101
|
Matthiesen R, Rodriguez MS, Carvalho AS. A Computational Tool for Analysis of Mass Spectrometry Data of Ubiquitin-Enriched Samples. Methods Mol Biol 2023; 2602:205-214. [PMID: 36446977 DOI: 10.1007/978-1-0716-2859-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mass spectrometry data on ubiquitin and ubiquitin-like modifiers are becoming increasingly more accessible, and the coverage progressively deepen as methodologies mature. This type of mass spectrometry data is linked to specific data analysis pipelines for ubiquitin. This chapter describes a computational tool to facilitate analysis of mass spectrometry data obtained on ubiquitin-enriched samples. For example, the analysis of ubiquitin branch site statistics and functional enrichment analysis against ubiquitin proteasome system protein sets are completed with a few functional calls. We foresee that the proposed computational methodology can aid in proximity drug design by, for example, elucidating the expression of E3 ligases and other factors related to the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Rune Matthiesen
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
| | | | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
102
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
103
|
Zhou J, Rasmussen NL, Olsvik HL, Akimov V, Hu Z, Evjen G, Kaeser-Pebernard S, Sankar DS, Roubaty C, Verlhac P, van de Beck N, Reggiori F, Abudu YP, Blagoev B, Lamark T, Johansen T, Dengjel J. TBK1 phosphorylation activates LIR-dependent degradation of the inflammation repressor TNIP1. J Cell Biol 2022; 222:213785. [PMID: 36574265 PMCID: PMC9797988 DOI: 10.1083/jcb.202108144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 12/28/2022] Open
Abstract
Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins. This selective autophagy efficiently reduces TNIP1 protein levels early (0-4 h) upon poly(I:C) treatment to allow efficient initiation of the inflammatory response. At 6 h, TNIP1 levels are restored due to increased transcription avoiding sustained inflammation. Thus, similarly as in cancer, autophagy may play a dual role in controlling inflammation depending on the exact state and timing of the inflammatory response.
Collapse
Affiliation(s)
- Jianwen Zhou
- https://ror.org/022fs9h90Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Nikoline Lander Rasmussen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Hallvard Lauritz Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Vyacheslav Akimov
- https://ror.org/03yrrjy16Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics, University of Southern Denmark, Odense, Denmark
| | - Zehan Hu
- https://ror.org/022fs9h90Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | | | | | - Carole Roubaty
- https://ror.org/022fs9h90Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Pauline Verlhac
- https://ror.org/03cv38k47Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicole van de Beck
- https://ror.org/03cv38k47Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fulvio Reggiori
- https://ror.org/03cv38k47Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands,https://ror.org/01aj84f44Department of Biomedicine, Aarhus University, Aarhus, Denmark,https://ror.org/01aj84f44Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Yakubu Princely Abudu
- Autophagy Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Blagoy Blagoev
- https://ror.org/03yrrjy16Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics, University of Southern Denmark, Odense, Denmark
| | - Trond Lamark
- Autophagy Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway,Terje Johansen:
| | - Jörn Dengjel
- https://ror.org/022fs9h90Department of Biology, University of Fribourg, Fribourg, Switzerland,Correspondence to Jörn Dengjel:
| |
Collapse
|
104
|
Xu C, Zhou H, Jin Y, Sahay K, Robicsek A, Liu Y, Dong K, Zhou J, Barrett A, Su H, Chen W. Hepatic neddylation deficiency triggers fatal liver injury via inducing NF-κB-inducing kinase in mice. Nat Commun 2022; 13:7782. [PMID: 36526632 PMCID: PMC9758150 DOI: 10.1038/s41467-022-35525-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The conjugation of neural precursor cell expressed, developmentally downregulated 8 (NEDD8) to target proteins, termed neddylation, participates in many cellular processes and is aberrant in various pathological diseases. Its relevance to liver function and failure remains poorly understood. Herein, we show dysregulated expression of NAE1, a regulatory subunit of the only NEDD8 E1 enzyme, in human acute liver failure. Embryonic- and adult-onset deletion of NAE1 in hepatocytes causes hepatocyte death, inflammation, and fibrosis, culminating in fatal liver injury in mice. Hepatic neddylation deficiency triggers oxidative stress, mitochondrial dysfunction, and hepatocyte reprogramming, potentiating liver injury. Importantly, NF-κB-inducing kinase (NIK), a serine/Thr kinase, is a neddylation substrate. Neddylation of NIK promotes its ubiquitination and degradation. Inhibition of neddylation conversely causes aberrant NIK activation, accentuating hepatocyte damage and inflammation. Administration of N-acetylcysteine, a glutathione surrogate and antioxidant, mitigates liver failure caused by hepatic NAE1 deletion in adult male mice. Therefore, hepatic neddylation is important in maintaining postnatal and adult liver homeostasis, and the identified neddylation targets/pathways provide insights into therapeutically intervening acute liver failure.
Collapse
Affiliation(s)
- Cheng Xu
- grid.410427.40000 0001 2284 9329Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Hongyi Zhou
- grid.410427.40000 0001 2284 9329Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Yulan Jin
- grid.410427.40000 0001 2284 9329Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Khushboo Sahay
- grid.410427.40000 0001 2284 9329Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Anna Robicsek
- grid.410427.40000 0001 2284 9329Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Yisong Liu
- grid.410427.40000 0001 2284 9329Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Kunzhe Dong
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Jiliang Zhou
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Amanda Barrett
- grid.410427.40000 0001 2284 9329Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Huabo Su
- grid.410427.40000 0001 2284 9329Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Weiqin Chen
- grid.410427.40000 0001 2284 9329Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
105
|
Identification of ester-linked ubiquitylation sites during TLR7 signalling increases the number of inter-ubiquitin linkages from 8 to 12. Biochem J 2022; 479:2419-2431. [PMID: 36408944 PMCID: PMC9788571 DOI: 10.1042/bcj20220510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
The E3 ligase HOIL-1 forms ester bonds in vitro between ubiquitin and serine/threonine residues in proteins. Here, we exploit UbiSite technology to identify serine and threonine residues undergoing HOIL-1 catalysed ubiquitylation in macrophages stimulated with R848, an activator of the TLR7/8 heterodimer. We identify Thr12, Thr14, Ser20 and Thr22 of ubiquitin as amino acid residues forming ester bonds with the C-terminal carboxylate of another ubiquitin molecule. This increases from 8 to 12 the number of ubiquitin linkage types that are formed in cells. We also identify Ser175 of IRAK4, Ser136, Thr163 and Ser168 of IRAK2 and Thr141 of MyD88 as further sites of HOIL-1-catalysed ubiquitylation together with lysine residues in these proteins that also undergo R848-dependent ubiquitylation. These findings establish that the ubiquitin chains attached to components of myddosomes are initiated by both ester and isopeptide bonds. Ester bond formation takes place within the proline, serine, threonine-rich (PST) domains of IRAK2 and IRAK4 and the intermediate domain of MyD88. The ubiquitin molecules attached to Lys162, Thr163 and Ser168 of IRAK2 are attached to different IRAK2 molecules.
Collapse
|
106
|
Li Q, Ma Y, Chang F, Xu Y, Deng J, Duan J, Jiang W, He Q, Xu L, Zhong L, Shao G, Li L. The deubiquitinating enzyme complex BRISC regulates Aurora B activation via lysine-63-linked ubiquitination in mitosis. Commun Biol 2022; 5:1335. [PMID: 36473924 PMCID: PMC9726926 DOI: 10.1038/s42003-022-04299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Faithful chromosome segregation requires bi-oriented kinetochore-microtubule attachment on the metaphase spindle. Aurora B kinase, the catalytic core of the chromosome passage complex (CPC), plays a crucial role in this process. Aurora B activation has widely been investigated in the context of protein phosphorylation. Here, we report that Aurora B is ubiquitinated in mitosis through lysine-63 ubiquitin chains (K63-Ub), which is required for its activation. Mutation of Aurora B at its primary K63 ubiquitin site inhibits its activation, reduces its kinase activity, and disrupts the association of Aurora B with other components of CPC, leading to severe mitotic defects and cell apoptosis. Moreover, we identify that BRCC36 isopeptidase complex (BRISC) is the K63-specific deubiquitinating enzyme for Aurora B. BRISC deficiency augments the accumulation of Aurora B K63-Ubs, leading to Aurora B hyperactivation and erroneous chromosome-microtubule attachments. These findings define the role of K63-linked ubiquitination in regulating Aurora B activation and provide a potential site for Aurora B-targeting drug design.
Collapse
Affiliation(s)
- Qin Li
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Yanfang Ma
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Fen Chang
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Yongjie Xu
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Jingcheng Deng
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Junyi Duan
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Wei Jiang
- grid.11135.370000 0001 2256 9319Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Qihua He
- grid.11135.370000 0001 2256 9319Center of Medical and Health Analysis, Peking University Health Science Center, 100191 Beijing, China
| | - Luzheng Xu
- grid.11135.370000 0001 2256 9319Center of Medical and Health Analysis, Peking University Health Science Center, 100191 Beijing, China
| | - Lijun Zhong
- grid.11135.370000 0001 2256 9319Center of Medical and Health Analysis, Peking University Health Science Center, 100191 Beijing, China
| | - Genze Shao
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Li Li
- grid.11135.370000 0001 2256 9319Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| |
Collapse
|
107
|
Sherpa D, Mueller J, Karayel Ö, Xu P, Yao Y, Chrustowicz J, Gottemukkala KV, Baumann C, Gross A, Czarnecki O, Zhang W, Gu J, Nilvebrant J, Sidhu SS, Murray PJ, Mann M, Weiss MJ, Schulman BA, Alpi AF. Modular UBE2H-CTLH E2-E3 complexes regulate erythroid maturation. eLife 2022; 11:e77937. [PMID: 36459484 PMCID: PMC9718529 DOI: 10.7554/elife.77937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH's cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.
Collapse
Affiliation(s)
- Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Judith Mueller
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Centre for Hematologic Diseases, Collaborative Innovation Centre of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhouChina
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Yu Yao
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Karthik V Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Christine Baumann
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Annette Gross
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Oliver Czarnecki
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Jun Gu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Johan Nilvebrant
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Peter J Murray
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
108
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
109
|
Elu N, Osinalde N, Ramirez J, Presa N, Rodriguez JA, Prieto G, Mayor U. Identification of substrates for human deubiquitinating enzymes (DUBs): An up-to-date review and a case study for neurodevelopmental disorders. Semin Cell Dev Biol 2022; 132:120-131. [PMID: 35042675 DOI: 10.1016/j.semcdb.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Similar to the reversal of kinase-mediated protein phosphorylation by phosphatases, deubiquitinating enzymes (DUBs) oppose the action of E3 ubiquitin ligases and reverse the ubiquitination of proteins. A total of 99 human DUBs, classified in 7 families, allow in this way for a precise control of cellular function and homeostasis. Ubiquitination regulates a myriad of cellular processes, and is altered in many pathological conditions. Thus, ubiquitination-regulating enzymes are increasingly regarded as potential candidates for therapeutic intervention. In this context, given the predicted easier pharmacological control of DUBs relative to E3 ligases, a significant effort is now being directed to better understand the processes and substrates regulated by each DUB. Classical studies have identified specific DUB substrate candidates by traditional molecular biology techniques in a case-by-case manner. Lately, single experiments can identify thousands of ubiquitinated proteins at a specific cellular context and narrow down which of those are regulated by a given DUB, thanks to the development of new strategies to isolate and enrich ubiquitinated material and to improvements in mass spectrometry detection capabilities. Here we present an overview of both types of studies, discussing the criteria that, in our view, need to be fulfilled for a protein to be considered as a high-confidence substrate of a given DUB. Applying these criteria, we have manually reviewed the relevant literature currently available in a systematic manner, and identified 650 high-confidence substrates of human DUBs. We make this information easily accessible to the research community through an updated version of the DUBase website (https://ehubio.ehu.eus/dubase/). Finally, in order to illustrate how this information can contribute to a better understanding of the physiopathological role of DUBs, we place a special emphasis on a subset of these enzymes that have been associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
110
|
Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15). Semin Cell Dev Biol 2022; 132:16-26. [PMID: 35764457 PMCID: PMC9233553 DOI: 10.1016/j.semcdb.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.
Collapse
|
111
|
Studying the ubiquitin code through biotin-based labelling methods. Semin Cell Dev Biol 2022; 132:109-119. [PMID: 35181195 DOI: 10.1016/j.semcdb.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications of cellular substrates by members of the ubiquitin (Ub) and ubiquitin-like (UbL) family are crucial for regulating protein homeostasis in organisms. The term "ubiquitin code" encapsulates how this diverse family of modifications, via adding single UbLs or different types of UbL chains, leads to specific fates for substrates. Cancer, neurodegeneration and other conditions are sometimes linked to underlying errors in this code. Studying these modifications in cells is particularly challenging since they are usually transient, scarce, and compartment-specific. Advances in the use of biotin-based methods to label modified proteins, as well as their proximally-located interactors, facilitate isolation and identification of substrates, modification sites, and the enzymes responsible for writing and erasing these modifications, as well as factors recruited as a consequence of the substrate being modified. In this review, we discuss site-specific and proximity biotinylation approaches being currently applied for studying modifications by UbLs, highlighting the pros and cons, with mention of complementary methods when possible. Future improvements may come from bioengineering and chemical biology but even now, biotin-based technology is uncovering new substrates and regulators, expanding potential therapeutic targets to manipulate the Ub code.
Collapse
|
112
|
Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur 2022; 73:427-439. [PMID: 36402935 DOI: 10.1007/s42977-022-00138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Márton Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Saqib Ahmed
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary. .,ELKH-ELTE Genetics Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
113
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
114
|
Site-specific proteomic strategies to identify ubiquitin and SUMO modifications: Challenges and opportunities. Semin Cell Dev Biol 2022; 132:97-108. [PMID: 34802913 DOI: 10.1016/j.semcdb.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitin and SUMO modify thousands of substrates to regulate most cellular processes. System-wide identification of ubiquitin and SUMO substrates provides global understanding of their cellular functions. In this review, we discuss the biological importance of site-specific modifications by ubiquitin and SUMO regulating the DNA damage response, protein quality control and cell cycle progression. Furthermore we discuss the machinery responsible for these modifications and methods to purify and identify ubiquitin and SUMO modified sites by mass spectrometry. We provide a framework to aid in the selection of appropriate purification, digestion and acquisition strategies suited to answer different biological questions. We highlight opportunities in the field for employing innovative technologies, as well as discuss challenges and long-standing questions in the field that are difficult to address with the currently available tools, emphasizing the need for further innovation.
Collapse
|
115
|
de Thonel A, Ahlskog JK, Daupin K, Dubreuil V, Berthelet J, Chaput C, Pires G, Leonetti C, Abane R, Barris LC, Leray I, Aalto AL, Naceri S, Cordonnier M, Benasolo C, Sanial M, Duchateau A, Vihervaara A, Puustinen MC, Miozzo F, Fergelot P, Lebigot É, Verloes A, Gressens P, Lacombe D, Gobbo J, Garrido C, Westerheide SD, David L, Petitjean M, Taboureau O, Rodrigues-Lima F, Passemard S, Sabéran-Djoneidi D, Nguyen L, Lancaster M, Sistonen L, Mezger V. CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder. Nat Commun 2022; 13:7002. [PMID: 36385105 PMCID: PMC9668993 DOI: 10.1038/s41467-022-34476-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.
Collapse
Affiliation(s)
- Aurélie de Thonel
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| | - Johanna K Ahlskog
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kevin Daupin
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Véronique Dubreuil
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Carole Chaput
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Ksilink, Strasbourg, France
| | - Geoffrey Pires
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Camille Leonetti
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Ryma Abane
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Lluís Cordón Barris
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Isabelle Leray
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sarah Naceri
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Marine Cordonnier
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carène Benasolo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Matthieu Sanial
- CNRS, UMR 7592 Institut Jacques Monod, F-75205, Paris, France
| | - Agathe Duchateau
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Anniina Vihervaara
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael C Puustinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Federico Miozzo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Neuroscience Institute-CNR (IN-CNR), Milan, Italy
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Élise Lebigot
- Service de Biochimie-pharmaco-toxicologie, Hôpital Bicêtre, Hopitaux Universitaires Paris-Sud, 94270 Le Kremlin Bicêtre, Paris-Sud, France
| | - Alain Verloes
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Pierre Gressens
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Jessica Gobbo
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carmen Garrido
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Michel Petitjean
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Olivier Taboureau
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | | - Sandrine Passemard
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Madeline Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical, Campus, Cambridge, UK
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valérie Mezger
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| |
Collapse
|
116
|
Lin Y, Wang Y, Li PF. Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol 2022; 13:1038421. [PMID: 36407005 PMCID: PMC9672381 DOI: 10.3389/fphys.2022.1038421] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The nature of redox is electron transfer; in this way, energy metabolism brings redox stress. Lactate production is associated with NAD regeneration, which is now recognized to play a role in maintaining redox homeostasis. The cellular lactate/pyruvate ratio could be described as a proxy for the cytosolic NADH/NAD ratio, meaning lactate metabolism is the key to redox regulation. Here, we review the role of lactate dehydrogenases in cellular redox regulation, which play the role of the direct regulator of lactate–pyruvate transforming. Lactate dehydrogenases (LDHs) are found in almost all animal tissues; while LDHA catalyzed pyruvate to lactate, LDHB catalyzed the reverse reaction . LDH enzyme activity affects cell oxidative stress with NAD/NADH regulation, especially LDHA recently is also thought as an ROS sensor. We focus on the mutual regulation of LDHA and redox robustness. ROS accumulation regulates the transcription of LDHA. Conversely, diverse post-translational modifications of LDHA, such as phosphorylation and ubiquitination, play important roles in enzyme activity on ROS elimination, emphasizing the potential role of the ROS sensor and regulator of LDHA.
Collapse
Affiliation(s)
- Yijun Lin
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
117
|
Molecular architecture of the glycogen- committed PP1/PTG holoenzyme. Nat Commun 2022; 13:6199. [PMID: 36261419 PMCID: PMC9582199 DOI: 10.1038/s41467-022-33693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The delicate alternation between glycogen synthesis and degradation is governed by the interplay between key regulatory enzymes altering the activity of glycogen synthase and phosphorylase. Among these, the PP1 phosphatase promotes glycogenesis while inhibiting glycogenolysis. PP1 is, however, a master regulator of a variety of cellular processes, being conveniently directed to each of them by scaffolding subunits. PTG, Protein Targeting to Glycogen, addresses PP1 action to glycogen granules. In Lafora disease, the most aggressive pediatric epilepsy, genetic alterations leading to PTG accumulation cause the deposition of insoluble polyglucosans in neurons. Here, we report the crystallographic structure of the ternary complex PP1/PTG/carbohydrate. We further refine the mechanism of the PTG-mediated PP1 recruitment to glycogen by identifying i) an unusual combination of recruitment sites, ii) their contributions to the overall binding affinity, and iii) the conformational heterogeneity of this complex by in solution SAXS analyses.
Collapse
|
118
|
Fechner J, Ketelhut M, Maier D, Preiss A, Nagel AC. The Binding of CSL Proteins to Either Co-Activators or Co-Repressors Protects from Proteasomal Degradation Induced by MAPK-Dependent Phosphorylation. Int J Mol Sci 2022; 23:ijms232012336. [PMID: 36293193 PMCID: PMC9604145 DOI: 10.3390/ijms232012336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The primary role of Notch is to specify cellular identities, whereby the cells respond to amazingly small changes in Notch signalling activity. Hence, dosage of Notch components is crucial to regulation. Central to Notch signal transduction are CSL proteins: together with respective cofactors, they mediate the activation or the silencing of Notch target genes. CSL proteins are extremely similar amongst species regarding sequence and structure. We noticed that the fly homologue suppressor of hairless (Su(H)) is stabilised in transcription complexes. Using specific transgenic fly lines and HeLa RBPJKO cells we provide evidence that Su(H) is subjected to proteasomal degradation with a half-life of about two hours if not protected by binding to co-repressor hairless or co-activator Notch. Moreover, Su(H) stability is controlled by MAPK-dependent phosphorylation, matching earlier data for RBPJ in human cells. The homologous murine and human RBPJ proteins, however, are largely resistant to degradation in our system. Mutating presumptive protein contact sites, however, sensitised RBPJ for proteolysis. Overall, our data highlight the similarities in the regulation of CSL protein stability across species and imply that turnover of CSL proteins may be a conserved means of regulating Notch signalling output directly at the level of transcription.
Collapse
|
119
|
Blazev R, Carl CS, Ng YK, Molendijk J, Voldstedlund CT, Zhao Y, Xiao D, Kueh AJ, Miotto PM, Haynes VR, Hardee JP, Chung JD, McNamara JW, Qian H, Gregorevic P, Oakhill JS, Herold MJ, Jensen TE, Lisowski L, Lynch GS, Dodd GT, Watt MJ, Yang P, Kiens B, Richter EA, Parker BL. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab 2022; 34:1561-1577.e9. [PMID: 35882232 DOI: 10.1016/j.cmet.2022.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
Exercise induces signaling networks to improve muscle function and confer health benefits. To identify divergent and common signaling networks during and after different exercise modalities, we performed a phosphoproteomic analysis of human skeletal muscle from a cross-over intervention of endurance, sprint, and resistance exercise. This identified 5,486 phosphosites regulated during or after at least one type of exercise modality and only 420 core phosphosites common to all exercise. One of these core phosphosites was S67 on the uncharacterized protein C18ORF25, which we validated as an AMPK substrate. Mice lacking C18ORF25 have reduced skeletal muscle fiber size, exercise capacity, and muscle contractile function, and this was associated with reduced phosphorylation of contractile and Ca2+ handling proteins. Expression of C18ORF25 S66/67D phospho-mimetic reversed the decreased muscle force production. This work defines the divergent and canonical exercise phosphoproteome across different modalities and identifies C18ORF25 as a regulator of exercise signaling and muscle function.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yaan-Kit Ng
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Molendijk
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yuanyuan Zhao
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Di Xiao
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Paula M Miotto
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa R Haynes
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Justin P Hardee
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jin D Chung
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - James W McNamara
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Hongwei Qian
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Gregorevic
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | | | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Leszek Lisowski
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; Military Institute of Medicine, Warsaw, Poland
| | - Gordon S Lynch
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Pengyi Yang
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
120
|
Chu YY, Chen MK, Wei Y, Lee HH, Xia W, Wang YN, Yam C, Hsu JL, Wang HL, Chang WC, Yamaguchi H, Jiang Z, Liu C, Li CF, Nie L, Chan LC, Gao Y, Wang SC, Liu J, Westin SN, Lee S, Sood AK, Yang L, Hortobagyi GN, Yu D, Hung MC. Targeting the ALK-CDK9-Tyr19 kinase cascade sensitizes ovarian and breast tumors to PARP inhibition via destabilization of the P-TEFb complex. NATURE CANCER 2022; 3:1211-1227. [PMID: 36253486 PMCID: PMC9586872 DOI: 10.1038/s43018-022-00438-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/24/2022] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have demonstrated promising clinical activity in multiple cancers. However, resistance to PARP inhibitors remains a substantial clinical challenge. In the present study, we report that anaplastic lymphoma kinase (ALK) directly phosphorylates CDK9 at tyrosine-19 to promote homologous recombination (HR) repair and PARP inhibitor resistance. Phospho-CDK9-Tyr19 increases its kinase activity and nuclear localization to stabilize positive transcriptional elongation factor b and activate polymerase II-dependent transcription of HR-repair genes. Conversely, ALK inhibition increases ubiquitination and degradation of CDK9 by Skp2, an E3 ligase. Notably, combination of US Food and Drug Administration-approved ALK and PARP inhibitors markedly reduce tumor growth and improve survival of mice in PARP inhibitor-/platinum-resistant tumor xenograft models. Using human tumor biospecimens, we further demonstrate that phosphorylated ALK (p-ALK) expression is associated with resistance to PARP inhibitors and positively correlated with p-Tyr19-CDK9 expression. Together, our findings support a biomarker-driven, combinatorial treatment strategy involving ALK and PARP inhibitors to induce synthetic lethality in PARP inhibitor-/platinum-resistant tumors with high p-ALK-p-Tyr19-CDK9 expression.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hung-Ling Wang
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunxiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jinsong Liu
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Systems Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
121
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
122
|
Cabrera Y, Bernardo-Seisdedos G, Dublang L, Albesa-Jové D, Orozco N, Rosa Viguera A, Millet O, Muga A, Moro F. Fine-tuning of the Hsc70-based human protein disaggregase machinery by the distinctive C-terminal extension of Apg2. J Mol Biol 2022; 434:167841. [PMID: 36167183 DOI: 10.1016/j.jmb.2022.167841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain with propensity to adopt α-helical structure interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.
Collapse
Affiliation(s)
- Yovana Cabrera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden
| | | | - Leire Dublang
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - David Albesa-Jové
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Natalia Orozco
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Ana Rosa Viguera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain.
| |
Collapse
|
123
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
124
|
A dimer-monomer switch controls CHIP-dependent substrate ubiquitylation and processing. Mol Cell 2022; 82:3239-3254.e11. [PMID: 36027913 DOI: 10.1016/j.molcel.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
The high substrate selectivity of the ubiquitin/proteasome system is mediated by a large group of E3 ubiquitin ligases. The ubiquitin ligase CHIP regulates the degradation of chaperone-controlled and chaperone-independent proteins. To understand how CHIP mediates substrate selection and processing, we performed a structure-function analysis of CHIP and addressed its physiological role in Caenorhabditis elegans and human cells. The conserved function of CHIP in chaperone-assisted degradation requires dimer formation to mediate proteotoxic stress resistance and to prevent protein aggregation. The CHIP monomer, however, promotes the turnover of the membrane-bound insulin receptor and longevity. The dimer-monomer transition is regulated by CHIP autoubiquitylation and chaperone binding, which provides a feedback loop that controls CHIP activity in response to cellular stress. Because CHIP also binds other E3 ligases, such as Parkin, the molecular switch mechanism described here could be a general concept for the regulation of substrate selectivity and ubiquitylation by combining different E3s.
Collapse
|
125
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
126
|
Garcia EL. Allele-specific alternative splicing of Drosophila Ribosomal protein S21 suppresses a lethal mutation in the Phosphorylated adaptor for RNA export ( Phax) gene. G3 GENES|GENOMES|GENETICS 2022; 12:6654594. [PMID: 35920767 PMCID: PMC9434302 DOI: 10.1093/g3journal/jkac195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Genetic disruptions to the biogenesis of spliceosomal small-nuclear ribonucleoproteins in Drosophila cause wide-spread alternative splicing changes, including changes to the splicing of pre-mRNA for Ribosomal protein S21 (RpS21). Using a transposon mutant for the Phosphorylated adaptor for RNA export (Phax) gene, we demonstrate that changes in the splicing of RpS21 transcripts have a strong influence on the developmental progression of PhaxSH/SH mutants. Different alleles of the Drosophila RpS21 gene are circulating in common laboratory strains and cell lines. These alleles exhibit differences in RpS21 intron retention and splicing efficiency. Differences in the splicing of RpS21 transcripts account for prior conflicting observations of the phenotypic severity of PhaxSH/SH mutant stocks. The alleles uncover a strong splicing enhancer in RpS21 transcripts that can fully suppress the larval lethality and partially suppress the pupal lethality exhibited by PhaxSH/SH mutant lines. In the absence of the splicing enhancer, the splicing of RpS21 transcripts can be modulated in trans by the SR-rich B52 splicing factor. As PhaxSH/SH mutants exhibit wide-spread splicing changes in transcripts for other genes, findings here establish the importance of a single alternative splicing event, RpS21 splicing or intron retention, to the developmental progression of Drosophila.
Collapse
Affiliation(s)
- Eric L Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine , Lexington, KY 40536, USA
- Department of Biology, University of Kentucky , Lexington, KY 40506, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599, USA
| |
Collapse
|
127
|
Detering NT, Schüning T, Hensel N, Claus P. The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci 2022; 79:497. [PMID: 36006469 PMCID: PMC11071818 DOI: 10.1007/s00018-022-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.
Collapse
Affiliation(s)
- Nora Tula Detering
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Niko Hensel
- Ottawa Hospital Research Institute (OHRI), Ottawa, Canada
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
128
|
Sun S, Qiao B, Han Y, Wang B, Wei S, Chen Y. Posttranslational modifications of platelet adhesion receptors. Pharmacol Res 2022; 183:106413. [PMID: 36007773 DOI: 10.1016/j.phrs.2022.106413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
Platelets play a key role in normal hemostasis, whereas pathological platelet adhesion is involved in various cardiovascular events. The underlying cause in cardiovascular events involves plaque rupture leading to subsequent platelet adhesion, activation, release, and eventual thrombosis. Traditional antithrombotic drugs often target the signal transduction process of platelet adhesion receptors by influencing the synthesis of some key molecules, and their effects are limited. Posttranslational modifications (PTMs) of platelet adhesion receptors increase the functional diversity of the receptors and affect platelet physiological and pathological processes. Antithrombotic drugs targeting PTMs of platelet adhesion receptors may represent a new therapeutic idea. In this review, various PTMs, including phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, lipidation, and proteolysis, of three platelet adhesion receptors, glycoprotein Ib-IX-V (GPIb-IX-V), glycoprotein VI (GPVI), and integrin αIIbβ3, are reviewed. It is important to comprehensively understand the PTMs process of platelet adhesion receptors.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
129
|
Sun M, Zhang X. Current methodologies in protein ubiquitination characterization: from ubiquitinated protein to ubiquitin chain architecture. Cell Biosci 2022; 12:126. [PMID: 35962460 PMCID: PMC9373315 DOI: 10.1186/s13578-022-00870-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination is a versatile post-translational modification (PTM), which regulates diverse fundamental features of protein substrates, including stability, activity, and localization. Unsurprisingly, dysregulation of the complex interaction between ubiquitination and deubiquitination leads to many pathologies, such as cancer and neurodegenerative diseases. The versatility of ubiquitination is a result of the complexity of ubiquitin (Ub) conjugates, ranging from a single Ub monomer to Ub polymers with different length and linkage types. To further understand the molecular mechanism of ubiquitination signaling, innovative strategies are needed to characterize the ubiquitination sites, the linkage type, and the length of Ub chain. With advances in chemical biology tools, computational methodologies, and mass spectrometry, protein ubiquitination sites and their Ub chain architecture have been extensively revealed. The obtained information on protein ubiquitination helps to crack the molecular mechanism of ubiquitination in numerous pathologies. In this review, we summarize the recent advances in protein ubiquitination analysis to gain updated knowledge in this field. In addition, the current and future challenges and barriers are also reviewed and discussed.
Collapse
|
130
|
Zheng Q, Su Z, Yu Y, Liu L. Recent progress in dissecting ubiquitin signals with chemical biology tools. Curr Opin Chem Biol 2022; 70:102187. [PMID: 35961065 DOI: 10.1016/j.cbpa.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Protein ubiquitination regulates almost all eukaryotic cellular processes, and is of very high complexity due to the diversity of ubiquitin (Ub) modifications including mono-, multiply mono-, homotypic poly-, and even heterotypic poly-ubiquitination. To accurately elucidate the role of each specific Ub signal in different cells with spatiotemporal resolutions, a variety of chemical biology tools have been developed. In this review, we summarize some recently developed chemical biology tools for ubiquitination studies and their applications in molecular and cellular biology.
Collapse
Affiliation(s)
- Qingyun Zheng
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhen Su
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Yu
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
131
|
James Sanford E, Bustamante Smolka M. A field guide to the proteomics of post-translational modifications in DNA repair. Proteomics 2022; 22:e2200064. [PMID: 35695711 PMCID: PMC9950963 DOI: 10.1002/pmic.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
All cells incur DNA damage from exogenous and endogenous sources and possess pathways to detect and repair DNA damage. Post-translational modifications (PTMs), in the past 20 years, have risen to ineluctable importance in the study of the regulation of DNA repair mechanisms. For example, DNA damage response kinases are critical in both the initial sensing of DNA damage as well as in orchestrating downstream activities of DNA repair factors. Mass spectrometry-based proteomics revolutionized the study of the role of PTMs in the DNA damage response and has canonized PTMs as central modulators of nearly all aspects of DNA damage signaling and repair. This review provides a biologist-friendly guide for the mass spectrometry analysis of PTMs in the context of DNA repair and DNA damage responses. We reflect on the current state of proteomics for exploring new mechanisms of PTM-based regulation and outline a roadmap for designing PTM mapping experiments that focus on the DNA repair and DNA damage responses.
Collapse
Key Words
- LC-MS/MS, technology, bottom-up proteomics, technology, signal transduction, cell biology
- phosphoproteomics, technology, post-translational modification analysis, technology, post-translational modifications, cell biology, mass spectrometry
Collapse
Affiliation(s)
- Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853,Corresponding author:
| |
Collapse
|
132
|
Squair DR, Virdee S. A new dawn beyond lysine ubiquitination. Nat Chem Biol 2022; 18:802-811. [PMID: 35896829 DOI: 10.1038/s41589-022-01088-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
The ubiquitin system has become synonymous with the modification of lysine residues. However, the substrate scope and diversity of the conjugation machinery have been underappreciated, bringing us to an epoch in ubiquitin system research. The striking discoveries of metazoan enzymes dedicated toward serine and threonine ubiquitination have revealed the important role of nonlysine ubiquitination in endoplasmic reticulum-associated degradation, immune signaling and neuronal processes, while reports of nonproteinaceous substrates have extended ubiquitination beyond the proteome. Bacterial effectors that bypass the canonical ubiquitination machinery and form unprecedented linkage chemistry further redefine long-standing dogma. While chemical biology approaches have advanced our understanding of the canonical ubiquitin system, further study of noncanonical ubiquitination has been hampered by a lack of suitable tools. This Perspective aims to consolidate and contextualize recent discoveries and to propose potential applications of chemical biology, which will be instrumental in unraveling this new frontier of ubiquitin research.
Collapse
Affiliation(s)
- Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
133
|
Wang J, Zhang M, Liu S, He Z, Wang R, Liang M, An Y, Jiang C, Song C, Ning Z, Yin F, Huang H, Li Z, Ye Y. Targeting UBE2C for degradation by bioPROTACs based on bacterial E3 ligase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
134
|
Ursini F, Bosello Travain V, Cozza G, Miotto G, Roveri A, Toppo S, Maiorino M. A white paper on Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) forty years later. Free Radic Biol Med 2022; 188:117-133. [PMID: 35718302 DOI: 10.1016/j.freeradbiomed.2022.06.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
The purification of a protein inhibiting lipid peroxidation led to the discovery of the selenoperoxidase GPx4 forty years ago. Thus, the evidence of the enzymatic activity was reached after identifying the biological effect and unambiguously defined the relationship between the biological function and the enzymatic activity. In the syllogism where GPx4 inhibits lipid peroxidation and its inhibition is lethal, cell death is operated by lipid peroxidation. Based on this rationale, this form of cell death emerged as regulated iron-enforced oxygen toxicity and was named ferroptosis in 2012. In the last decades, we learned that reduction of lipid hydroperoxides is indispensable and, in cooperation with prooxidant systems, controls the critical steady state of lipid peroxidation. This concept defined the GPx4 reaction as both the target for possible anti-cancer therapy and if insufficient, as cause of degenerative diseases. We know the reaction mechanism, but the details of the interaction at the membrane cytosol interface are still poorly defined. We know the gene structure, but the knowledge about expression control is still limited. The same holds true for post-transcriptional modifications. Reverse genetics indicate that GPx4 has a role in inflammation, immunity, and differentiation, but the observations emerging from these studies need a more specifically addressed biochemical evidence. Finally, the role of GPx4 in spermatogenesis disclosed an area unconnected to lipid peroxidation. In its mitochondrial and nuclear form, the peroxidase catalyzes the oxidation of protein thiols in two specific aspects of sperm maturation: stabilization of the mid-piece and chromatin compaction. Thus, although available evidence converges to the notion that GPx4 activity is vital due to the inhibition of lipid peroxidation, it is reasonable to foresee other unknown aspects of the GPx4 reaction to be disclosed.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | | | - Giorgio Cozza
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
135
|
Li Y, Wu J, Tian Y, Zhu Q, Ge Y, Yu H, Huang J, Li H, Zhang J, Zhang L, Hu L. MED1 Downregulation Contributes to TGFβ-Induced Metastasis by Inhibiting SMAD2 Ubiquitination Degradation in Cutaneous Melanoma. J Invest Dermatol 2022; 142:2228-2237.e4. [PMID: 35131256 DOI: 10.1016/j.jid.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
Metastasis is the main reason for the high mortality of patients and indeed a difficult task in the treatment of cutaneous melanoma. Therefore, it is of great clinical value to explore the molecular mechanism of cutaneous metastatic melanoma and develop novel therapies. MED1, acting as a factor required for activator-dependent transcription, is reported to be involved in carcinogenesis and progression. In this study, we found that MED1 was highly expressed in patients with cutaneous melanoma. MED1 downregulation could induce cellular epithelial-to-mesenchymal transition and promote migration, invasion, and metastasis of cutaneous melanoma in vivo and in vitro. Further analysis showed that in Med1 knockdown cells, the TGFβ/SMAD2 signaling pathway mediated an increase in epithelial-to-mesenchymal transition phenotype and migration. The opposite results were observed after treatment with TGFβ inhibitors. To further explore the mechanism, we found that MED1 interacted with SMAD2, and MED1 downregulation could protect SMAD2 from degradation by inhibiting SMAD2 ubiquitination. Together, these results suggest that MED1 inhibited TGFβ signaling pathway to reduce cell epithelial-to-mesenchymal transition phenotype and migration through SMAD2 ubiquitination in the metastasis of cutaneous melanoma. Our findings elucidated the role of MED1 in the metastasis of cutaneous melanoma and provided a target for the therapeutic strategies of cutaneous melanoma.
Collapse
Affiliation(s)
- Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jiangmei Wu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yicheng Ge
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hong Li
- Department of Dermatology, Tianjin Nankai Hospital, Tianjin, China
| | - Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.
| |
Collapse
|
136
|
Brandi J, Noberini R, Bonaldi T, Cecconi D. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications. J Chromatogr A 2022; 1678:463352. [PMID: 35896048 DOI: 10.1016/j.chroma.2022.463352] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Post-translational modifications (PTMs) occur during or after protein biosynthesis and increase the functional diversity of proteome. They comprise phosphorylation, acetylation, methylation, glycosylation, ubiquitination, sumoylation (among many other modifications), and influence all aspects of cell biology. Mass-spectrometry (MS)-based proteomics is the most powerful approach for PTM analysis. Despite this, it is challenging due to low abundance and labile nature of many PTMs. Hence, enrichment of modified peptides is required for MS analysis. This review provides an overview of most common PTMs and a discussion of current enrichment methods for MS-based proteomics analysis. The traditional affinity strategies, including immunoenrichment, chromatography and protein pull-down, are outlined together with their strengths and shortcomings. Moreover, a special attention is paid to chemical enrichment strategies, such as capture by chemoselective probes, metabolic and chemoenzymatic labelling, which are discussed with an emphasis on their recent progress. Finally, the challenges and future trends in the field are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy.
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
137
|
Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int J Mol Sci 2022; 23:7725. [PMID: 35887072 PMCID: PMC9320238 DOI: 10.3390/ijms23147725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets.
Collapse
Affiliation(s)
| | | | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (A.B.-B.); (J.B.-B.)
| |
Collapse
|
138
|
Wang R, You X, Zhang C, Fang H, Wang M, Zhang F, Kang H, Xu X, Liu Z, Wang J, Zhao Q, Wang X, Hao Z, He F, Tao H, Wang D, Wang J, Fang L, Qin M, Zhao T, Zhang P, Xing H, Xiao Y, Liu W, Xie Q, Wang GL, Ning Y. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol 2022; 23:154. [PMID: 35821048 PMCID: PMC9277809 DOI: 10.1186/s13059-022-02717-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ubiquitination is essential for many cellular processes in eukaryotes, including 26S proteasome-dependent protein degradation, cell cycle progression, transcriptional regulation, and signal transduction. Although numerous ubiquitinated proteins have been empirically identified, their cognate ubiquitin E3 ligases remain largely unknown. RESULTS Here, we generate a complete ubiquitin E3 ligase-encoding open reading frames (UbE3-ORFeome) library containing 98.94% of the 1515 E3 ligase genes in the rice (Oryza sativa L.) genome. In the test screens with four known ubiquitinated proteins, we identify both known and new E3s. The interaction and degradation between several E3s and their substrates are confirmed in vitro and in vivo. In addition, we identify the F-box E3 ligase OsFBK16 as a hub-interacting protein of the phenylalanine ammonia lyase family OsPAL1-OsPAL7. We demonstrate that OsFBK16 promotes the degradation of OsPAL1, OsPAL5, and OsPAL6. Remarkably, we find that overexpression of OsPAL1 or OsPAL6 as well as loss-of-function of OsFBK16 in rice displayed enhanced blast resistance, indicating that OsFBK16 degrades OsPALs to negatively regulate rice immunity. CONCLUSIONS The rice UbE3-ORFeome is the first complete E3 ligase library in plants and represents a powerful proteomic resource for rapid identification of the cognate E3 ligases of ubiquitinated proteins and establishment of functional E3-substrate interactome in plants.
Collapse
Affiliation(s)
- Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiaoman You
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiao Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zheng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Qingzhen Zhao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Debao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jisong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liang Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Mengchao Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Tianxiao Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | | | - Hefei Xing
- OE Biotech Co., Ltd, Shanghai, 201112 China
| | | | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
139
|
Wei CY, Zhu MX, Zhang PF, Huang XY, Wan JK, Yao XZ, Hu ZT, Chai XQ, Peng R, Yang X, Gao C, Gao J, Wang SW, Zheng YM, Tang Z, Gao Q, Zhou J, Fan JB, Ke AW, Fan J. PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma. J Hepatol 2022; 77:163-176. [PMID: 35219791 DOI: 10.1016/j.jhep.2022.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Despite remarkable advances in treatment, most patients with hepatocellular carcinoma (HCC) respond poorly to anti-programmed cell death 1 (anti-PD1) therapy. A deeper insight into the tolerance mechanism of HCC against this therapy is urgently needed. METHODS We performed next-generation sequencing, multiplex immunofluorescence, and dual-color immunohistochemistry and constructed an orthotopic HCC xenograft tumor model to identify the key gene associated with anti-PD1 tolerance. A spontaneously tumorigenic transgenic mouse model, an in vitro coculture system, mass cytometry, and multiplex immunofluorescence were used to explore the biological function of zinc finger protein 64 (ZFP64) on tumor progression and immune escape. Molecular and biochemical strategies like RNA-sequencing, chromatin immunoprecipitation-sequencing and mass spectrometry were used to gain insight into the underlying mechanisms of ZFP64. RESULTS We showed that ZFP64 is frequently upregulated in tumor tissues from patients with anti-PD1-resistant HCC. Elevated ZFP64 drives anti-PD1 resistance by shifting macrophage polarization toward an alternative activation phenotype (M2) and fostering an inhibitory tumor microenvironment. Mechanistically, we primarily demonstrated that protein kinase C alpha (PKCα) directly phosphorylates ZFP64 at S226, leading to its nuclear translocation and the transcriptional activation of macrophage colony-stimulating factor (CSF1). HCC-derived CSF1 transforms macrophages to the M2 phenotype to drive immune escape and anti-PD1 tolerance. Notably, Gö6976, a protein kinase inhibitor, and lenvatinib, a multi-kinase inhibitor, reset the tumor microenvironment and restore sensitivity to anti-PD1 by blocking the PKCα/ZFP64/CSF1 axis. CONCLUSIONS We propose that the PKCα/ZFP64/CSF1 axis is critical for triggering immune evasion and anti-PD1 tolerance. Inhibiting this axis with Gö6976 or lenvatinib overcomes anti-PD1 resistance in HCC. LAY SUMMARY Despite remarkable treatment progress, most patients with hepatocellular carcinoma respond poorly to anti-PD1 therapy (a type of immunotherapy). A deeper insight into the tolerance mechanisms to this therapy is urgently needed. Herein, we unravel a previously unexplored mechanism linking tumor progression, macrophage polarization, and anti-PD1 resistance, and offer an attractive novel target for anti-PD1 combination therapy, which may benefit patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China; Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Meng-Xuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Peng-Fei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jin-Kai Wan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Xiu-Zhong Yao
- Department of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Ze-Tao Hu
- Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200433, P. R. China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Rui Peng
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xuan Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chao Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jian Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Si-Wei Wang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jia-Bin Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
140
|
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 2022; 23:715-731. [PMID: 35750927 DOI: 10.1038/s41580-022-00500-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid-liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
141
|
Nanda SK, Vollmer S, Perez-Oliva AB. Posttranslational Regulation of Inflammasomes, Its Potential as Biomarkers and in the Identification of Novel Drugs Targets. Front Cell Dev Biol 2022; 10:887533. [PMID: 35800898 PMCID: PMC9253692 DOI: 10.3389/fcell.2022.887533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we have summarized classical post-translational modifications (PTMs) such as phosphorylation, ubiquitylation, and SUMOylation of the different components of one of the most studied NLRP3, and other emerging inflammasomes. We will highlight how the discovery of these modifications have provided mechanistic insight into the biology, function, and regulation of these multiprotein complexes not only in the context of the innate immune system but also in adaptive immunity, hematopoiesis, bone marrow transplantation, as well and their role in human diseases. We have also collected available information concerning less-studied modifications such as acetylation, ADP-ribosylation, nitrosylation, prenylation, citrullination, and emphasized their relevance in the regulation of inflammasome complex formation. We have described disease-associated mutations affecting PTMs of inflammasome components. Finally, we have discussed how a deeper understanding of different PTMs can help the development of biomarkers and identification of novel drug targets to treat diseases caused by the malfunctioning of inflammasomes.
Collapse
Affiliation(s)
- Sambit K. Nanda
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology (R&I), Gaithersburg, MD, United States
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), Gothenburg, Sweden
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Ana B. Perez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| |
Collapse
|
142
|
Østvold AC, Grundt K, Wiese C. NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochem J 2022; 479:1205-1220. [PMID: 35695515 PMCID: PMC10016235 DOI: 10.1042/bcj20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
The Nuclear Casein and Cyclin-dependent Kinase Substrate 1 (NUCKS1) protein is highly conserved in vertebrates, predominantly localized to the nucleus and one of the most heavily modified proteins in the human proteome. NUCKS1 expression is high in stem cells and the brain, developmentally regulated in mice and associated with several diverse malignancies in humans, including cancer, metabolic syndrome and Parkinson's disease. NUCKS1 function has been linked to modulating chromatin architecture and transcription, DNA repair and cell cycle regulation. In this review, we summarize and discuss the published information on NUCKS1 and highlight the questions that remain to be addressed to better understand the complex biology of this multifaceted protein.
Collapse
Affiliation(s)
- Anne Carine Østvold
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Kirsten Grundt
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
143
|
Ubiquitin specific peptidase 11 as a novel therapeutic target for cancer management. Cell Death Dis 2022; 8:292. [PMID: 35715413 PMCID: PMC9205893 DOI: 10.1038/s41420-022-01083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Ubiquitination is a critical biological process in post-translational modification of proteins and involves multiple signaling pathways in protein metabolism, apoptosis, DNA damage, cell-cycle progression, and cancer development. Deubiquitinase, a specific enzyme that regulates the ubiquitination process, is also thought to be closely associated with the development and progression of various cancers. In this article, we systematically review the emerging role of the deubiquitinase ubiquitin-specific peptidase 11 (USP11) in many cancer-related pathways. The results show that USP11 promotes or inhibits the progression and chemoresistance of different cancers, including colorectal, breast, ovarian, and hepatocellular carcinomas, via deubiquitinating several critical proteins of cancer-related pathways. We initially summarize the role of USP11 in different cancers and further discuss the possibility of USP11 as a therapeutic strategy.
Collapse
|
144
|
Zhou L, Ng DSC, Yam JC, Chen LJ, Tham CC, Pang CP, Chu WK. Post-translational modifications on the retinoblastoma protein. J Biomed Sci 2022; 29:33. [PMID: 35650644 PMCID: PMC9161509 DOI: 10.1186/s12929-022-00818-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
The retinoblastoma protein (pRb) functions as a cell cycle regulator controlling G1 to S phase transition and plays critical roles in tumour suppression. It is frequently inactivated in various tumours. The functions of pRb are tightly regulated, where post-translational modifications (PTMs) play crucial roles, including phosphorylation, ubiquitination, SUMOylation, acetylation and methylation. Most PTMs on pRb are reversible and can be detected in non-cancerous cells, playing an important role in cell cycle regulation, cell survival and differentiation. Conversely, altered PTMs on pRb can give rise to anomalies in cell proliferation and tumourigenesis. In this review, we first summarize recent findings pertinent to how individual PTMs impinge on pRb functions. As many of these PTMs on pRb were published as individual articles, we also provide insights on the coordination, either collaborations and/or competitions, of the same or different types of PTMs on pRb. Having a better understanding of how pRb is post-translationally modulated should pave the way for developing novel and specific therapeutic strategies to treat various human diseases.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny Siu-Chun Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
145
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
146
|
Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, Cox J, Shah GM, Blagoev B, Vertegaal ACO. Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun 2022; 13:2736. [PMID: 35585066 PMCID: PMC9117253 DOI: 10.1038/s41467-022-30376-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin-proteasome axis has been extensively explored at a system-wide level, but the impact of deubiquitinating enzymes (DUBs) on the ubiquitinome remains largely unknown. Here, we compare the contributions of the proteasome and DUBs on the global ubiquitinome, using UbiSite technology, inhibitors and mass spectrometry. We uncover large dynamic ubiquitin signalling networks with substrates and sites preferentially regulated by DUBs or by the proteasome, highlighting the role of DUBs in degradation-independent ubiquitination. DUBs regulate substrates via at least 40,000 unique sites. Regulated networks of ubiquitin substrates are involved in autophagy, apoptosis, genome integrity, telomere integrity, cell cycle progression, mitochondrial function, vesicle transport, signal transduction, transcription, pre-mRNA splicing and many other cellular processes. Moreover, we show that ubiquitin conjugated to SUMO2/3 forms a strong proteasomal degradation signal. Interestingly, PARP1 is hyper-ubiquitinated in response to DUB inhibition, which increases its enzymatic activity. Our study uncovers key regulatory roles of DUBs and provides a resource of endogenous ubiquitination sites to aid the analysis of substrate specific ubiquitin signalling.
Collapse
Affiliation(s)
- Fredrik Trulsson
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mihaela Robu
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Nila van Overbeek
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
147
|
RIP1 post-translational modifications. Biochem J 2022; 479:929-951. [PMID: 35522161 DOI: 10.1042/bcj20210725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Receptor interacting protein 1 (RIP1) kinase is a critical regulator of inflammation and cell death signaling, and plays a crucial role in maintaining immune responses and proper tissue homeostasis. Mounting evidence argues for the importance of RIP1 post-translational modifications in control of its function. Ubiquitination by E3 ligases, such as inhibitors of apoptosis (IAP) proteins and LUBAC, as well as the reversal of these modifications by deubiquitinating enzymes, such as A20 and CYLD, can greatly influence RIP1 mediated signaling. In addition, cleavage by caspase-8, RIP1 autophosphorylation, and phosphorylation by a number of signaling kinases can greatly impact cellular fate. Disruption of the tightly regulated RIP1 modifications can lead to signaling disbalance in TNF and/or TLR controlled and other inflammatory pathways, and result in severe human pathologies. This review will focus on RIP1 and its many modifications with an emphasis on ubiquitination, phosphorylation, and cleavage, and their functional impact on the RIP1's role in signaling pathways.
Collapse
|
148
|
Cui C, Yang F, Li Q. Post-Translational Modification of GPX4 is a Promising Target for Treating Ferroptosis-Related Diseases. Front Mol Biosci 2022; 9:901565. [PMID: 35647032 PMCID: PMC9133406 DOI: 10.3389/fmolb.2022.901565] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) is one of the most important antioxidant enzymes. As the key regulator of ferroptosis, GPX4 has attracted considerable attention in the fields of cancer, cardiovascular, and neuroscience research in the past 10 years. How to regulate GPX4 activity has become a hot topic nowadays. GPX4 protein level is regulated transcriptionally by transcription factor SP2 or Nrf2. GPX4 activity can be upregulated by supplementing intracellular selenium or glutathione, and also be inhibited by ferroptosis inducers such as ML162 and RSL3. These regulatory mechanisms of GPX4 level/activity have already shown a great potential for treating ferroptosis-related diseases in preclinical studies, especially in cancer cells. Until recently, research show that GPX4 can undergo post-translational modifications (PTMs), such as ubiquitination, succination, phosphorylation, and glycosylation. PTMs of GPX4 affect the protein level/activity of GPX4, indicating that modifying these processes can be a potential therapy for treating ferroptosis-related diseases. This article summarizes the protein characteristics, enzyme properties, and PTMs of GPX4. It also provides a hypothetical idea for treating ferroptosis-related diseases by targeting the PTMs of GPX4.
Collapse
Affiliation(s)
- Can Cui
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
- *Correspondence: Qian Li,
| |
Collapse
|
149
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202200163. [PMID: 38505698 PMCID: PMC10947028 DOI: 10.1002/ange.202200163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 03/21/2024]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
150
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. Angew Chem Int Ed Engl 2022; 61:e202200163. [PMID: 35194928 PMCID: PMC9314092 DOI: 10.1002/anie.202200163] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|