, Shi Y, Blitzer G, Kyriakopoulos CE, Kosoff D, Wei XX, Floberg J, Sethakorn N, Sharifi M, Harari PM, Huang W, Beltran H, Choueiri TK, Scher HI, Rathkopf DE, Halabi S, Armstrong AJ, Beebe DJ, Yu M, Sundling KE, Taplin ME, Lang JM. A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer. J Clin Invest 2022; 132:e161858. [PMID: 36317634 PMCID: PMC9621140 DOI: 10.1172/jci161858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022] Open
Abstract
BackgroundNeuroendocrine prostate cancer (NEPC) is an aggressive subtype, the presence of which changes the prognosis and management of metastatic prostate cancer.MethodsWe performed analytical validation of a Circulating Tumor Cell (CTC) multiplex RNA qPCR assay to identify the limit of quantification (LOQ) in cell lines, synthetic cDNA, and patient samples. We next profiled 116 longitudinal samples from a prospectively collected institutional cohort of 17 patients with metastatic prostate cancer (7 NEPC, 10 adenocarcinoma) as well as 265 samples from 139 patients enrolled in 3 adenocarcinoma phase II trials of androgen receptor signaling inhibitors (ARSIs). We assessed a NEPC liquid biomarker via the presence of neuroendocrine markers and the absence of androgen receptor (AR) target genes.ResultsUsing the analytical validation LOQ, liquid biomarker NEPC detection in the longitudinal cohort had a per-sample sensitivity of 51.35% and a specificity of 91.14%. However, when we incorporated the serial information from multiple liquid biopsies per patient, a unique aspect of this study, the per-patient predictions were 100% accurate, with a receiver-operating-curve (ROC) AUC of 1. In the adenocarcinoma ARSI trials, the presence of neuroendocrine markers, even while AR target gene expression was retained, was a strong negative prognostic factor.ConclusionOur analytically validated CTC biomarker can detect NEPC with high diagnostic accuracy when leveraging serial samples that are only feasible using liquid biopsies. Patients with expression of NE genes while retaining AR-target gene expression may indicate the transition to neuroendocrine differentiation, with clinical characteristics consistent with this phenotype.FundingNIH (DP2 OD030734, 1UH2CA260389, R01CA247479, and P30 CA014520), Department of Defense (PC190039 and PC200334), and Prostate Cancer Foundation (Movember Foundation - PCF Challenge Award).
Collapse
Affiliation(s)
- Shuang G. Zhao
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jamie M. Sperger
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jennifer L. Schehr
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Rana R. McKay
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Hamid Emamekhoo
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Anupama Singh
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Zachery D. Schultz
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Rory M. Bade
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Charlotte N. Stahlfeld
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Cole S. Gilsdorf
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Camila I. Hernandez
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Serena K. Wolfe
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Hannah M. Krause
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Matt Bootsma
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kyle T. Helzer
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Nicholas Rydzewski
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hamza Bakhtiar
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yue Shi
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Grace Blitzer
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Christos E. Kyriakopoulos
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David Kosoff
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Xiao X. Wei
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John Floberg
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Nan Sethakorn
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Marina Sharifi
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Paul M. Harari
- Department of Human Oncology and
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Wei Huang
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Himisha Beltran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Toni K. Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine and
- Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Susan Halabi
- Department of Biostatistics and Bioinformatics and
| | - Andrew J. Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - David J. Beebe
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering and
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kaitlin E. Sundling
- Wisconsin State Lab of Hygiene, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mary-Ellen Taplin
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joshua M. Lang
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
113
|
The cell-free DNA methylome captures distinctions between localized and metastatic prostate tumors. Nat Commun 2022; 13:6467. [PMID: 36309516 PMCID: PMC9617856 DOI: 10.1038/s41467-022-34012-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Metastatic prostate cancer remains a major clinical challenge and metastatic lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy provides opportunities to gain insights into the underlying biology. Here, using the highly sensitive enrichment-based sequencing technology, we provide analysis of 60 and 175 plasma DNA methylomes from patients with localized and metastatic prostate cancer, respectively. We show that the cell-free DNA methylome can capture variations beyond the tumor. A global hypermethylation in metastatic samples is observed, coupled with hypomethylation in the pericentromeric regions. Hypermethylation at the promoter of a glucocorticoid receptor gene NR3C1 is associated with a decreased immune signature. The cell-free DNA methylome is reflective of clinical outcomes and can distinguish different disease types with 0.989 prediction accuracy. Finally, we show the ability of predicting copy number alterations from the data, providing opportunities for joint genetic and epigenetic analysis on limited biological samples.
Collapse
|
114
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
115
|
Tong Y, Zhang X, Zhou Y. Integrated Analysis of Multi-Omics Data to Establish a Hypoxia-Related Prognostic Model in Osteosarcoma. Evol Bioinform Online 2022; 18:11769343221128537. [PMID: 36325183 PMCID: PMC9618759 DOI: 10.1177/11769343221128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most common malignant bone tumor in clinical practice, and currently, the ability to predict prognosis in the diagnosis of OS is limited. There is an urgent need to find new diagnostic methods and treatment strategies for OS. Material and methods: We downloaded the multi-omics data for OS from the TARGET database. Prognosis-associated methylation sites were used to identify clustered subtypes of OS, and OS was classified into 3 subtypes (C1, C2, C3). Survival analysis showed significant differences between the C3 subtype and the other subtypes. Subsequently, differentially expressed genes (DEGs) across subtypes were screened and subjected to pathway enrichment analysis. Results: A total of 249 DEGs were screened from C3 subtype to other subtypes. Metabolic pathway enrichment analysis showed that DEGs were significantly enriched to the hypoxic pathway. Based on univariate and multivariate COX regression analysis, 12 genes from the hypoxia pathway were further screened and used to construct hypoxia-related prognostic model (HRPM). External validation of the HRPM was performed on the GSE21257 dataset. Finally, differences in survival and immune infiltration between high and low risk score groups were compared. Conclusion: In summary, we proposed a hypoxia-associated risk model based on a 12-gene expression signature, which is potentially valuable for prognostic diagnosis of patients with OS.
Collapse
Affiliation(s)
- Ye Tong
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Xiaoqing Zhang
- Department of Laboratory, Bozhou People’s Hospital, Bozhou, Anhui, China
| | - Ye Zhou
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China,Ye Zhou, Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China.
| |
Collapse
|
116
|
Ye X, Wang R, Yu X, Wang Z, Hu H, Zhang H. m6A/ m1A /m5C/m7G-related methylation modification patterns and immune characterization in prostate cancer. Front Pharmacol 2022; 13:1030766. [PMID: 36313300 PMCID: PMC9596993 DOI: 10.3389/fphar.2022.1030766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation has a close relationship with immune reactions, metastasis, and cancer cell growth. Additionally, RNA methylation-related proteins have emerged as potential cancer therapeutic targets. The connection between the tumor microenvironment (TME) and methylation-related genes (MRGs) remains unclear. We explored the expression patterns of the MRGs in the genome and transcriptional fields of 796 prostate cancer (PCa) samples using two separate data sets. We identified a relationship between patient clinicopathological characteristics, prognosis, TME cell infiltrating qualities, and different MRG changes, as well as the identification of two distinct molecular groupings. Then, we formed an MRGs model to predict overall survival (OS), and we tested the accuracy of the model in patients with PCa. In addition, we developed a very accurate nomogram to improve the MRG model’s clinical applicability. The low-risk group had fewer tumor mutational burden (TMB), greater tumor immune dysfunction and exclusion (TIDE) ratings, fewer mutant genes, and better OS prospects. We discuss how MGRs may affect the prognosis, clinically important traits, TME, and immunotherapy responsiveness in PCa. In order to get a better understanding of MRGs in PCa, we could further explore the prognosis and create more effective immunotherapy regimens to open new avenues.
Collapse
Affiliation(s)
- Xin Ye
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Ruyi Wang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zili Wang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Haifeng Hu
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Hanchao Zhang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Medical College of Soochow University, Suzhou, China
- *Correspondence: Hanchao Zhang,
| |
Collapse
|
117
|
Tulpule V, Morrison GJ, Falcone M, Quinn DI, Goldkorn A. Integration of Liquid Biopsies in Clinical Management of Metastatic Prostate Cancer. Curr Oncol Rep 2022; 24:1287-1298. [PMID: 35575959 PMCID: PMC9474724 DOI: 10.1007/s11912-022-01278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The field of liquid biopsies is constantly evolving through novel technologies. This review outlines current data on liquid biopsies and application to clinical management of metastatic prostate cancer. RECENT FINDINGS To date, there are three platforms with FDA approval for use in the setting of metastatic prostate cancer and others which have been clinically validated. There is substantial evidence supporting the use of circulating tumor cell (CTC) enumeration to guide prognosis in metastatic castration-resistant prostate cancer (mCRPC). Additional evidence supports targeted sequencing of CTC and cell-free DNA (cfDNA) to guide androgren-directed therapy, identify candidates for treatment with PARP inhibitors, and monitor development of resistance. As a real-time and minimally invasive approach, utilization of liquid biopsies has the potential to drastically impact the treatment of metastatic prostate cancer and improve overall survival. With further clinical validation, additional liquid biopsy is likely to enter standard clinical practice.
Collapse
Affiliation(s)
- Varsha Tulpule
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gareth J Morrison
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mary Falcone
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David I Quinn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
118
|
Miyahira AK, Soule HR. The 28th Annual Prostate Cancer Foundation Scientific Retreat report. Prostate 2022; 82:1346-1377. [PMID: 35852016 DOI: 10.1002/pros.24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The 28th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held virtually over 4 days, on October 28-29 and November 4-5, 2021. METHODS The Annual PCF Scientific Retreat is a leading global scientific conference that focuses on first-in-field, unpublished, and high-impact basic, translational, and clinical prostate cancer research, as well as research from other fields with high probability for impacting prostate cancer research and patient care. RESULTS Primary areas of research discussed at the 2021 PCF Retreat included: (i) prostate cancer disparities; (ii) prostate cancer survivorship; (iii) next-generation precision medicine; (iv) PSMA theranostics; (v) prostate cancer lineage plasticity; (vi) tumor metabolism as a cancer driver and treatment target; (vii) prostate cancer genetics and polygenic risk scores; (viii) glucocorticoid receptor biology in castration-resistant prostate cancer (CRPC); (ix) therapeutic degraders; (x) new approaches for immunotherapy in prostate cancer; (xi) novel technologies to overcome the suppressive tumor microenvironment; and (xii) real-world evidence and synthetic/virtual control arms. CONCLUSIONS This article provides a summary of the presentations from the 2021 PCF Scientific Retreat. We hope that sharing this knowledge will help to improve the understanding of the current state of research and direct new advances in prostate cancer research and care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
119
|
Zhang C, Zhang W, Yuan Z, Yang W, Hu X, Duan S, Wei Q. Contribution of DNA methylation to the risk of hepatitis C virus-associated hepatocellular carcinoma: A meta-analysis. Pathol Res Pract 2022; 238:154136. [PMID: 36155324 DOI: 10.1016/j.prp.2022.154136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
DNA methylation is a crucial epigenetic modification in hepatocellular carcinoma (HCC), and hepatitis C virus (HCV) can induce hepatocarcinogenesis. Nevertheless, the interaction mechanism between DNA methylation and HCV infection in HCC is still ambiguous. In this study, we performed a comprehensive meta-analysis to assess the contribution of DNA methylation in HCV-associated HCC. After four steps of literature screening, we finally obtained 33 qualified case-control studies for this meta-analysis. These studies consisted of 587 HCV-positive cancer tissues and 326 HCV-negative cancer tissues. Our results revealed that four genes (p16, GSTP1, APC, and RUNX3) were more hypermethylated in the HCV-positive liver cancer tissues than in the HCV-negative liver cancer tissues. In addition, the p16 gene was more hypermethylated in the HCV-positive paracancerous tissues than in the HCV-negative paracancerous tissues. Subgroup meta-analysis by geographical populations showed that p16 methylation was significantly higher in HCV-positive cancerous tissues from Japanese and Chinese. Besides, p16 methylation was significantly higher among patients (> 60 years) but not among the others (≤ 60 years). However, there was no obvious association between DNA methylation and other clinicopathological characteristics, including gender, tumor size, differentiation, and clinical stage. Our study suggested that DNA methylation could become potential biomarkers for HCV-associated HCC. DNA methylation contributed to the risk of HCV-associated HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhijun Yuan
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiangrong Hu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
120
|
Liang Y, Chiu PKF, Zhu Y, Wong CYP, Xiong Q, Wang L, Teoh JYC, Cao Q, Wei Y, Ye DW, Tsui SKW, Ng CF. Whole-exome sequencing reveals a comprehensive germline mutation landscape and identifies twelve novel predisposition genes in Chinese prostate cancer patients. PLoS Genet 2022; 18:e1010373. [PMID: 36095024 PMCID: PMC9499300 DOI: 10.1371/journal.pgen.1010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attributed to inherited factors by studies of twins, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been investigated thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B). When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups. Taken together, this study reveals a comprehensive germline mutation landscape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition genes to lay the groundwork for the optimization of genetic screening. Prostate cancer is the most inheritable cancer with about 42% of disease risk attributed to inherited factors, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been studied thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort and validation cohort with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported. When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups.
Collapse
Affiliation(s)
- Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Christine Yim-Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| |
Collapse
|
121
|
Li C, Liu J, He D, Mao F, Rao X, Zhao Y, Lanman NA, Kazemian M, Farah E, Liu J, Ngule CM, Zhang Z, Zhang Y, Kong Y, Li L, Wang C, Liu X. GSTM2 is a key molecular determinant of resistance to SG-ARIs. Oncogene 2022; 41:4498-4511. [PMID: 36038661 PMCID: PMC9986032 DOI: 10.1038/s41388-022-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Prostate cancer (PCa) continues to threaten men's health, and treatment targeting the androgen receptor (AR) pathway is the major therapy for PCa patients. Several second-generation androgen receptor inhibitors (SG-ARIs), including enzalutamide (ENZ), apalutamide (APA) and darolutamide (DARO), have been developed to better block the activity of AR. Unavoidably, emergence of resistance to these novel drugs still persists. Herein, we identified glutathione S-transferase Mu 2 (GSTM2) as an important determinant in the acquisition of resistance to SG-ARIs. Elevated GSTM2 was detected in enzalutamide-resistant (ENZ-R) PCa, and overexpression of GSTM2 in naïve enzalutamide-sensitive (ENZ-S) cells effectively transformed them to ENZ-R PCa. Aryl hydrocarbon receptor (AhR), the upstream transcription factor, was implicated in the overexpression of GSTM2 in ENZ-R cells. Mechanistically, GSTM2 antagonized the effect of ENZ by rescuing cells from oxidative stress-associated damage and activation of p38 MAPK pathway. Surprisingly, high GSTM2 levels also associated with cross-resistance to APA and DARO. Taking together, these results provide new insight to ameliorate resistance to SG-ARIs and improve treatment outcome.
Collapse
Affiliation(s)
- Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jinpeng Liu
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Daheng He
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Xiongjian Rao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.,Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Elia Farah
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Chrispus M Ngule
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhuangzhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Chi Wang
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
122
|
Rodems TS, Heninger E, Stahlfeld CN, Gilsdorf CS, Carlson KN, Kircher MR, Singh A, Krueger TEG, Beebe DJ, Jarrard DF, McNeel DG, Haffner MC, Lang JM. Reversible epigenetic alterations regulate class I HLA loss in prostate cancer. Commun Biol 2022; 5:897. [PMID: 36050516 PMCID: PMC9437063 DOI: 10.1038/s42003-022-03843-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
Downregulation of HLA class I (HLA-I) impairs immune recognition and surveillance in prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully explored. Here, we conducted a comprehensive analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and metastatic human prostate cancer. Loss of HLA-I gene expression was associated with repressive chromatin states including DNA methylation, histone H3 tri-methylation at lysine 27, and reduced chromatin accessibility. Pharmacological DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition decreased DNA methylation and increased H3 lysine 27 acetylation and resulted in re-expression of HLA-I on the surface of tumor cells. Re-expression of HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured prostate specific membrane antigen (PSMA)27-38-specific CD8+ T-cells. HLA-I expression is epigenetically regulated by functionally reversible DNA methylation and chromatin modifications in human prostate cancer. Methylated HLA-I was detected in HLA-Ilow circulating tumor cells (CTCs), which may serve as a minimally invasive biomarker for identifying patients who would benefit from epigenetic targeted therapies.
Collapse
Affiliation(s)
- Tamara S Rodems
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Charlotte N Stahlfeld
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Cole S Gilsdorf
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Kristin N Carlson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Madison R Kircher
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Anupama Singh
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Timothy E G Krueger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Pathology, University of Wisconsin, Madison, 3170 UW Medical Foundation Centennial Building, 1685 Highland Ave., Madison, WI, 53705, USA
| | - David F Jarrard
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Urology, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N., Seattle, WA, 98109, USA.,Department of Pathology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.,Department of Pathology, Johns Hopkins School of Medicine, 600N Wolfe St., Baltimore, MD, 21287, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
123
|
Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Kandasamy S, Ramesh T, Gopalakrishnan AV. The Cellular and Molecular Immunotherapy in Prostate Cancer. Vaccines (Basel) 2022; 10:vaccines10081370. [PMID: 36016257 PMCID: PMC9416492 DOI: 10.3390/vaccines10081370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
In recent history, immunotherapy has become a viable cancer therapeutic option. However, over many years, its tenets have changed, and it now comprises a range of cancer-focused immunotherapies. Clinical trials are currently looking into monotherapies or combinations of medicines that include immune checkpoint inhibitors (ICI), CART cells, DNA vaccines targeting viruses, and adoptive cellular therapy. According to ongoing studies, the discipline should progress by incorporating patient-tailored immunotherapy, immune checkpoint blockers, other immunotherapeutic medications, hormone therapy, radiotherapy, and chemotherapy. Despite significantly increasing morbidity, immunotherapy can intensify the therapeutic effect and enhance immune responses. The findings for the immunotherapy treatment of advanced prostate cancer (PCa) are compiled in this study, showing that is possible to investigate the current state of immunotherapy, covering new findings, PCa treatment techniques, and research perspectives in the field’s unceasing evolution.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
124
|
Zhou X, Rong R, Xiong S, Song W, Ji D, Xia X. Integrated analysis to reveal potential therapeutic targets and prognostic biomarkers of skin cutaneous melanoma. Front Immunol 2022; 13:914108. [PMID: 36032150 PMCID: PMC9402985 DOI: 10.3389/fimmu.2022.914108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a malignant tumor with high mortality rate in human, and its occurrence and development are jointly regulated by genes and the environment. However, the specific pathogenesis of SKCM is not completely understood. In recent years, an increasing number of studies have reported the important role of competing endogenous RNA (ceRNA) regulatory networks in various tumors; however, the complexity and specific biological effects of the ceRNA regulatory network of SKCM remain unclear. In the present study, we obtained a ceRNA regulatory network of long non-coding RNAs, microRNAs, and mRNAs related to the phosphatase and tensin homolog (PTEN) in SKCM and identified the potential diagnostic and prognostic markers related to SKCM. We extracted the above three types of RNA involved in SKCM from The Cancer Genome Atlas database. Through bioinformatics analysis, the OIP5-AS1-hsa-miR-186-5p/hsa-miR-616-3p/hsa-miR-135a-5p/hsa-miR-23b-3p/hsa-miR-374b-5p-PTPRC/IL7R/CD69 and MALAT1-hsa-miR-135a-5p/hsa-miR-23b-3p/hsa-miR-374b-5p-IL7R/CD69 ceRNA networks were found to be related to the prognosis of SKCM. Finally, we determined the OIP5-AS1-PTPRC/IL7R/CD69 and MALAT1-IL7R/CD69 axes in ceRNA as a clinical prognostic model using correlation and Cox regression analyses. Additionally, we explored the possible role of these two axes in affecting gene expression and immune microenvironment changes and the occurrence and development of SKCM through methylation and immune infiltration analyses. In summary, the ceRNA-based OIP5-AS1-PTPRC/IL7R/CD69 and MALAT1-IL7R/CD69 axes may be a novel and important approach for the diagnosis and prognosis of SKCM.
Collapse
Affiliation(s)
- Xuezhi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Weitao Song
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- *Correspondence: Xiaobo Xia,
| |
Collapse
|
125
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
126
|
Mizuno K, Beltran H. Future directions for precision oncology in prostate cancer. Prostate 2022; 82 Suppl 1:S86-S96. [PMID: 35657153 PMCID: PMC9942493 DOI: 10.1002/pros.24354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Clinical genomic testing is becoming routine in prostate cancer, as biomarker-driven therapies such as poly-ADP ribose polymerase (PARP) inhibitors and anti-PD1 immunotherapy are now approved for select men with castration-resistant prostate cancer harboring alterations in DNA repair genes. Challenges for precision medicine in prostate cancer include an overall low prevalence of actionable genomic alterations and a still limited understanding of the impact of tumor heterogeneity and co-occurring alterations on treatment response and outcomes across diverse patient populations. Expanded tissue-based technologies such as whole-genome sequencing, transcriptome analysis, epigenetic analysis, and single-cell RNA sequencing have not yet entered the clinical realm and could potentially improve upon our understanding of how molecular features of tumors, intratumoral heterogeneity, and the tumor microenvironment impact therapy response and resistance. Blood-based technologies including cell-free DNA, circulating tumor cells (CTCs), and extracellular vesicles (EVs) are less invasive molecular profiling resources that could also help capture intraindividual tumor heterogeneity and track dynamic changes that occur in the context of specific therapies. Furthermore, molecular imaging is an important biomarker tool within the framework of prostate cancer precision medicine with a capability to detect heterogeneity across metastases and potential therapeutic targets less invasively. Here, we review recent technological advances that may help promote the future implementation and value of precision oncology testing for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Medical Oncology, Dana Farber Cancer Institute
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute
| |
Collapse
|
127
|
Wang R, Wen P, Yang G, Feng Y, Mi Y, Wang X, Zhu S, Chen YQ. N-glycosylation of GDF15 abolishes its inhibitory effect on EGFR in AR inhibitor-resistant prostate cancer cells. Cell Death Dis 2022; 13:626. [PMID: 35853851 PMCID: PMC9296468 DOI: 10.1038/s41419-022-05090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023]
Abstract
Castration-resistance of prostate cancer is one of the most challenging clinical problems. In the present study, we have performed proteomics and glycomics using LNCaP model. Growth differentiation factor-15 (GDF15) level is increased in androgen receptor (AR) inhibitor-resistant cells and the inhibitory effect of GDF15 on epithelial growth factor receptor (EGFR) pathway is relieved by GDF15 N70 glycosylation. Interference of GDF15 (siRNA or N70Q dominant negative) or EGFR pathway (inhibitor or siRNA for EGFR, SRC or ERK) decreases the resistant-cell survival in culture and tumor growth in mice. Our study reveals a novel regulatory mechanism of prostate cancer AR inhibitor resistance, raises the possibility of AR/SRC dual-targeting of castration-resistance of prostate cancer, and lays foundation for the future development of selective inhibitors of GDF15 glycosylation.
Collapse
Affiliation(s)
- Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Piaopiao Wen
- School of Biological Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Ganglong Yang
- School of Biological Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yanyan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Xiaoying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
128
|
Storck WK, May AM, Westbrook TC, Duan Z, Morrissey C, Yates JA, Alumkal JJ. The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity. Front Endocrinol (Lausanne) 2022; 13:926585. [PMID: 35909568 PMCID: PMC9329809 DOI: 10.3389/fendo.2022.926585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed. These drugs improve survival for men with metastatic castration-resistant prostate cancer (CRPC), the lethal form of the disease. However, ARSI resistance is nearly universal. One recently appreciated resistance mechanism is lineage plasticity or switch from an AR-driven, luminal differentiation program to an alternate differentiation program. Importantly, lineage plasticity appears to be increasing in incidence in the era of new ARSIs, strongly implicating AR suppression in this process. Lineage plasticity and shift from AR-driven tumors occur on a continuum, ranging from AR-expressing tumors with low AR activity to AR-null tumors that have activation of alternate differentiation programs versus the canonical luminal program found in AR-driven tumors. In many cases, AR loss coincides with the activation of a neuronal program, most commonly exemplified as therapy-induced neuroendocrine prostate cancer (t-NEPC). While genetic events clearly contribute to prostate cancer lineage plasticity, it is also clear that epigenetic events-including chromatin modifications and DNA methylation-play a major role. Many epigenetic factors are now targetable with drugs, establishing the importance of clarifying critical epigenetic factors that promote lineage plasticity. Furthermore, epigenetic marks are readily measurable, demonstrating the importance of clarifying which measurements will help to identify tumors that have undergone or are at risk of undergoing lineage plasticity. In this review, we discuss the role of AR pathway loss and activation of a neuronal differentiation program as key contributors to t-NEPC lineage plasticity. We also discuss new epigenetic therapeutic strategies to reverse lineage plasticity, including those that have recently entered clinical trials.
Collapse
Affiliation(s)
- William K. Storck
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Allison M. May
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Thomas C. Westbrook
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Zhi Duan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Joel A. Yates
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Joshi J. Alumkal
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
129
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
130
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
131
|
Integrative multi-omic analysis identifies genetically influenced DNA methylation biomarkers for breast and prostate cancers. Commun Biol 2022; 5:594. [PMID: 35710732 PMCID: PMC9203749 DOI: 10.1038/s42003-022-03540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Aberrant DNA methylation has emerged as a hallmark in several cancers and contributes to risk, oncogenesis, progression, and prognosis. In this study, we performed imputation-based and conventional methylome-wide association analyses for breast cancer (BrCa) and prostate cancer (PrCa). The imputation-based approach identified DNA methylation at cytosine-phosphate-guanine sites (CpGs) associated with BrCa and PrCa risk utilising genome-wide association summary statistics (NBrCa = 228,951, NPrCa = 140,254) and prebuilt methylation prediction models, while the conventional approach identified CpG associations utilising TCGA and GEO experimental methylation data (NBrCa = 621, NPrCa = 241). Enrichment analysis of the association results implicated 77 and 81 genetically influenced CpGs for BrCa and PrCa, respectively. Furthermore, analysis of differential gene expression around these CpGs suggests a genome-epigenome-transcriptome mechanistic relationship. Conditional analyses identified multiple independent secondary SNP associations (Pcond < 0.05) around 28 BrCa and 22 PrCa CpGs. Cross-cancer analysis identified eight common CpGs, including a strong therapeutic target in SREBF1 (17p11.2)—a key player in lipid metabolism. These findings highlight the utility of integrative analysis of multi-omic cancer data to identify robust biomarkers and understand their regulatory effects on cancer risk. Methylome-wide association studies identify genetically-influenced CpGs associated with breast and prostate cancer risk and (epi)genome-transcriptome mechanistic relationships, with lipid metabolism genes implicated as potential therapeutic targets.
Collapse
|
132
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
133
|
Zhang S, Yan J, Yang Y, Mo F, Li Y, Huang H, Fang L, Huang J, Zheng J. DNA methylation detection and site analysis by using an electrochemical biosensor constructed based on toehold-mediated strand displacement reaction. Talanta 2022; 249:123603. [PMID: 35696976 DOI: 10.1016/j.talanta.2022.123603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 10/31/2022]
Abstract
DNA methylation has become a novel target for early diagnosis and prognosis of cancer as well as other related diseases. The accurate detection of the methylation sites of specific genes proved to be of great significance. However, the complex biological nature of clinical samples and the detection of low-abundance targets led to higher requirements for the testing technology. It has been found that by virtue of high sensitivity, rapid response, low cost, facile operation and applicability to microanalysis, electrochemical sensors have greatly contributed to the process of clinical diagnosis. In this study, a facile, rapid and highly sensitive electrochemical biosensor based on the peak current change was developed on the basis of high selectivity of toehold and greater efficiency of PNA strand displacement and used for the detection and site analysis of DNA methylation. Moreover, compared with non-methylated DNA sequences, methylated DNA sequences could be readily invaded by PNA probes, thereby resulting in the strand displacement and significant electrical signals. Therefore, methylation of cytosine sites was primarily analyzed based on electrical signals. Strand displacement by the target DNA sequences with different methylated sites can lead to substantial changes of strand displacement efficiency. As a result, the methylation sites can be analyzed on the basis of corresponding peak current response relation. This method has a detection limit of 0.075 pM and does not involve various complicated steps such as bisulfite treatment, enzyme digestion and PCR amplification. Indeed, one detection cycle can be completed in 60 min. The proposed technology might exhibit great potential in early clinical diagnosis and risk assessment of cancers and related diseases.
Collapse
Affiliation(s)
- Shu Zhang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Ye Yang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Jian Huang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
134
|
Lu X, Fong KW, Gritsina G, Wang F, Baca SC, Brea LT, Berchuck JE, Spisak S, Ross J, Morrissey C, Corey E, Chandel NS, Catalona WJ, Yang X, Freedman ML, Zhao JC, Yu J. HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet 2022; 54:670-683. [PMID: 35468964 PMCID: PMC9117466 DOI: 10.1038/s41588-022-01045-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
Abstract
HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) activities and androgen-dependent prostate cancer (PCa) growth. However, its functions in AR-independent contexts remain elusive. Here we report HOXB13 interaction with histone deacetylase HDAC3, which is disrupted by the HOXB13 G84E mutation that has been associated with early-onset PCa. Independently of AR, HOXB13 recruits HDAC3 to lipogenic enhancers to catalyze histone deacetylation and suppress lipogenic regulators such as fatty acid synthase. Analysis of human tissues reveals that the HOXB13 gene is hypermethylated and downregulated in approximately 30% of metastatic castration-resistant PCa. HOXB13 loss or G84E mutation leads to lipid accumulation in PCa cells, thereby promoting cell motility and xenograft tumor metastasis, which is mitigated by pharmaceutical inhibition of fatty acid synthase. In summary, we present evidence that HOXB13 recruits HDAC3 to suppress de novo lipogenesis and inhibit tumor metastasis and that lipogenic pathway inhibitors may be useful to treat HOXB13-low PCa.
Collapse
Affiliation(s)
- Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fang Wang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sylvan C. Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lourdes T. Brea
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacob E. Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jenny Ross
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, USA
| | - Navdeep S. Chandel
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL, USA,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - William J. Catalona
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Department of Urology, Northwestern University, Chicago, IL, USA
| | - Ximing Yang
- Department of Pathology, Northwestern University, Chicago, IL, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan C. Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Co-Corresponding Authors: Jindan Yu, M.D., Ph.D. , Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine; Jonathan C. Zhao,
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA,Co-Corresponding Authors: Jindan Yu, M.D., Ph.D. , Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine; Jonathan C. Zhao,
| |
Collapse
|
135
|
Zou C, He Q, Feng Y, Chen M, Zhang D. A m 6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy response. NAR Cancer 2022; 4:zcac010. [PMID: 35350771 PMCID: PMC8953419 DOI: 10.1093/narcan/zcac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms underpinning prostate cancer (PCa) progression are incompletely understood, and precise stratification of aggressive primary PCa (pri-PCa) from indolent ones poses a major clinical challenge. Here, we comprehensively dissect, genomically and transcriptomically, the m6A (N 6-methyladenosine) pathway as a whole in PCa. Expression, but not the genomic alteration, repertoire of the full set of 24 m6A regulators at the population level successfully stratifies pri-PCa into three m6A clusters with distinct molecular and clinical features. These three m6A modification patterns closely correlate with androgen receptor signaling, stemness, proliferation and tumor immunogenicity of cancer cells, and stroma activity and immune landscape of tumor microenvironment (TME). We observe a discrepancy between a potentially higher neoantigen production and a deficiency in antigen presentation processes in aggressive PCa, offering insights into the failure of immunotherapy. Identification of PCa-specific m6A phenotype-associated genes provides a basis for construction of m6Avalue to measure m6A methylation patterns in individual patients. Tumors with lower m6Avalue are relatively indolent with abundant immune cell infiltration and stroma activity. Interestingly, m6Avalue separates PCa TME into fibrotic and nonfibrotic phenotypes (instead of previously reported immune-proficient or -desert phenotypes in other cancer types). Significantly, m6Avalue can be used to predict drug response and clinical immunotherapy efficacy in both castration-resistant PCa and other cancer types. Therefore, our study establishes m6A methylation modification pattern as a determinant in PCa progression via impacting cancer cell aggressiveness and TME remodeling.
Collapse
Affiliation(s)
- Cheng Zou
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Qinju He
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yuqing Feng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Mengjie Chen
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Dingxiao Zhang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
136
|
LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res 2022; 41:100. [PMID: 35292092 PMCID: PMC8922926 DOI: 10.1186/s13046-022-02319-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.
Collapse
|
137
|
Ji X, Liu K, Li Q, Shen Q, Han F, Ye Q, Zheng C. A Mini-Review of Flavone Isomers Apigenin and Genistein in Prostate Cancer Treatment. Front Pharmacol 2022; 13:851589. [PMID: 35359832 PMCID: PMC8962830 DOI: 10.3389/fphar.2022.851589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
The initial responses to standard chemotherapies among prostate cancer (PCa) patients are usually significant, while most of them will finally develop drug resistance, rendering them with limited therapies. To discover new regimens for the treatment of PCa including resistant PCa, natural products, the richest source of bioactive compounds, can serve as a library for screening and identifying promising candidates, and flavones such as apigenin and genistein have been used in lab and clinical trials for treating PCa over decades. In this mini-review, we take a look into the progress of apigenin and genistein, which are isomers, in treating PCa in the past decade. While possessing very similar structure, these two isomers can both target the same signaling pathways; they also are found to work differently in PCa cells. Given that more combinations are being developed and tested, genistein appears to be the more promising option to be approved. The anticancer efficacies of these two flavones can be confirmed by in-vitro and in-vivo studies, and their applications remain to be validated in clinical trials. Information gained in this work may provide important information for new drug development and the potential application of apigenin and genistein in treating PCa.
Collapse
Affiliation(s)
- Xiaozhen Ji
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kai Liu
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingyue Li
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qun Shen
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangxuan Han
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingmei Ye
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- *Correspondence: Qingmei Ye, ; Caijuan Zheng,
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- *Correspondence: Qingmei Ye, ; Caijuan Zheng,
| |
Collapse
|
138
|
Nie GJ, Liu J, Zou AM, Zhan SF, Liang JK, Sui Y, Chen YN, Yao WS. Methylation- and homologous recombination deficiency-related mutant genes predict the prognosis of lung adenocarcinoma. J Clin Lab Anal 2022; 36:e24277. [PMID: 35238419 PMCID: PMC8993616 DOI: 10.1002/jcla.24277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a lung cancer subtype with poor prognosis. We investigated the prognostic value of methylation‐ and homologous recombination deficiency (HRD)‐associated gene signatures in LUAD. Methods Data on RNA sequencing, somatic mutations, and methylation were obtained from TCGA database. HRD scores were used to stratify patients with LUAD into high and low HRD groups and identify differentially mutated and expressed genes (DMEGs). Pearson correlation analysis between DMEGs and methylation yielded methylation‐associated DMEGs. Cox regression analysis was used to construct a prognostic model, and the distribution of clinical features in the high‐ and low‐risk groups was compared. Results Patients with different HRD scores showed different DNA mutation patterns. There were 272 differentially mutated genes and 6294 differentially expressed genes. Fifty‐seven DMEGs were obtained; the top 10 upregulated genes were COL11A1, EXO1, ASPM, COL12A1, COL2A1, COL3A1, COL5A2, DIAPH3, CAD, and SLC25A13, while the top 10 downregulated genes were C7, ERN2, DLC1, SCN7A, SMARCA2, CARD11, LAMA2, ITIH5, FRY, and EPHB6. Forty‐two DMEGs were negatively correlated with 259 methylation sites. Gene ontology and pathway enrichment analysis of the DMEGs revealed enrichment of loci involved in extracellular matrix‐related remodeling and signaling. Six out of the 42 methylation‐associated DMEGs were significantly associated with LUAD prognosis and included in the prognostic model. The model effectively stratified high‐ and low‐risk patients, with the high‐risk group having more patients with advanced stage disease. Conclusion We developed a novel prognostic model for LUAD based on methylation and HRD. Methylation‐associated DMEGs may function as biomarkers and therapeutic targets for LUAD. Further studies are needed to elucidate their roles in LUAD carcinogenesis.
Collapse
Affiliation(s)
- Guang-Jie Nie
- Department of Thoracic Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde, Foshan, Guangdong, China), Foshan, China
| | - Jian Liu
- Department of Pulmonary and Critical Care Medicine, First People's Hospital of Foshan, Affiliated Hospital of Sun Yat-sen University in Foshan, Foshan, China
| | - Ai-Mei Zou
- Department of Oncology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde, Foshan, Guangdong, China), Foshan, China
| | - Shao-Feng Zhan
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jia-Kang Liang
- Department of Thoracic Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde, Foshan, Guangdong, China), Foshan, China
| | - Yi Sui
- Department of IVD Medical Marketing, 3D Medicine Inc., Shanghai, China
| | - Yu-Ning Chen
- Department of Surgery, ShunDe Hospital, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Wei-Shen Yao
- Department of Thoracic Surgery, Nanhai District People's Hospital, Foshan, China
| |
Collapse
|
139
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
140
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
141
|
Merkens L, Sailer V, Lessel D, Janzen E, Greimeier S, Kirfel J, Perner S, Pantel K, Werner S, von Amsberg G. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:46. [PMID: 35109899 PMCID: PMC8808994 DOI: 10.1186/s13046-022-02255-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.
Collapse
Affiliation(s)
- Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Verena Sailer
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ella Janzen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Greimeier
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg HaTRiCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
142
|
Yates J, Boeva V. Deciphering the etiology and role in oncogenic transformation of the CpG island methylator phenotype: a pan-cancer analysis. Brief Bioinform 2022; 23:6520307. [PMID: 35134107 PMCID: PMC8921629 DOI: 10.1093/bib/bbab610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous cancer types have shown to present hypermethylation of CpG islands, also known as a CpG island methylator phenotype (CIMP), often associated with survival variation. Despite extensive research on CIMP, the etiology of this variability remains elusive, possibly due to lack of consistency in defining CIMP. In this work, we utilize a pan-cancer approach to further explore CIMP, focusing on 26 cancer types profiled in the Cancer Genome Atlas (TCGA). We defined CIMP systematically and agnostically, discarding any effects associated with age, gender or tumor purity. We then clustered samples based on their most variable DNA methylation values and analyzed resulting patient groups. Our results confirmed the existence of CIMP in 19 cancers, including gliomas and colorectal cancer. We further showed that CIMP was associated with survival differences in eight cancer types and, in five, represented a prognostic biomarker independent of clinical factors. By analyzing genetic and transcriptomic data, we further uncovered potential drivers of CIMP and classified them in four categories: mutations in genes directly involved in DNA demethylation; mutations in histone methyltransferases; mutations in genes not involved in methylation turnover, such as KRAS and BRAF; and microsatellite instability. Among the 19 CIMP-positive cancers, very few shared potential driver events, and those drivers were only IDH1 and SETD2 mutations. Finally, we found that CIMP was strongly correlated with tumor microenvironment characteristics, such as lymphocyte infiltration. Overall, our results indicate that CIMP does not exhibit a pan-cancer manifestation; rather, general dysregulation of CpG DNA methylation is caused by heterogeneous mechanisms.
Collapse
Affiliation(s)
- Josephine Yates
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich 8092, Switzerland
| | - Valentina Boeva
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich 8092, Switzerland.,Swiss Institute for Bioinformatics (SIB), Zürich, Switzerland.,Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris 75014, France
| |
Collapse
|
143
|
Dong Y, Liu X, Jiang B, Wei S, Xiang B, Liao R, Wang Q, He X. A Genome-Wide Investigation of Effects of Aberrant DNA Methylation on the Usage of Alternative Promoters in Hepatocellular Carcinoma. Front Oncol 2022; 11:780266. [PMID: 35111672 PMCID: PMC8803206 DOI: 10.3389/fonc.2021.780266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The alternative usage of promoters provides a way to regulate gene expression, has a significant influence on the transcriptome, and contributes to the cellular transformation of cancer. However, the function of alternative promoters (APs) in hepatocellular carcinoma (HCC) has not been systematically studied yet. In addition, the potential mechanism of regulation to the usage of APs remains unclear. DNA methylation, one of the most aberrant epigenetic modifications in cancers, is known to regulate transcriptional activity. Whether DNA methylation regulates the usage of APs needs to be explored. Here, we aim to investigate the effects of DNA methylation on usage of APs in HCC. METHODS Promoter activities were calculated based on RNA-seq data. Functional enrichment analysis was implemented to conduct GO terms. Correlation tests were used to detect the correlation between promoter activity and methylation status. The LASSO regression model was used to generate a diagnostic model. Kaplan-Meier analysis was used to compare the overall survival between high and low methylation groups. RNA-seq and whole-genome bisulfite sequencing (WGBS) in HCC samples were performed to validate the correlation of promoter activity and methylation. RESULTS We identified 855 APs in total, which could be well used to distinguish cancer from normal samples. The correlation of promoter activity and DNA methylation in APs was observed, and the APs with negative correlation were defined as methylation-regulated APs (mrAPs). Six mrAPs were identified to generate a diagnostic model with good performance (AUC = 0.97). Notably, the majority of mrAPs had CpG sites that could be used to predict clinical outcomes by methylation status. Finally, we verified 85.6% of promoter activity variation and 92.3% of methylation changes in our paired RNA-seq and WGBS samples, respectively. The negative correlation between promoter activity and methylation status was further confirmed in our HCC samples. CONCLUSION The aberrant methylation status plays a critical role in the precision usage of APs in HCC, which sheds light on the mechanism of cancer development and provides a new insight into cancer screening and treatment.
Collapse
Affiliation(s)
- Yuting Dong
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bijun Jiang
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Siting Wei
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ruichu Liao
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Ximiao He
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
144
|
Merkel A, Esteller M. Experimental and Bioinformatic Approaches to Studying DNA Methylation in Cancer. Cancers (Basel) 2022; 14:349. [PMID: 35053511 PMCID: PMC8773752 DOI: 10.3390/cancers14020349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methylation is an essential epigenetic mark. Alterations of normal DNA methylation are a defining feature of cancer. Here, we review experimental and bioinformatic approaches to showcase the breadth and depth of information that this epigenetic mark provides for cancer research. First, we describe classical approaches for interrogating bulk DNA from cell populations as well as more recently developed approaches for single cells and multi-Omics. Second, we focus on the computational analysis from primary data processing to the identification of unique methylation signatures. Additionally, we discuss challenges such as sparse data and cellular heterogeneity.
Collapse
Affiliation(s)
- Angelika Merkel
- Bioinformatics Unit, Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Catalonia, 08017 Barcelona, Spain
| |
Collapse
|
145
|
Liu P. Pan-Cancer DNA Methylation Analysis and Tumor Origin Identification of Carcinoma of Unknown Primary Site Based on Multi-Omics. Front Genet 2022; 12:798748. [PMID: 35069697 PMCID: PMC8770539 DOI: 10.3389/fgene.2021.798748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The metastatic cancer of unknown primary (CUP) sites remains a leading cause of cancer death with few therapeutic options. The aberrant DNA methylation (DNAm) is the most important risk factor for cancer, which has certain tissue specificity. However, how DNAm alterations in tumors differ among the regulatory network of multi-omics remains largely unexplored. Therefore, there is room for improvement in our accuracy in the prediction of tumor origin sites and a need for better understanding of the underlying mechanisms. In our study, an integrative analysis based on multi-omics data and molecular regulatory network uncovered genome-wide methylation mechanism and identified 23 epi-driver genes. Apart from the promoter region, we also found that the aberrant methylation within the gene body or intergenic region was significantly associated with gene expression. Significant enrichment analysis of the epi-driver genes indicated that these genes were highly related to cellular mechanisms of tumorigenesis, including T-cell differentiation, cell proliferation, and signal transduction. Based on the ensemble algorithm, six CpG sites located in five epi-driver genes were selected to construct a tissue-specific classifier with a better accuracy (>95%) using TCGA datasets. In the independent datasets and the metastatic cancer datasets from GEO, the accuracy of distinguishing tumor subtypes or original sites was more than 90%, showing better robustness and stability. In summary, the integration analysis of large-scale omics data revealed complex regulation of DNAm across various cancer types and identified the epi-driver genes participating in tumorigenesis. Based on the aberrant methylation status located in epi-driver genes, a classifier that provided the highest accuracy in tracing back to the primary sites of metastatic cancer was established. Our study provides a comprehensive and multi-omics view of DNAm-associated changes across cancer types and has potential for clinical application.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center For Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
146
|
Hu Y, Lv S, Wan J, Zheng C, Shao D, Wang H, Tao Y, Li M, Luo Y. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J Mater Chem B 2022; 10:4907-4934. [PMID: 35712990 DOI: 10.1039/d2tb00448h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in the discovery of biomarkers and the exploitation of technologies for prostate cancer (PCa) detection and diagnosis, the initial screening of these PCa-related biomarkers using current...
Collapse
Affiliation(s)
- Yongwei Hu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Wan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| | - Yun Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
147
|
Cho JW, Shim HS, Lee CY, Park SY, Hong MH, Lee I, Kim HR. The importance of enhancer methylation for epigenetic regulation of tumorigenesis in squamous lung cancer. Exp Mol Med 2022; 54:12-22. [PMID: 34987166 PMCID: PMC8813945 DOI: 10.1038/s12276-021-00718-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancer (NSCLC). LUSC occurs at the bronchi, shows a squamous appearance, and often occurs in smokers. To determine the epigenetic regulatory mechanisms of tumorigenesis, we performed a genome-wide analysis of DNA methylation in tumor and adjacent normal tissues from LUSC patients. With the Infinium Methylation EPIC Array, > 850,000 CpG sites, including ~350,000 CpG sites for enhancer regions, were profiled, and the differentially methylated regions (DMRs) overlapping promoters (pDMRs) and enhancers (eDMRs) between tumor and normal tissues were identified. Dimension reduction based on DMR profiles revealed that eDMRs alone and not pDMRs alone can differentiate tumors from normal tissues with the equivalent performance of total DMRs. We observed a stronger negative correlation of LUSC-specific gene expression with methylation for enhancers than promoters. Target genes of eDMRs rather than pDMRs were found to be enriched for tumor-associated genes and pathways. Furthermore, DMR methylation associated with immune infiltration was more frequently observed among enhancers than promoters. Our results suggest that methylation of enhancer regions rather than promoters play more important roles in epigenetic regulation of tumorigenesis and immune infiltration in LUSC.
Collapse
Affiliation(s)
- Jae-Won Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
148
|
Harris AE, Metzler VM, Lothion-Roy J, Varun D, Woodcock CL, Haigh DB, Endeley C, Haque M, Toss MS, Alsaleem M, Persson JL, Gudas LJ, Rakha E, Robinson BD, Khani F, Martin LM, Moyer JE, Brownlie J, Madhusudan S, Allegrucci C, James VH, Rutland CS, Fray RG, Ntekim A, de Brot S, Mongan NP, Jeyapalan JN. Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1006101. [PMID: 36263323 PMCID: PMC9575553 DOI: 10.3389/fendo.2022.1006101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC.
Collapse
Affiliation(s)
- Anna E. Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Veronika M. Metzler
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Dhruvika Varun
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Daisy B. Haigh
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Chantelle Endeley
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Maria Haque
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael S. Toss
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mansour Alsaleem
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Emad Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Laura M. Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Juliette Brownlie
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Cinzia Allegrucci
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Victoria H. James
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Catrin S. Rutland
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Rupert G. Fray
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Simone de Brot
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nigel P. Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Jennie N. Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| |
Collapse
|
149
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
150
|
Somasekharan SP, Saxena N, Zhang F, Beraldi E, Huang J, Gentle C, Fazli L, Thi M, Sorensen P, Gleave M. Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Res 2021; 50:1069-1091. [PMID: 34939643 PMCID: PMC8789049 DOI: 10.1093/nar/gkab1247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
We report a new mechanism of androgen receptor (AR) mRNA regulation and cytoprotection in response to AR pathway inhibition (ARPI) stress in prostate cancer (PCA). AR mRNA translation is coordinately regulated by RNA binding proteins, YTHDF3 and G3BP1. Under ambient conditions m6A-modified AR mRNA is bound by YTHDF3 and translationally stimulated, while m6A-unmodified AR mRNA is bound by G3BP1 and translationally repressed. When AR-regulated PCA cell lines are subjected to ARPI stress, m6A-modified AR mRNA is recruited from actively translating polysomes (PSs) to RNA-protein stress granules (SGs), leading to reduced AR mRNA translation. After ARPI stress, m6A-modified AR mRNA liquid–liquid phase separated with YTHDF3, while m6A-unmodified AR mRNA phase separated with G3BP1. Accordingly, these AR mRNA messages form two distinct YTHDF3-enriched or G3BP1-enriched clusters in SGs. ARPI-induced SG formation is cell-protective, which when blocked by YTHDF3 or G3BP1 silencing increases PCA cell death in response to ARPI stress. Interestingly, AR mRNA silencing also delays ARPI stress-induced SG formation, highlighting its supportive role in triggering this stress response. Our results define a new mechanism for stress adaptive cell survival after ARPI stress involving SG-regulated translation of AR mRNA, mediated by m6A RNA modification and their respective regulatory proteins.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Neetu Saxena
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Fan Zhang
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Eliana Beraldi
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Jia Ni Huang
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Christina Gentle
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Marisa Thi
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Poul H Sorensen
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, British Columbia, Canada and Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| |
Collapse
|