101
|
Ereifej ES, Shell CE, Schofield JS, Charkhkar H, Cuberovic I, Dorval AD, Graczyk EL, Kozai TDY, Otto KJ, Tyler DJ, Welle CG, Widge AS, Zariffa J, Moritz CT, Bourbeau DJ, Marasco PD. Neural engineering: the process, applications, and its role in the future of medicine. J Neural Eng 2019; 16:063002. [PMID: 31557730 DOI: 10.1088/1741-2552/ab4869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Recent advances in neural engineering have restored mobility to people with paralysis, relieved symptoms of movement disorders, reduced chronic pain, restored the sense of hearing, and provided sensory perception to individuals with sensory deficits. APPROACH This progress was enabled by the team-based, interdisciplinary approaches used by neural engineers. Neural engineers have advanced clinical frontiers by leveraging tools and discoveries in quantitative and biological sciences and through collaborations between engineering, science, and medicine. The movement toward bioelectronic medicines, where neuromodulation aims to supplement or replace pharmaceuticals to treat chronic medical conditions such as high blood pressure, diabetes and psychiatric disorders is a prime example of a new frontier made possible by neural engineering. Although one of the major goals in neural engineering is to develop technology for clinical applications, this technology may also offer unique opportunities to gain insight into how biological systems operate. MAIN RESULTS Despite significant technological progress, a number of ethical and strategic questions remain unexplored. Addressing these questions will accelerate technology development to address unmet needs. The future of these devices extends far beyond treatment of neurological impairments, including potential human augmentation applications. Our task, as neural engineers, is to push technology forward at the intersection of disciplines, while responsibly considering the readiness to transition this technology outside of the laboratory to consumer products. SIGNIFICANCE This article aims to highlight the current state of the neural engineering field, its links with other engineering and science disciplines, and the challenges and opportunities ahead. The goal of this article is to foster new ideas for innovative applications in neurotechnology.
Collapse
Affiliation(s)
- Evon S Ereifej
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States of America. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America. Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America. Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Charkhkar H, Christie BP, Pinault GJ, Tyler DJ, Triolo RJ. A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic. J Neurosci Methods 2019; 328:108414. [PMID: 31472187 DOI: 10.1016/j.jneumeth.2019.108414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
The purpose of this review article is to describe the underlying methodology for successfully translating novel interfaces for electrical modulation of the peripheral nervous system (PNS) from basic design concepts to clinical applications and chronic human use. Despite advances in technologies to communicate directly with the nervous system, the pathway to clinical translation for most neural interfaces is not clear. FDA guidelines provide information on necessary evidence which should be generated and submitted to allow the agency evaluate safety and efficacy of a new medical device. However, a knowledge gap exists on translating neural interfaces from pre-clinical studies into the clinical domain. Our article is intended to inform the field on some of the key considerations for such a transition process specific to neural interfaces that may not be already covered by FDA guidances. This framework focuses on non-penetrating peripheral nerve stimulating electrodes that have been proven effective for motor and sensory neural prostheses and successfully transitioned from pre-clinical through first-in-human and chronic clinical deployment. We discuss the challenges of moving these neural interfaces along the translational continuum and ultimately through FDA approval for human feasibility studies. Specifically, we describe a translational process involving: quantitative human anatomy, neural modeling and simulation, acute intraoperative testing and verification, clinical demonstration with temporary percutaneous access, and finally chronic clinical deployment and functional performance. To clarify and demonstrate the importance of each step of this translational framework, we present case studies from electrodes developed at Case Western Reserve University (CWRU), specifically the spiral cuff, the Flat Interface Nerve Electrode (FINE), and the Composite FINE (C-FINE). In addition, we demonstrate that success along this translational pathway can be further expedited by: appropriate selection of well-characterized materials, validation of fabrication and sterilization protocols, well-implemented quality control measures, and quantification of impact on neural structure, health, and function. The issues and approaches identified in this review for the peripheral nervous system may also serve to accelerate the dissemination of any new neural interface into clinical practice, and consequently advance the performance, utility, and clinical value of new neural prostheses or neuromodulation systems.
Collapse
Affiliation(s)
- Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veteran Affairs Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA.
| | - Breanne P Christie
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veteran Affairs Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA
| | - Gilles J Pinault
- Louis Stokes Cleveland Veteran Affairs Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veteran Affairs Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA
| | - Ronald J Triolo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veteran Affairs Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA
| |
Collapse
|
103
|
Cuberovic I, Gill A, Resnik LJ, Tyler DJ, Graczyk EL. Learning of Artificial Sensation Through Long-Term Home Use of a Sensory-Enabled Prosthesis. Front Neurosci 2019; 13:853. [PMID: 31496931 PMCID: PMC6712074 DOI: 10.3389/fnins.2019.00853] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Upper limb prostheses are specialized tools, and skilled operation is learned by amputees over time. Recently, neural prostheses using implanted peripheral nerve interfaces have enabled advances in artificial somatosensory feedback that can improve prosthesis outcomes. However, the effect of sensory learning on artificial somatosensation has not been studied, despite its known influence on intact somatosensation and analogous neuroprostheses. Sensory learning involves changes in the perception and interpretation of sensory feedback and may further influence functional and psychosocial outcomes. In this mixed methods case study, we examined how passive learning over 115 days of home use of a neural-connected, sensory-enabled prosthetic hand influenced perception of artificial sensory feedback in a participant with transradial amputation. We examined perceptual changes both within individual days of use and across the duration of the study. At both time scales, the reported percept locations became significantly more aligned with prosthesis sensor locations, and the phantom limb became significantly more extended toward the prosthesis position. Similarly, the participant’s ratings of intensity, naturalness, and contact touch significantly increased, while his ratings of vibration and movement significantly decreased across-days for tactile channels. These sensory changes likely resulted from engagement of cortical plasticity mechanisms as the participant learned to use the artificial sensory feedback. We also assessed psychosocial and functional outcomes through surveys and interviews, and found that self-efficacy, perceived function, prosthesis embodiment, social touch, body image, and prosthesis efficiency improved significantly. These outcomes typically improved within the first month of home use, demonstrating rapid benefits of artificial sensation. Participant interviews indicated that the naturalness of the experience and engagement with the prosthesis increased throughout the study, suggesting that artificial somatosensation may decrease prosthesis abandonment. Our data showed that prosthesis embodiment was intricately related to naturalness and phantom limb perception, and that learning the artificial sensation may have modified the body schema. As another indicator of successfully learning to use artificial sensation, the participant reported the emergence of stereognosis later in the study. This study provides the first evidence that artificial somatosensation can undergo similar learning processes as intact sensation and highlights the importance of sensory restoration in prostheses.
Collapse
Affiliation(s)
- Ivana Cuberovic
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Anisha Gill
- Providence VA Medical Center, Providence, RI, United States
| | - Linda J Resnik
- Providence VA Medical Center, Providence, RI, United States.,Department of Health Services, Policy, and Practice, Brown University, Providence, RI, United States
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
104
|
Christie BP, Charkhkar H, Shell CE, Marasco PD, Tyler DJ, Triolo RJ. Visual inputs and postural manipulations affect the location of somatosensory percepts elicited by electrical stimulation. Sci Rep 2019; 9:11699. [PMID: 31406122 PMCID: PMC6690924 DOI: 10.1038/s41598-019-47867-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
The perception of somatosensation requires the integration of multimodal information, yet the effects of vision and posture on somatosensory percepts elicited by neural stimulation are not well established. In this study, we applied electrical stimulation directly to the residual nerves of trans-tibial amputees to elicit sensations referred to their missing feet. We evaluated the influence of congruent and incongruent visual inputs and postural manipulations on the perceived size and location of stimulation-evoked somatosensory percepts. We found that although standing upright may cause percept size to change, congruent visual inputs and/or body posture resulted in better localization. We also observed visual capture: the location of a somatosensory percept shifted toward a visual input when vision was incongruent with stimulation-induced sensation. Visual capture did not occur when an adopted posture was incongruent with somatosensation. Our results suggest that internal model predictions based on postural manipulations reinforce perceived sensations, but do not alter them. These characterizations of multisensory integration are important for the development of somatosensory-enabled prostheses because current neural stimulation paradigms cannot replicate the afferent signals of natural tactile stimuli. Nevertheless, multisensory inputs can improve perceptual precision and highlight regions of the foot important for balance and locomotion.
Collapse
Affiliation(s)
- Breanne P Christie
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| | - Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Courtney E Shell
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul D Marasco
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Ronald J Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
105
|
George JA, Kluger DT, Davis TS, Wendelken SM, Okorokova EV, He Q, Duncan CC, Hutchinson DT, Thumser ZC, Beckler DT, Marasco PD, Bensmaia SJ, Clark GA. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci Robot 2019; 4:4/32/eaax2352. [PMID: 33137773 DOI: 10.1126/scirobotics.aax2352] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
Abstract
We describe use of a bidirectional neuromyoelectric prosthetic hand that conveys biomimetic sensory feedback. Electromyographic recordings from residual arm muscles were decoded to provide independent and proportional control of a six-DOF prosthetic hand and wrist-the DEKA LUKE arm. Activation of contact sensors on the prosthesis resulted in intraneural microstimulation of residual sensory nerve fibers through chronically implanted Utah Slanted Electrode Arrays, thereby evoking tactile percepts on the phantom hand. With sensory feedback enabled, the participant exhibited greater precision in grip force and was better able to handle fragile objects. With active exploration, the participant was also able to distinguish between small and large objects and between soft and hard ones. When the sensory feedback was biomimetic-designed to mimic natural sensory signals-the participant was able to identify the objects significantly faster than with the use of traditional encoding algorithms that depended on only the present stimulus intensity. Thus, artificial touch can be sculpted by patterning the sensory feedback, and biologically inspired patterns elicit more interpretable and useful percepts.
Collapse
Affiliation(s)
- J A George
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - D T Kluger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - T S Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84112, USA
| | - S M Wendelken
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - E V Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Q He
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - C C Duncan
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84112, USA
| | - D T Hutchinson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Z C Thumser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - D T Beckler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - P D Marasco
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - S J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - G A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
106
|
Christie BP, Graczyk EL, Charkhkar H, Tyler DJ, Triolo RJ. Visuotactile synchrony of stimulation-induced sensation and natural somatosensation. J Neural Eng 2019; 16:036025. [PMID: 30939464 DOI: 10.1088/1741-2552/ab154c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Previous studies suggest that somatosensory feedback has the potential to improve the functional performance of prostheses, reduce phantom pain, and enhance embodiment of sensory-enabled prosthetic devices. To maximize such benefits for amputees, the temporal properties of the sensory feedback must resemble those of natural somatosensation in an intact limb. APPROACH To better understand temporal perception of artificial sensation, we characterized the perception of visuotactile synchrony for tactile perception restored via peripheral nerve stimulation. We electrically activated nerves in the residual limbs of two trans-tibial amputees and two trans-radial amputees via non-penetrating nerve cuff electrodes, which elicited sensations referred to the missing limbs. MAIN RESULTS Our findings suggest that with respect to vision, stimulation-induced sensation has a point of subjective simultaneity (PSS; processing time) and just noticeable difference (JND; temporal sensitivity) that are similar to natural touch. The JND was not significantly different between the participants with upper- and lower-limb amputations. However, the PSS indicated that sensations evoked in the missing leg must occur significantly earlier than those in the hand to be perceived as maximally synchronous with vision. Furthermore, we examined visuotactile synchrony in the context of a functional task during which stimulation was triggered by pressure applied to the prosthesis. Stimulation-induced sensation could be delayed up to 111 ± 62 ms without the delay being reliably detected. SIGNIFICANCE The quantitative temporal properties of stimulation-induced perception were previously unknown and will contribute to design specifications for future sensory neuroprostheses.
Collapse
Affiliation(s)
- Breanne P Christie
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America. Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States of America
| | | | | | | | | |
Collapse
|
107
|
Vasudevan S, Vo J, Shafer B, Nam AS, Vakoc BJ, Hammer DX. Toward optical coherence tomography angiography-based biomarkers to assess the safety of peripheral nerve electrostimulation. J Neural Eng 2019; 16:036024. [PMID: 30917357 PMCID: PMC6583899 DOI: 10.1088/1741-2552/ab1405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Peripheral nerves serve as a link between the central nervous system and its targets. Altering peripheral nerve activity through targeted electrical stimulation is being investigated as a therapy for modulating end organ function. To support rapid advancement in the field, novel approaches to predict and prevent nerve injury resulting from electrical stimulation must be developed to overcome the limitations of traditional histological methods. The present study aims to develop an optical imaging-based approach for real-time assessment of peripheral nerve injury associated with electrical stimulation. APPROACH We developed an optical coherence tomography (OCT) angiography system and a 3D printed stimulating nerve stabilizer (sNS) to assess the real-time microvascular and blood flow changes associated with electrical stimulation of peripheral nerves. We then compared the microvascular changes with established nerve function analysis and immunohistochemistry to correlate changes with nerve injury. MAIN RESULTS Electrical stimulation of peripheral nerves has a direct influence on vessel diameter and capillary flow. The stimulation used in this study did not alter motor function significantly, but a delayed onset of mechanical allodynia at lower thresholds was observed using a sensory function test. Immunohistochemical analysis pointed to an increased number of macrophages within nerve fascicles and axon sprouting potentially related to nerve injury. SIGNIFICANCE This study is the first to demonstrate the ability to image peripheral nerve microvasculature changes during electrical stimulation. This expands the knowledge in the field and can be used to develop potential biomarkers to predict nerve injury resulting from electrical stimulation.
Collapse
Affiliation(s)
- Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jesse Vo
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Benjamin Shafer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Ahhyun S Nam
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|
108
|
Gunduz A, Opri E, Gilron R, Kremen V, Worrell G, Starr P, Leyde K, Denison T. Adding wisdom to 'smart' bioelectronic systems: a design framework for physiologic control including practical examples. ACTA ACUST UNITED AC 2019; 2:29-41. [PMID: 33868718 PMCID: PMC7610621 DOI: 10.2217/bem-2019-0008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This perspective provides an overview of how risk can be effectively considered in physiological control loops that strive for semi-to-fully automated operation. The perspective first introduces the motivation, user needs and framework for the design of a physiological closed-loop controller. Then, we discuss specific risk areas and use examples from historical medical devices to illustrate the key concepts. Finally, we provide a design overview of an adaptive bidirectional brain–machine interface, currently undergoing human clinical studies, to synthesize the design principles in an exemplar application.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Department of Biomedical Engineering, University of Florida Gainesville, Gainesville, FL 32611, USA
| | - Enrico Opri
- Department of Biomedical Engineering, University of Florida Gainesville, Gainesville, FL 32611, USA
| | - Ro'ee Gilron
- School of Medicine, University of California San Francisco, San Francisco CA 94143, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Phil Starr
- School of Medicine, University of California San Francisco, San Francisco CA 94143, USA
| | - Kent Leyde
- Cadence Neuroscience Inc, Sammamish, WA 98074, USA
| | - Timothy Denison
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
109
|
Kang YN, Chou N, Jang JW, Byun D, Kang H, Moon DJ, Kim J, Kim S. An Intrafascicular Neural Interface With Enhanced Interconnection for Recording of Peripheral Nerve Signals. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1312-1319. [PMID: 31135364 DOI: 10.1109/tnsre.2019.2917916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For implantable devices, Parylene C (hereafter referred to as Parylene) has shown promising properties such as flexibility, biocompatibility, biostability, and good barrier properties. Parylene-based flexible interconnection cable (FIC) was previously developed to connect a flexible penetrating microelectrode array (FPMA) with a recording system. However, Parylene-based FIC was difficult to handle and prone to damage during the implantation surgery because of its low mechanical strength. To improve the mechanical properties of the FIC, we suggest a mechanically enhanced flexible interconnection cable (enhanced FIC) obtained using a combination of Parylene and polyimide. To investigate the long-term stability of the enhanced FIC, Parylene-only FIC, and enhanced FIC were tested and their mechanical properties were compared under an accelerated aging condition. During the course of six months of soaking, the maximum strength of the enhanced FIC remained twice as high as that of the Parylene-only FIC throughout the experiment, although the mechanical strength of both FICs decreased over time. To show the capability of the enhanced FIC in the context of nerve signal recording as a part of a neural interfacing device, it was assembled together with the FPMA and custom-made wireless recording electronics. We demonstrated the feasibility of the enhanced FIC in an in vivo application by recording acute nerve signals from canine sciatic nerves.
Collapse
|
110
|
Kluger DT, Joyner JS, Wendelken SM, Davis TS, George JA, Page DM, Hutchinson DT, Benz HL, Clark GA. Virtual Reality Provides an Effective Platform for Functional Evaluations of Closed-Loop Neuromyoelectric Control. IEEE Trans Neural Syst Rehabil Eng 2019; 27:876-886. [PMID: 30951470 DOI: 10.1109/tnsre.2019.2908817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although recent advances in neuroprostheses offer opportunities for improved and intuitive control of advanced motorized and sensorized robotic arms, practical complications associated with such hardware can impede the research necessary for clinical translation. These hurdles potentially can be reduced with virtual reality environments (VREs) with embedded physics engines using virtual models of physical robotic hands. These software suites offer several advantages over physical prototypes, including high repeatability, reduced human error, elimination of many secondary sensory cues, and others. There are limited demonstrations of closed-loop prostheses in the VRE, and it is unclear whether VRE performance translates to the physical world. Here we describe how two trans-radial amputees with neural and intramuscular implants identified objects and performed activities of daily living with closed-loop control of prostheses in the VRE. Our initial evidence further suggests that capabilities with virtual prostheses may be predictors of physical prosthesis performance, demonstrating the utility of VREs for neuroprosthetic research.
Collapse
|
111
|
Caplan AI. Tissue Engineering: Then, Now, and the Future. Tissue Eng Part A 2019; 25:515-517. [PMID: 30654728 PMCID: PMC7001383 DOI: 10.1089/ten.tea.2019.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT This "invited submission" concisely reviews the author's involvement in the early era of tissue engineering and summarizes his perspective. He points out the journal was present in this early era and that it functions as a viewing chamber for seeing the last 25 years of progress and that it stands ready to provide viewing of the next 25 years.
Collapse
Affiliation(s)
- Arnold I. Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
112
|
Tong Y, Kucukdeger E, Halper J, Cesewski E, Karakozoff E, Haring AP, McIlvain D, Singh M, Khandelwal N, Meholic A, Laheri S, Sharma A, Johnson BN. Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays. PLoS One 2019; 14:e0214120. [PMID: 30921360 PMCID: PMC6438526 DOI: 10.1371/journal.pone.0214120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 03/08/2019] [Indexed: 01/12/2023] Open
Abstract
Interfacing anatomically conformal electronic components, such as sensors, with biology is central to the creation of next-generation wearable systems for health care and human augmentation applications. Thus, there is a need to establish computer-aided design and manufacturing methods for producing personalized anatomically conformal systems, such as wearable devices and human-machine interfaces (HMIs). Here, we show that a three-dimensional (3D) scanning and 3D printing process enabled the design and fabrication of a sensor-integrated anatomical human-machine interface (AHMI) in the form of personalized prosthetic hands that contain anatomically conformal electrode arrays for children affected by amniotic band syndrome, a common birth defect. A methodology for identifying optimal scanning parameters was identified based on local and global metrics of registered point cloud data quality. This method identified an optimal rotational angle step size between adjacent 3D scans. The sensitivity of the optimization process to variations in organic shape (i.e., geometry) was examined by testing other anatomical structures, including a foot, an ear, and a porcine kidney. We found that personalization of the prosthetic interface increased the tissue-prosthesis contact area by 408% relative to the non-personalized devices. Conformal 3D printing of carbon nanotube-based polymer inks across the personalized AHMI facilitated the integration of electronic components, specifically, conformal sensor arrays for measuring the pressure distribution across the AHMI (i.e., the tissue-prosthesis interface). We found that the pressure across the AHMI exhibited a non-uniform distribution and became redistributed upon activation of the prosthetic hand's grasping action. Overall, this work shows that the integration of 3D scanning and 3D printing processes offers the ability to design and fabricate wearable systems that contain sensor-integrated AHMIs.
Collapse
Affiliation(s)
- Yuxin Tong
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ezgi Kucukdeger
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Justin Halper
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ellen Cesewski
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Elena Karakozoff
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Alexander P. Haring
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David McIlvain
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Manjot Singh
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Nikita Khandelwal
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Alex Meholic
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Sahil Laheri
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Akshay Sharma
- School of Architecture + Design, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Blake N. Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
113
|
Peripheral nerve bionic interface: a review of electrodes. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2019. [DOI: 10.1007/s41315-019-00086-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
114
|
The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. J Clin Med 2019; 8:jcm8020182. [PMID: 30717476 PMCID: PMC6406464 DOI: 10.3390/jcm8020182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Many neuropsychological theories agree that the brain maintains a relatively persistent representation of one’s own body, as indicated by vivid “phantom” experiences. It remains unclear how the loss of sensory and motor information contributes to the presence of this representation. Here, we focus on new empirical and theoretical evidence of phantom sensations following damage to or an anesthetic block of the brachial plexus. We suggest a crucial role of this structure in understanding the interaction between peripheral and central mechanisms in health and in pathology. Studies of brachial plexus function have shed new light on how neuroplasticity enables “somatotopic interferences”, including pain and body awareness. Understanding the relations among clinical disorders, their neural substrate, and behavioral outcomes may enhance methods of sensory rehabilitation for phantom limbs.
Collapse
|
115
|
Graczyk EL, Gill A, Tyler DJ, Resnik LJ. The benefits of sensation on the experience of a hand: A qualitative case series. PLoS One 2019; 14:e0211469. [PMID: 30703163 PMCID: PMC6355013 DOI: 10.1371/journal.pone.0211469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The experience of upper limb loss involves loss of both functional capabilities and the sensory connection of a hand. Research studies to restore sensation to persons with upper limb loss with neural interfaces typically measure outcomes through standardized functional tests or quantitative surveys. However, these types of metrics cannot fully capture the personal experience of living with limb loss or the impact of sensory restoration on this experience. Qualitative studies can demonstrate the viewpoints and priorities of specific persons or groups and reveal the underlying conceptual structure of various aspects of their experiences. METHODS AND FINDINGS Following a home use trial of a neural-connected, sensory-enabled prosthesis, two persons with upper limb loss were interviewed about their experiences using the sensory restoration system in unsupervised, unconstrained settings. We used grounded theory methodology to examine their experiences, perspectives, and opinions about the sensory restoration system. We then developed a model to describe the impact of sensation on the experience of a hand for persons with upper limb loss. CONCLUSIONS The experience of sensation was complex and included concepts such as the naturalness of the experience, sensation modality, and the usefulness of the sensory information. Sensation was critical for outcome acceptance, and contributed to prosthesis embodiment, confidence, reduced focus and attention for using the prosthesis, and social interactions. Embodiment, confidence, and social interactions were also key determinants of outcome acceptance. This model provides a unified framework to study and understand the impact of sensation on the experience of limb loss and to understand outcome acceptance following upper limb loss more broadly.
Collapse
Affiliation(s)
- Emily L. Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Anisha Gill
- Providence Veterans Affairs Medical Center, Providence, Rhode Island, United States of America
| | - Dustin J. Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Linda J. Resnik
- Providence Veterans Affairs Medical Center, Providence, Rhode Island, United States of America
- Department of Health Services, Policy, and Practice, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
116
|
Petrini FM, Valle G, Strauss I, Granata G, Di Iorio R, D'Anna E, Čvančara P, Mueller M, Carpaneto J, Clemente F, Controzzi M, Bisoni L, Carboni C, Barbaro M, Iodice F, Andreu D, Hiairrassary A, Divoux JL, Cipriani C, Guiraud D, Raffo L, Fernandez E, Stieglitz T, Raspopovic S, Rossini PM, Micera S. Six-Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Ann Neurol 2018; 85:137-154. [DOI: 10.1002/ana.25384] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Francesco M. Petrini
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
| | - Giacomo Valle
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Ivo Strauss
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Giuseppe Granata
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Riccardo Di Iorio
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Edoardo D'Anna
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
| | - Paul Čvančara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg and BrainLinks-BrainTools Center; University of Freiburg; Freiburg Germany
| | - Matthias Mueller
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg and BrainLinks-BrainTools Center; University of Freiburg; Freiburg Germany
| | - Jacopo Carpaneto
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Francesco Clemente
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Marco Controzzi
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Lorenzo Bisoni
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Caterina Carboni
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Massimo Barbaro
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Francesco Iodice
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - David Andreu
- INRIA, CAMIN Team; University of Montpellier; Montpellier France
| | | | | | - Christian Cipriani
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - David Guiraud
- INRIA, CAMIN Team; University of Montpellier; Montpellier France
| | - Luigi Raffo
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Eduardo Fernandez
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg and BrainLinks-BrainTools Center; University of Freiburg; Freiburg Germany
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology; Institute for Robotics and Intelligent Systems; ETH Zürich, Zürich Switzerland
| | - Paolo M. Rossini
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| |
Collapse
|
117
|
Beckerle P, Kõiva R, Kirchner EA, Bekrater-Bodmann R, Dosen S, Christ O, Abbink DA, Castellini C, Lenggenhager B. Feel-Good Robotics: Requirements on Touch for Embodiment in Assistive Robotics. Front Neurorobot 2018; 12:84. [PMID: 30618706 PMCID: PMC6297195 DOI: 10.3389/fnbot.2018.00084] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The feeling of embodiment, i.e., experiencing the body as belonging to oneself and being able to integrate objects into one's bodily self-representation, is a key aspect of human self-consciousness and has been shown to importantly shape human cognition. An extension of such feelings toward robots has been argued as being crucial for assistive technologies aiming at restoring, extending, or simulating sensorimotor functions. Empirical and theoretical work illustrates the importance of sensory feedback for the feeling of embodiment and also immersion; we focus on the the perceptual level of touch and the role of tactile feedback in various assistive robotic devices. We critically review how different facets of tactile perception in humans, i.e., affective, social, and self-touch, might influence embodiment. This is particularly important as current assistive robotic devices – such as prostheses, orthoses, exoskeletons, and devices for teleoperation–often limit touch low-density and spatially constrained haptic feedback, i.e., the mere touch sensation linked to an action. Here, we analyze, discuss, and propose how and to what degree tactile feedback might increase the embodiment of certain robotic devices, e.g., prostheses, and the feeling of immersion in human-robot interaction, e.g., in teleoperation. Based on recent findings from cognitive psychology on interactive processes between touch and embodiment, we discuss technical solutions for specific applications, which might be used to enhance embodiment, and facilitate the study of how embodiment might alter human-robot interactions. We postulate that high-density and large surface sensing and stimulation are required to foster embodiment of such assistive devices.
Collapse
Affiliation(s)
- Philipp Beckerle
- Elastic Lightweight Robotics, Department of Electrical Engineering and Information Technology, Robotics Research Institute, Technische Universität Dortmund, Dortmund, Germany.,Institute for Mechatronic Systems, Mechanical Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Risto Kõiva
- Neuroinformatics Group, Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Elsa Andrea Kirchner
- German Research Center for Artificial Intelligence, Robotics Innovation Center, Bremen, Germany.,Robotics Group, University of Bremen, Bremen, Germany
| | - Robin Bekrater-Bodmann
- Department of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Strahinja Dosen
- Department of Health Science and Technology, Faculty of Medicine, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Oliver Christ
- School of Applied Psychology, Institute Humans in Complex Systems, University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
| | - David A Abbink
- Delft Haptics Lab, Department of Cognitive Robotics, Faculty 3mE, Delft University of Technology, Delft, Netherlands
| | - Claudio Castellini
- DLR German Aerospace Center, Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany
| | - Bigna Lenggenhager
- Cognitive Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
118
|
Beckerle P, Kõiva R, Kirchner EA, Bekrater-Bodmann R, Dosen S, Christ O, Abbink DA, Castellini C, Lenggenhager B. Feel-Good Robotics: Requirements on Touch for Embodiment in Assistive Robotics. Front Neurorobot 2018. [PMID: 30618706 DOI: 10.3389/frbot.2018.00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
The feeling of embodiment, i.e., experiencing the body as belonging to oneself and being able to integrate objects into one's bodily self-representation, is a key aspect of human self-consciousness and has been shown to importantly shape human cognition. An extension of such feelings toward robots has been argued as being crucial for assistive technologies aiming at restoring, extending, or simulating sensorimotor functions. Empirical and theoretical work illustrates the importance of sensory feedback for the feeling of embodiment and also immersion; we focus on the the perceptual level of touch and the role of tactile feedback in various assistive robotic devices. We critically review how different facets of tactile perception in humans, i.e., affective, social, and self-touch, might influence embodiment. This is particularly important as current assistive robotic devices - such as prostheses, orthoses, exoskeletons, and devices for teleoperation-often limit touch low-density and spatially constrained haptic feedback, i.e., the mere touch sensation linked to an action. Here, we analyze, discuss, and propose how and to what degree tactile feedback might increase the embodiment of certain robotic devices, e.g., prostheses, and the feeling of immersion in human-robot interaction, e.g., in teleoperation. Based on recent findings from cognitive psychology on interactive processes between touch and embodiment, we discuss technical solutions for specific applications, which might be used to enhance embodiment, and facilitate the study of how embodiment might alter human-robot interactions. We postulate that high-density and large surface sensing and stimulation are required to foster embodiment of such assistive devices.
Collapse
Affiliation(s)
- Philipp Beckerle
- Elastic Lightweight Robotics, Department of Electrical Engineering and Information Technology, Robotics Research Institute, Technische Universität Dortmund, Dortmund, Germany
- Institute for Mechatronic Systems, Mechanical Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Risto Kõiva
- Neuroinformatics Group, Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Elsa Andrea Kirchner
- German Research Center for Artificial Intelligence, Robotics Innovation Center, Bremen, Germany
- Robotics Group, University of Bremen, Bremen, Germany
| | - Robin Bekrater-Bodmann
- Department of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Strahinja Dosen
- Department of Health Science and Technology, Faculty of Medicine, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Oliver Christ
- School of Applied Psychology, Institute Humans in Complex Systems, University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
| | - David A Abbink
- Delft Haptics Lab, Department of Cognitive Robotics, Faculty 3mE, Delft University of Technology, Delft, Netherlands
| | - Claudio Castellini
- DLR German Aerospace Center, Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany
| | - Bigna Lenggenhager
- Cognitive Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|