101
|
Biomimetic nano-surfactant stabilizes sub-50 nanometer phospholipid particles enabling high paclitaxel payload and deep tumor penetration. Biomaterials 2018; 181:240-251. [PMID: 30096559 DOI: 10.1016/j.biomaterials.2018.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
Sub-50 nm nanoparticles feature long circulation and deep tumor penetration. However, at high volume fractions needed for intravenous injection, safe, highly biocompatible phospholipids cannot form such nanoparticles due to the fluidity of phospholipid shells. Here we overcome this challenge using a nano-surfactant, a sterilized 18-amino-acid biomimetic of the amphipathic helical motif abundant in HDL-apolipoproteins. As it induces a nanoscale phase (glass) transition in the phospholipid monolayer, the peptide stabilizes 5-7 nm phospholipid micelles that do not fuse at high concentrations but aggregate into stable micellesomes exhibiting size-dependent penetration into tumors. In mice bearing human Her-2-positive breast cancer xenografts, high-payload paclitaxel encapsulated in 25 nm (diameter) micellesomes kills more cancer cells than paclitaxel in standard clinical formulation, as evidenced by the enhanced apparent diffusion coefficient of water determined by in vivo MR imaging. Importantly, the bio-inertness of this biomimetic nano-surfactant spares the nanoparticles from being absorbed by liver hepatocytes, making them more generally available for drug delivery.
Collapse
|
102
|
Chowdhury P, Nagesh PK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Development of polyvinylpyrrolidone/paclitaxel self-assemblies for breast cancer. Acta Pharm Sin B 2018; 8:602-614. [PMID: 30109184 PMCID: PMC6090082 DOI: 10.1016/j.apsb.2017.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to develop and demonstrate a polymer/paclitaxel self-assembly (PTX-SA) formulation. Polymer/PTX-SAs were screened based on smaller size of formulation using dynamic light scattering analysis. Additionally, fluorescence microscopy and flow cytometry studies exhibited that polyvinylpyrrolidone (PVP)-based PTX-SAs (PVP/PTX-SAs) had superior cellular internalization capability in MCF7 and MDA-MB-231 breast cancer cells. The optimized PVP/PTX-SAs exhibited less toxicity to human red blood cells indicating a suitable formulation for reducing systemic toxicity. The formation of PVP and PTX self-assemblies was confirmed using fluorescence quenching and transmission electron microscopy which indicated that the PVP/PTX-SAs were spherical in shape with an average size range of 53.81 nm as detected by transmission electron microscopy (TEM). FTIR spectral analysis demonstrates incorporation of polymer and paclitaxel functional groups in PVP/PTX-SAs. Both proliferation (MTS) and clonogenic (colony formation) assays were used to validate superior anticancer activity of PVP/PTX-SAs in breast cancer cells over paclitaxel. Such superior anticancer activity was also demonstrated by downregulation of the expression of pro-survival protein (Bcl-xL), upregulation of apoptosis-associated proteins (Bid, Bax, cleaved caspase 7, and cleaved PARP) and β-tubulin stabilization. These results support the hypothesis that PVP/PTX-SAs improved paclitaxel delivery to cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Murali M. Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
103
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 846] [Impact Index Per Article: 120.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
104
|
Abstract
Polymeric nanoparticles have tremendous potential to improve the efficacy of therapeutic cancer treatments by facilitating targeted delivery to a desired site. The physical and chemical properties of polymers can be tuned to accomplish delivery across the multiple biological barriers required to reach diverse subsets of cells. The use of biodegradable polymers as nanocarriers is especially attractive, as these materials can be designed to break down in physiological conditions and engineered to exhibit triggered functionality when at a particular location or activated by an external source. We present how biodegradable polymers can be engineered as drug delivery systems to target the tumor microenvironment in multiple ways. These nanomedicines can target cancer cells directly, the blood vessels that supply the nutrients and oxygen that support tumor growth, and immune cells to promote anticancer immunotherapy.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA;
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala SE-75121, Sweden
| | - Hannah J Vaughan
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA;
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA;
- Departments of Materials Science and Engineering, Chemical and Biomolecular Engineering, Neurosurgery, Oncology, and Ophthalmology and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
105
|
Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 2018; 183:160-176. [DOI: 10.1016/j.pharmthera.2017.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
106
|
Cunningham AJ, Robinson M, Banquy X, Leblond J, Zhu XX. Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release. Mol Pharm 2018; 15:1266-1276. [PMID: 29378128 DOI: 10.1021/acs.molpharmaceut.7b01091] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG)4) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.
Collapse
Affiliation(s)
- Alexander J Cunningham
- Département de Chimie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| | - Mattieu Robinson
- Département de Gérontologie , Université de Sherbrooke , Sherbrooke , Quebec J1H 4C4 , Canada
| | - Xavier Banquy
- Faculté de Pharmacie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| | - Jeanne Leblond
- Faculté de Pharmacie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| | - X X Zhu
- Département de Chimie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| |
Collapse
|
107
|
Seah GL, Yu JH, Koo BI, Lee DJ, Nam YS. Cancer-targeted reactive oxygen species-degradable polymer nanoparticles for near infrared light-induced drug release. J Mater Chem B 2018; 6:7737-7749. [DOI: 10.1039/c8tb02323a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nanocarriers can be translocated to the peripheral region of tumor tissues through the well-known enhanced permeability and retention effects.
Collapse
Affiliation(s)
- Geok Leng Seah
- Department of Material Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Republic of Korea
| | - Jeong Heon Yu
- Department of Material Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Republic of Korea
| | - Bon Il Koo
- Department of Material Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Republic of Korea
| | - Dong Jae Lee
- Department of Material Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Republic of Korea
| | - Yoon Sung Nam
- Department of Material Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Republic of Korea
- KAIST Institute for NanoCentury
| |
Collapse
|
108
|
Wang Z, Deng X, Ding J, Zhou W, Zheng X, Tang G. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review. Int J Pharm 2018; 535:253-260. [DOI: 10.1016/j.ijpharm.2017.11.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022]
|
109
|
|
110
|
Yasunaga M, Manabe S, Furuta M, Ogata K, Koga Y, Takashima H, Nishida T, Matsumura Y. Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.2.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
111
|
Pandita D, Munjal A, Godara S, Lather V. Nanocarriers in Drug and Gene Delivery. ADVANCES IN ANIMAL BIOTECHNOLOGY AND ITS APPLICATIONS 2018:71-102. [DOI: 10.1007/978-981-10-4702-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
112
|
Pawlish G, Spivack K, Gabriel A, Huang Z, Comolli N. Chemotherapeutic loading via tailoring of drug-carrier interactions in poly (sialic acid) micelles. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
113
|
Shiraishi K, Yusa SI, Ito M, Nakai K, Yokoyama M. Photo Irradiation-Induced Core Crosslinked Poly(ethylene glycol)-block-poly(aspartic acid) Micelles: Optimization of Block Copolymer Synthesis and Characterization of Core Crosslinked Micelles. Polymers (Basel) 2017; 9:polym9120710. [PMID: 30966010 PMCID: PMC6418968 DOI: 10.3390/polym9120710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/04/2022] Open
Abstract
We used photo irradiation to design core crosslinked polymeric micelles whose only significant physico-chemical change was in their physico-chemical stability, which helps elucidate poly(ethylene glycol) (PEG)-related immunogenicity. Synthetic routes and compositions of PEG-b-poly(aspartic acid) block copolymers were optimized with the control of n-alkyl chain length and photo-sensitive chalcone moieties. The conjugation ratio between n-alkyl chain and the chalcone moieties was controlled, and upon the mild photo irradiation of polymeric micelles, permanent crosslink proceeded in the micelle cores. In the optimized condition, the core crosslinked (CCL) micelles exhibited no dissociation while the non-CCL micelles exhibited dissociation. These results indicate that the photo-crosslinking reactions in the inner core were successful. A gel-permeation chromatography (GPC) measurement revealed a difference between the micellar-formation stability of CCL micelles and that of the non-CCL micelles. GPC experiments revealed that the CCL micelles were more stable than the non-CCL micelles. Our research also revealed that photo-crosslinking reactions did not change the core property for drug encapsulation. In conclusion, the prepared CCL micelles exhibited the same diameter, the same formula, and the same inner-core properties for drug encapsulation as did the non-CCL micelles. Moreover, the CCL micelles exhibited non-dissociable micelle formation, while the non-CCL micelles exhibited dissociation into single block copolymers.
Collapse
Affiliation(s)
- Kouichi Shiraishi
- Medical Engineering Laboratory, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1, Kashiwashita, Kashiwa, Chiba 277-0004, Japan.
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Masanori Ito
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Keita Nakai
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Masayuki Yokoyama
- Medical Engineering Laboratory, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1, Kashiwashita, Kashiwa, Chiba 277-0004, Japan.
| |
Collapse
|
114
|
Sofias AM, Dunne M, Storm G, Allen C. The battle of "nano" paclitaxel. Adv Drug Deliv Rev 2017; 122:20-30. [PMID: 28257998 DOI: 10.1016/j.addr.2017.02.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Paclitaxel (PTX) is one of the three most widely used chemotherapeutic agents, together with doxorubicin and cisplatin, and is first or second line treatment for several types of cancers. In 2000, Taxol, the conventional formulation of PTX, became the best-selling cancer drug of all time with annual sales of 1.6 billion. In 2005, the introduction of the albumin-based formulation of PTX, known as Abraxane, ended Taxol's monopoly of the PTX market. Abraxane's ability to push the Taxol innovator and generic formulations aside attracted fierce competition amongst competitors worldwide to develop their own unique, new and improved formulation of PTX. At this time there are at least 18 companies focused on pre-clinical and/or clinical development of nano-formulations of PTX. These pharmaceutical companies are investing substantial capital to capture a share of the lucrative global PTX market. It is hoped that any formulation that dominates the market will result in tangible benefits to patients in terms of both survival and quality of life. Given all of this activity, here we address the question: Who is going to win the battle of "nano" paclitaxel?
Collapse
|
115
|
Voon SH, Kue CS, Imae T, Saw WS, Lee HB, Kiew LV, Chung LY, Yusa SI. Doxorubicin-loaded micelles of amphiphilic diblock copolymer with pendant dendron improve antitumor efficacy: In vitro and in vivo studies. Int J Pharm 2017; 534:136-143. [DOI: 10.1016/j.ijpharm.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022]
|
116
|
pH-responsive carboxymethyl chitosan-derived micelles as apatinib carriers for effective anti-angiogenesis activity: Preparation and in vitro evaluation. Carbohydr Polym 2017; 176:107-116. [DOI: 10.1016/j.carbpol.2017.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
|
117
|
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12:7291-7309. [PMID: 29042776 PMCID: PMC5634382 DOI: 10.2147/ijn.s146315] [Citation(s) in RCA: 790] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology has recently gained increased attention for its capability to effectively diagnose and treat various tumors. Nanocarriers have been used to circumvent the problems associated with conventional antitumor drug delivery systems, including their nonspecificity, severe side effects, burst release and damaging the normal cells. Nanocarriers improve the bioavailability and therapeutic efficiency of antitumor drugs, while providing preferential accumulation at the target site. A number of nanocarriers have been developed; however, only a few of them are clinically approved for the delivery of antitumor drugs for their intended actions at the targeted sites. The present review is divided into three main parts: first part presents introduction of various nanocarriers and their relevance in the delivery of anticancer drugs, second part encompasses targeting mechanisms and surface functionalization on nanocarriers and third part covers the description of selected tumors, including breast, lungs, colorectal and pancreatic tumors, and applications of relative nanocarriers in these tumors. This review increases the understanding of tumor treatment with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Izhar Ullah
- Department of Health and Medical Sciences, University of Poonch, Rawalakot, Azad Kashmir
| | | | | | - Shumaila Shafique
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
118
|
Fan YL, Hou HW, Tay HM, Guo WM, Berggren PO, Loo SCJ. Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles. AAPS PharmSciTech 2017; 18:2648-2657. [PMID: 28251512 DOI: 10.1208/s12249-017-0745-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Rapamycin is commonly used in chemotherapy and posttransplantation rejection suppression, where sustained release is preferred. Conventionally, rapamycin has to be administered in excess due to its poor solubility, and this often leads to cytotoxicity and undesirable side effects. In addition, rapamycin has been shown to be hydrolytically unstable, losing its bioactivity within a few hours. The use of drug delivery systems is hypothesized to preserve the bioactivity of rapamycin, while providing controlled release of this otherwise potent drug. This paper reports on the use of microparticles (MP) as a means to tune and sustain the delivery of bioactive rapamycin for up to 30 days. Rapamycin was encapsulated (100% efficiency) in poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or a mixture of both via an emulsion method. The use of different polymer types and mixture was shown to achieve a variety of release kinetics and profile. Released rapamycin was subsequently evaluated against breast cancer cell (MCF-7) and human lymphocyte cell (Jurkat). Inhibition of cell proliferation was in good agreement with in vitro release profiles, which confirmed the intact bioactivity of rapamycin. For Jurkat cells, the suppression of cell growth was proven to be effective up to 20 days, a duration significantly longer than free rapamycin. Taken together, these results demonstrate the ability to tune, sustain, and preserve the bioactivity of rapamycin using MP formulations. The sustained delivery of rapamycin could lead to better therapeutic effects than bolus dosage, at the same time improving patient compliance due to its long-acting duration.
Collapse
|
119
|
Wei Y, Ma L, Zhang L, Xu X. Noncovalent interaction-assisted drug delivery system with highly efficient uptake and release of paclitaxel for anticancer therapy. Int J Nanomedicine 2017; 12:7039-7051. [PMID: 29026300 PMCID: PMC5626417 DOI: 10.2147/ijn.s144322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
An effective drug delivery system requires efficient drug uptake and release inside cancer cells. Here, we report a novel drug delivery system, in which paclitaxel (PTX) interacts with a novel cell penetrating peptide (CPP) through noncovalent interaction designed based on molecular simulations. This CPP/PTX complex confers high efficiency in delivering PTX into cancer cells not by endocytosis but by an energy-independent pathway. Once inside cells, the noncovalent interaction between PTX and the CPP may allow fast release of PTX within cells due to the direct translocation of CPP/PTX. This drug delivery system exhibits strong capacity for inhibition of tumor growth and offers a new avenue for the development of advanced drug delivery systems for anticancer therapy.
Collapse
Affiliation(s)
- Yuping Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing
| | - Liang Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| | - Xia Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| |
Collapse
|
120
|
Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Saga T, Matsumura Y. Development of Antibody-Drug Conjugates Using DDS and Molecular Imaging. Bioengineering (Basel) 2017; 4:bioengineering4030078. [PMID: 28952557 PMCID: PMC5615324 DOI: 10.3390/bioengineering4030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/04/2022] Open
Abstract
Antibody-drug conjugate (ADC), as a next generation of antibody therapeutics, is a combination of an antibody and a drug connected via a specialized linker. ADC has four action steps: systemic circulation, the enhanced permeability and retention (EPR) effect, penetration within the tumor tissue, and action on cells, such as through drug delivery system (DDS) drugs. An antibody with a size of about 10 nm has the same capacity for passive targeting as some DDS carriers, depending on the EPR effect. In addition, some antibodies are capable of active targeting. A linker is stable in the bloodstream but should release drugs efficiently in the tumor cells or their microenvironment. Thus, the linker technology is actually a typical controlled release technology in DDS. Here, we focused on molecular imaging. Fluorescent and positron emission tomography (PET) imaging is useful for the visualization and evaluation of antibody delivery in terms of passive and active targeting in the systemic circulation and in tumors. To evaluate the controlled release of the ADC in the targeted area, a mass spectrometry imaging (MSI) with a mass microscope, to visualize the drug released from ADC, was used. As a result, we succeeded in confirming the significant anti-tumor activity of anti-fibrin, or anti-tissue factor-ADC, in preclinical settings by using DDS and molecular imaging.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Wako 351-0198, Japan.
| | - Atsushi Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, Chiba 263-8555, Japan; .
| | | | | | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Tsuneo Saga
- Department of Diagnostic Radiology, Kyoto University Hospital; Kyoto 606-8501, Japan.
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| |
Collapse
|
121
|
Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, Nadagouda MN, Aminabhavi TM. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017; 532:249-268. [PMID: 28882486 DOI: 10.1016/j.ijpharm.2017.09.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/02/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
Abstract
Rapidly developing polymeric micelles as potential targeting carriers has intensified the need for better understanding of the underlying principles related to the selection of suitable delivery materials for designing, characterizing, drug loading, improving stability, targetability, biosafety and efficacy. The emergence of advanced analytical tools such as fluorescence resonance energy transfer and dissipative particle dynamics has identified new dimensions of these nanostructures and their behavior in much greater details. This review summarizes recent efforts in the development of polymeric micelles with respect to their architecture, formulation strategy and targeting possibilities along with their preclinical and clinical aspects. Literature of the past decade is discussed critically with special reference to the chemistry involved in the formation and clinical applications of these versatile materials. Thus, our main objective is to provide a timely update on the current status of polymeric micelles highlighting their applications and the important parameters that have led to successful delivery of drugs to the site of action.
Collapse
Affiliation(s)
- Anand S Deshmukh
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India.
| | - Pratik N Chauhan
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Malleshappa N Noolvi
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Kiran Chaturvedi
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Kuntal Ganguly
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Shyam S Shukla
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Mallikarjuna N Nadagouda
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India.
| |
Collapse
|
122
|
Singh VK, Saini A, Chandra R. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Front Mol Biosci 2017; 4:52. [PMID: 28785557 PMCID: PMC5520001 DOI: 10.3389/fmolb.2017.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives.
Collapse
Affiliation(s)
- Vimal K. Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of DelhiNew Delhi, India
| |
Collapse
|
123
|
Kramer S, Kim KO, Zentel R. Size Tunable Core Crosslinked Micelles from HPMA-Based Amphiphilic Block Copolymers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Kramer
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 Mainz 55128 Germany
| | - Kyung Oh Kim
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 Mainz 55128 Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 Mainz 55128 Germany
| |
Collapse
|
124
|
Kokuryo D, Aoki I, Yuba E, Kono K, Aoshima S, Kershaw J, Saga T. Evaluation of a combination tumor treatment using thermo-triggered liposomal drug delivery and carbon ion irradiation. Transl Res 2017; 185:24-33. [PMID: 28482173 DOI: 10.1016/j.trsl.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 02/03/2023]
Abstract
The combination of radiotherapy with chemotherapy is one of the most promising strategies for cancer treatment. Here, a novel combination strategy utilizing carbon ion irradiation as a high-linear energy transfer (LET) radiotherapy and a thermo-triggered nanodevice is proposed, and drug accumulation in the tumor and treatment effects are evaluated using magnetic resonance imaging relaxometry and immunohistology (Ki-67, n = 15). The thermo-triggered liposomal anticancer nanodevice was administered into colon-26 tumor-grafted mice, and drug accumulation and efficacy was compared for 6 groups (n = 32) that received or did not receive the radiotherapy and thermo trigger. In vivo quantitative R1 maps visually demonstrated that the multimodal thermosensitive polymer-modified liposomes (MTPLs) can accumulate in the tumor tissue regardless of whether the region was irradiated by carbon ions or not. The tumor volume after combination treatment with carbon ion irradiation and MTPLs with thermo-triggering was significantly smaller than all the control groups at 8 days after treatment. The proposed strategy of combining high-LET irradiation and the nanodevice provides an effective approach for minimally invasive cancer treatment.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Graduate School of System Informatics, Kobe University, Kobe, Hyogo, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan.
| | - Eiji Yuba
- Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Kenji Kono
- Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | - Jeff Kershaw
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Tsuneo Saga
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
125
|
Eribulin shows high concentration and long retention in xenograft tumor tissues. Cancer Chemother Pharmacol 2017; 80:377-384. [PMID: 28664226 PMCID: PMC5532402 DOI: 10.1007/s00280-017-3369-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/16/2017] [Indexed: 11/27/2022]
Abstract
Purpose Eribulin, a synthetic analog of the natural product halichondrin B, is a microtubule dynamics inhibitor. In this study, we report the pharmacokinetic profiles of eribulin in mice, rats, and dogs following intravenous administrations with optimized and validated bio-analytical methods. Methods Eribulin was administered at 0.5 and 2 mg/kg in mice, 0.5 and 1 mg/kg in rats, and 0.08 mg/kg in dogs. Tumor and brain penetration of eribulin was also evaluated in LOX human melanoma xenograft models. Concentrations in plasma, tumor, and brain were measured by the LC–MS/MS method. Results The profiles of eribulin were characterized by extensive distribution, moderate clearance, and slow elimination in the three species. The pharmacokinetics are linear in mice and rats. In xenograft mice, the penetration into the brain was low, as expected, since eribulin is a P-glycoprotein substrate. In contrast to disposition in brain, the exposure of eribulin was approximately 20–30 times higher in tumor than that in plasma and half-lives were 17.8–35.9 h after both single and multiple dose regimens. Conclusions Eribulin was distributed rapidly and eliminated slowly in mice, rats, and dogs. The exposure of eribulin was approximately 20–30 times higher in tumor than in plasma in xenograft mice. These results might be caused by eribulin’s mechanism of action including increased perfusion in tumor by vascular remodeling effect.
Collapse
|
126
|
MacEwan SR, Chilkoti A. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angew Chem Int Ed Engl 2017; 56:6712-6733. [PMID: 28028871 PMCID: PMC6372097 DOI: 10.1002/anie.201610819] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 12/21/2022]
Abstract
The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
- Present address: Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
| |
Collapse
|
127
|
Paclitaxel: What has been done and the challenges remain ahead. Int J Pharm 2017; 526:474-495. [DOI: 10.1016/j.ijpharm.2017.05.016] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/17/2022]
|
128
|
Kitayama J, Ishigami H, Yamaguchi H, Yamada J, Soma D, Miyato H, Kamei T, Lefor AK, Sata N. Optimal drug delivery for intraperitoneal paclitaxel (PTX) in murine model. Pleura Peritoneum 2017; 2:95-102. [PMID: 30911637 DOI: 10.1515/pp-2017-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Background Repeated intraperitoneal (IP) administration of paclitaxel (PTX) with concurrent systemic chemotherapy is clinically effective for the treatment of peritoneal metastases (PM) from gastric cancer. However, it is unclear how biochemical modifications may affect the pharmacokinetics and bioavailability of IP administered PTX. Methods In a xenograft PM model using human gastric cancer cells, MKN45, fluorescein-conjugated PTX (OG-PTX) was given IP and the intra-tumor distribution of PTX examined with fluorescein microscopy. Results After IP injection, PTX was seen to directly infiltrate up to several hundred micrometers from the surface of the PM. Co-injection with 5 % non-animal stabilized hyaluronic acid increased PTX infiltration and suppressed the development of PM more efficiently than PTX alone. PTX solubilized with amphiphilic polymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) efficiently formed a micellar formation 50-100 nm in diameter. IP injection of the nanomicellar PTX (PTX-30W) also showed significantly enhanced tumor infiltration and further inhibition of the growth of PM compared with PTX solubilized with Cremophor-ethanol (PTX-Cre). Finally, IP administration of NK105, another nanomicellar PTX, inhibited the growth of subcutaneous tumors as well as PM, compared with conventional PTX-Cre in the same murine model. Conclusions PTX administered IP directly infiltrates PM and are thus a useful strategy for the treatment of PM. Drug modification with nanotechnology may further enhance penetration of PM resulting in improved clinical efficacy.
Collapse
Affiliation(s)
- Joji Kitayama
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | | | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Jun Yamada
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan
| | - Daisuke Soma
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan
| | - Hideyo Miyato
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Takao Kamei
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan
| | - Alan Kawarai Lefor
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
129
|
Mahmud A, Harada T, Rajagopal K, Christian DA, Nair P, Murphy R, Discher DE. Spray stability of self-assembled filaments for delivery. J Control Release 2017; 263:162-171. [PMID: 28549950 DOI: 10.1016/j.jconrel.2017.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
Abstract
Filamentous viruses are common in nature and efficiently deliver - sometimes via aerosol - genetic material, viral proteins, and other factors to animals and plants. Aerosolization can be a severe physicochemical test of the stability of any filamentous assembly whether it is made from natural polymers such as viral proteins or synthetic polymers. Here, worm-like "filomicelles" that self-assemble in water from amphiphilic block copolymers were investigated as aerosolized delivery vehicles. After spraying and drying, fluorophore-loaded filomicelles that were originally ~10-20μm long could be imaged as 2-5μm long fragments that survived rehydration on natural and artificial surfaces (i.e. plant leaves and glass). As a functional test of delivery, the hydrophobic pesticide bifenthrin was loaded into filomicelles (up to 25% w/w) and sprayed onto plants infested with two agricultural pests, beet army worm or two-spotted spider mites; pesticidal efficacy exceeded that of commercial formulations. Persistent delivery by the filomicelle formulation was especially notable and broadly consistent with previous intravenous delivery of other drugs and dyes with the highly elongated filomicelles.
Collapse
Affiliation(s)
- Abdullah Mahmud
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takamasa Harada
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karthikan Rajagopal
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Christian
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praful Nair
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Murphy
- Complex Assemblies of Soft Matter, Centre National de la Recherche Scientifique - Rhodia, University of Pennsylvania, Unité Mixte Internationale 3254, Bristol, PA 19007, USA
| | - Dennis E Discher
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
130
|
Feio DCA, de Oliveira NCL, Pereira ELR, Morikawa AT, Muniz JAPC, Montenegro RC, Alves APNN, de Lima PDL, Maranhão RC, Burbano RR. Organic effects of associating paclitaxel with a lipid-based nanoparticle system on a nonhuman primate, Cebus apella. Int J Nanomedicine 2017; 12:3827-3837. [PMID: 28572727 PMCID: PMC5441669 DOI: 10.2147/ijn.s129153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipid-based nanoparticle systems have been used as vehicles for chemotherapeutic agents in experimental cancer treatments. Those systems have generally been credited with attenuating the severe toxicity of chemotherapeutic agents. This study aimed to investigate the effects of associating paclitaxel (PTX) with a lipid-based nanoparticle system on a nonhuman primate, Cebus apella, documenting the toxicity as measured by serum biochemistry, which is a detailed analysis of blood and tissue. Eighteen C. apella were studied: three animals were treated with cholesterol-rich nanoemulsion (LDE) only, without PTX, administered intravenously every 3 weeks, during six treatment cycles; six animals were treated with PTX associated with LDE at the same administration scheme, three with lower (175 mg/m2) and three with higher (250 mg/m2) PTX doses; and six animals were treated with commercial PTX, three with the lower and three with the higher doses. In the LDE-PTX group, no clinical toxicity appeared, and the weight-food consumption curve was similar to that of the controls. Two animals treated with commercial PTX presented weight loss, nausea and vomiting, diarrhea, skin flaking, 70% loss of body hair, and decreased physical activity. The use of LDE as a carrier at both lower and higher doses reduced the toxicity of the drug in this species, which is closely related to human subjects. This was observed not only by clinical, biochemical, and hematological profiles but also by the histopathological analysis. The results of this study support the assumption that lipid-based nanoparticle systems used as drug carriers can serve as valuable tools to decrease the toxicity and increase the safety of chemotherapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrícia Danielle Lima de Lima
- Molecular Biology Laboratory, Post Graduate Program of Amazon Parasitic Biology, Biological and Health Sciences Center, State University of Pará, Belem, Brazil
| | | | - Rommel Rodríguez Burbano
- Human Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem
| |
Collapse
|
131
|
Houdaihed L, Evans JC, Allen C. Overcoming the Road Blocks: Advancement of Block Copolymer Micelles for Cancer Therapy in the Clinic. Mol Pharm 2017; 14:2503-2517. [DOI: 10.1021/acs.molpharmaceut.7b00188] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Loujin Houdaihed
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - James C. Evans
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Christine Allen
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
132
|
Yilmaz C, Sarisozen C, Torchilin V, Busnaina A. Novel Nanoprinting for Oral Delivery of Poorly Soluble Drugs. Methodist Debakey Cardiovasc J 2017; 12:157-162. [PMID: 27826370 DOI: 10.14797/mdcj-12-3-157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Many of the newly developed drugs for cancer, and some of those for cardiovascular disease, are poorly soluble in water and cannot be taken orally. This can be overcome by employing a new and effective delivery system utilizing nanotechnology. We present a new method for oral preparation of poorly soluble drugs that entails assembling (printing) drug-loaded polymeric micelles into sub-100 nm orally acceptable nanorods (NRs). Due to their small size, these NRs will have a high permeability through cells and thus should transport through the intestine to allow for drug delivery in the blood. These NRs drugs are expected to penetrate tumors more efficiently and much faster than individual nanoparticles and may also be useful for drug delivery to atherosclerotic plaque. This should lead to better bioavailability of the drug with reduced toxicity and side effects. Currently used micellar formulations are administered intravenously, which is invasive and could be toxic due to high doses and interaction with normal healthy tissues. Oral drug administration is the easiest and most desirable way to deliver most drugs, including those that are poorly soluble.
Collapse
|
133
|
Gansukh E, Muthu M, Paul D, Ethiraj G, Chun S, Gopal J. Nature nominee quercetin's anti-influenza combat strategy-Demonstrations and remonstrations. Rev Med Virol 2017; 27:e1930. [PMID: 31211498 DOI: 10.1002/rmv.1930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Nature's providences are rather the choicest remedies for human health and welfare. One such is quercetin, which is nature's nominee for cancer cure and recently demonstrated against influenza attack. Quercetin is highly recognized for its anticancer applications. This review emphasizes on yet another gift that this compound has to offer for mankind, which is none other than combating the deadly evasive influenza virus. The chemistry of this natural bioflavonoid and its derivatives and its modus operandi against influenza virus is consolidated into this review. The advancements and achievements made in the anti-influenza clinical history are also documented. Further, the challenges facing the progress of this compound to emerge as a predominant anti-influenza drug are discussed, and the future perspective for breaking its limitations through integration with nanoplatforms is envisioned.
Collapse
Affiliation(s)
- Enkhtaivan Gansukh
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Manikandan Muthu
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Diby Paul
- Environmental Microbiology, Department of Environmental Engineering, Konkuk University, Seoul, South Korea
| | - Gopal Ethiraj
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Sechul Chun
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Judy Gopal
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
134
|
MacEwan SR, Chilkoti A. Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von Trägern für Tumortherapeutika. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sarah R. MacEwan
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
| |
Collapse
|
135
|
Pei Q, Hu X, Liu S, Li Y, Xie Z, Jing X. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J Control Release 2017; 254:23-33. [DOI: 10.1016/j.jconrel.2017.03.391] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
|
136
|
Louage B, De Wever O, Hennink WE, De Geest BG. Developments and future clinical outlook of taxane nanomedicines. J Control Release 2017; 253:137-152. [DOI: 10.1016/j.jconrel.2017.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/09/2023]
|
137
|
Wang D, Zhou Y, Li X, Qu X, Deng Y, Wang Z, He C, Zou Y, Jin Y, Liu Y. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6916-6930. [PMID: 28186394 DOI: 10.1021/acsami.6b16376] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pKa was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their therapeutic efficacy and reducing the potential safety risks associated with their intracellular accumulation.
Collapse
Affiliation(s)
- Dishi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yanxia Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xiaoyou Qu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yunqiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Ziqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Chuyu He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yang Zou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine , 27 Taiping Road, Beijing 100850, China
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| |
Collapse
|
138
|
Nakamura I, Ichimura E, Goda R, Hayashi H, Mashiba H, Nagai D, Yokoyama H, Onda T, Masuda A. An in vivo mechanism for the reduced peripheral neurotoxicity of NK105: a paclitaxel-incorporating polymeric micellar nanoparticle formulation. Int J Nanomedicine 2017; 12:1293-1304. [PMID: 28243090 PMCID: PMC5317268 DOI: 10.2147/ijn.s114356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In our previous rodent studies, the paclitaxel (PTX)-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE). Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG). Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX) in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb) was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®–NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX–albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the DRG due to particle size, leading to reduced PTX levels in rat DRG (275).
Collapse
Affiliation(s)
- Iwao Nakamura
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Eiji Ichimura
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Rika Goda
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Hitomi Hayashi
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Hiroko Mashiba
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Daichi Nagai
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Hirofumi Yokoyama
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Takeshi Onda
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Akira Masuda
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| |
Collapse
|
139
|
Zhang Y, Song H, Zhang H, Huang P, Liu J, Chu L, Liu J, Wang W, Cheng Z, Kong D. Fine tuning the assembly and gel behaviors of PEGylated polypeptide conjugates by the copolymerization ofl-alanine and γ-benzyl-l-glutamateN-carboxyanhydrides. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Hao Zhang
- Ningbo Academy of Agricultural Sciences; Zhejiang 315040 China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program; Canary Center at Stanford for Cancer Early Detection, Stanford University; Stanford California 94305 United States
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| |
Collapse
|
140
|
Yan J, Zhang D, Yu H, Ma L, Deng M, Tang Z, Zhang X. Patupilone-loaded poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) micelle for oncotherapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:394-414. [DOI: 10.1080/09205063.2016.1277827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Yan
- Department of Chemistry, Xiangtan University, Xiangtan, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Mingxiao Deng
- College of Chemistry, Northeast Normal University, Changchun, PR China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Xuefei Zhang
- Department of Chemistry, Xiangtan University, Xiangtan, PR China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Xiangtan University, Xiangtan, PR China
| |
Collapse
|
141
|
Abstract
The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
142
|
Shi Y, Lammers T, Storm G, Hennink WE. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery. Macromol Biosci 2017; 17:10.1002/mabi.201600160. [PMID: 27413999 PMCID: PMC5410994 DOI: 10.1002/mabi.201600160] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/11/2016] [Indexed: 11/06/2022]
Abstract
Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on PM have resulted in tremendous numbers of PM-forming amphiphilic polymers, and approximately a dozen micellar nanomedicines have entered the clinic. The first generation of PM can be considered solubilizers of hydrophobic drugs, with short circulation times resulting from poor micelle stability and unstable drug entrapment. To more optimally exploit the potential of PM for targeted drug delivery, several physical (e.g., π-π stacking, stereocomplexation, hydrogen bonding, host-guest complexation, and coordination interaction) and chemical (e.g., free radical polymerization, click chemistry, disulfide and hydrazone bonding) strategies have been developed to improve micelle stability and drug retention. In this review, the most promising physico-chemical approaches to enhance micelle stability and drug retention are described, and how these strategies have resulted in systems with promising therapeutic efficacy in animal models, paving the way for clinical translation, is summarized.
Collapse
Affiliation(s)
- Yang Shi
- School of Bioscience and Bioengineering, South China University of Technology, 510006 Guangzhou, China
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany, Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7522 NB, The Netherlands, Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Gert Storm
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7522 NB, The Netherlands, Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
143
|
Abstract
The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
144
|
Polomska A, Gauthier MA, Leroux JC. In Vitro and In Vivo Evaluation of PEGylated Layer-by-Layer Polyelectrolyte-Coated Paclitaxel Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602066. [PMID: 27748999 DOI: 10.1002/smll.201602066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Drug nanocrystals (NCs) are colloidal dispersions composed almost entirely of drug. As such, there is substantial interest in targeting them to diseased tissues, where they can locally deliver high doses of the therapeutic. However, because of their uncontrolled dissolution characteristics in vivo and uptake by the monomolecular phagocyte system, achieving tumor accumulation is challenging. To address these issues, a layer-by-layer approach is adopted to coat paclitaxel NCs with alternating layers of oppositely charged polyelectrolytes, using a PEGylated copolymer as the top layer. The coating successfully slows down dissolution in comparison to the noncoated NCs and to Abraxane (an approved paclitaxel nanoformulation), provides colloidal stability in physiologically relevant media, and has no intrinsic effect on cell viability at the concentrations tested. Nevertheless, their pharmacokinetic and biodistribution profile indicates that the NCs are rapidly cleared from the bloodstream followed by accumulation in the mononuclear phagocyte system organs (i.e., liver and spleen). This is hypothesized to be a consequence of the shedding of the PEGylated polyelectrolyte from the NCs' surface. While therapeutic efficacy was not investigated (due to poor tumor accumulation), overall, this work questions whether approaches that rely solely on electrostatic interactions for retaining coatings on the surfaces of NCs are appropriate for use in vivo.
Collapse
Affiliation(s)
- Anna Polomska
- Swiss Federal Institute of Technology Zurich (ETHZ), Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, 8093, Zurich, Switzerland
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique, 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X 1S2, Canada
| | - Jean-Christophe Leroux
- Swiss Federal Institute of Technology Zurich (ETHZ), Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, 8093, Zurich, Switzerland
| |
Collapse
|
145
|
Chen W, Ji S, Qian X, Zhang Y, Li C, Wu W, Wang F, Jiang X. Phenylboronic acid-incorporated elastin-like polypeptide nanoparticle drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c7py00330g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Packaging hydrophobic drugs into nanoparticles can improve their aqueous solubility, tumor-specific accumulation and therapeutic effect.
Collapse
Affiliation(s)
- Weizhi Chen
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Shilu Ji
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Xiaoping Qian
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Yajun Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Cheng Li
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Wei Wu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Fei Wang
- College of Chemical Engineering
- Nanjing Forestry University
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Nanjing
- P.R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| |
Collapse
|
146
|
Yang Y, Bteich J, Li SD. Current Update of a Carboxymethylcellulose-PEG Conjugate Platform for Delivery of Insoluble Cytotoxic Agents to Tumors. AAPS JOURNAL 2016; 19:386-396. [PMID: 27873118 DOI: 10.1208/s12248-016-0014-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Cytotoxic chemotherapeutic agents are used as the standard therapy for a range of significant cancers, but many of these drugs suffer from poor water solubility and low selectivity, limiting their clinical efficacy. To overcome these shortcomings, Cellax™ drug delivery platform was developed. Cellax™ is a polymer-based nanoparticle drug delivery system designed to solubilize hydrophobic drugs and target them to solid tumors, thereby enhancing the efficacy and reducing the side effects. Cellax-docetaxel (Cellax-DTX) displayed improved pharmacokinetic, safety, and efficacy profiles compared to native DTX (Taxotere®) and Nab-paclitaxel (Nab-PTX, Abraxane®) in multiple animal models. Cellax-DTX was shown to interact with serum albumin and SPARC (secreted protein acidic and rich in cysteine) that is highly expressed by tumor stromal cells, leading to superior stroma depleting activity in orthotopic breast and pancreatic tumor models and subsequently reduced incidence of visceral metastases compared to free DTX and Nab-PTX. The Cellax™ platform was employed to deliver podophyllotoxin (Cellax-PPT) and cabazitaxel (Cellax-CBZ), and increased their safety and efficacy against multidrug-resistant tumors. This review discusses the rational design of the Cellax™ platform and summarizes the preclinical results. A multifunctional version of Cellax™ and a biomarker for predicting Cellax™ efficacy were developed and identified to promote the personalized use. Perspectives and future plans for this platform technology are also provided.
Collapse
Affiliation(s)
- Yang Yang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, 5519-2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Joseph Bteich
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, M5G 0A3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, 5519-2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
147
|
Abstract
Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, alongside research efforts in tissue regeneration and organ-on-a-chip investigations, are likely to provide novel solutions to treat kidney diseases. Our understanding of renal anatomy and of how the biological and physico-chemical properties of nanomedicines (the combination of a nanocarrier and a drug) influence their interactions with renal tissues has improved dramatically. Tailoring of nanomedicines in terms of kidney retention and binding to key membranes and cell populations associated with renal diseases is now possible and greatly enhances their localization, tolerability, and efficacy. This Review outlines nanomedicine characteristics central to improved targeting of renal cells and highlights the prospects, challenges, and opportunities of nanotechnology-mediated therapies for renal diseases.
Collapse
|
148
|
Benedetto G, Vestal CG, Richardson C. Aptamer-Functionalized Nanoparticles as "Smart Bombs": The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment. Target Oncol 2016; 10:467-85. [PMID: 25989948 DOI: 10.1007/s11523-015-0371-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional delivery of chemotherapeutic agents leads to multiple systemic side effects and toxicity, limiting the doses that can be used. The development of targeted therapies to selectively deliver anti-cancer agents to tumor cells without damaging neighboring unaffected cells would lead to higher effective local doses and improved response rates. Aptamers are single-stranded oligonucleotides that bind to target molecules with both high affinity and high specificity. The high specificity exhibited by aptamers promotes localization and uptake by specific cell populations, such as tumor cells, and their conjugation to anti-cancer drugs has been explored for targeted therapy. Advancements in the development of polymeric nanoparticles allow anti-cancer drugs to be encapsulated in protective nonreactive shells for controlled drug delivery with reduced toxicity. The conjugation of aptamers to nanoparticle-based therapeutics may further enhance direct targeting and personalized medicine. Here we present how the combinatorial use of aptamer and nanoparticle technologies has the potential to develop "smart bombs" for targeted cancer treatment, highlighting recent pre-clinical studies demonstrating efficacy for the direct targeting to particular tumor cell populations. However, despite these pre-clinical promising results, there has been little progress in moving this technology to the bedside.
Collapse
Affiliation(s)
- Gregory Benedetto
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| |
Collapse
|
149
|
Chen CK, Lin WJ, Hsia Y, Lo LW. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery. Macromol Biosci 2016; 17. [PMID: 27678386 DOI: 10.1002/mabi.201600191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/28/2016] [Indexed: 11/09/2022]
Abstract
Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs.
Collapse
Affiliation(s)
- Chih-Kuang Chen
- Polymeric Biomaterial Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Wei-Jen Lin
- Polymeric Biomaterial Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Yu Hsia
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| |
Collapse
|
150
|
Kulkarni A, Pandey P, Rao P, Mahmoud A, Goldman A, Sabbisetti V, Parcha S, Natarajan SK, Chandrasekar V, Dinulescu D, Roy S, Sengupta S. Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy. ACS NANO 2016; 10:8154-68. [PMID: 27452234 DOI: 10.1021/acsnano.6b00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the chemical world, evolution is mirrored in the origin of nanoscale supramolecular structures from molecular subunits. The complexity of function acquired in a supramolecular system over a molecular subunit can be harnessed in the treatment of cancer. However, the design of supramolecular nanostructures is hindered by a limited atomistic level understanding of interactions between building blocks. Here, we report the development of a computational algorithm, which we term Volvox after the first multicellular organism, that sequentially integrates quantum mechanical energy-state- and force-field-based models with large-scale all-atomistic explicit water molecular dynamics simulations to design stable nanoscale lipidic supramolecular structures. In one example, we demonstrate that Volvox enables the design of a nanoscale taxane supramolecular therapeutic. In another example, we demonstrate that Volvox can be extended to optimizing the ratio of excipients to form a stable nanoscale supramolecular therapeutic. The nanoscale taxane supramolecular therapeutic exerts greater antitumor efficacy than a clinically used taxane in vivo. Volvox can emerge as a powerful tool in the design of nanoscale supramolecular therapeutics for effective treatment of cancer.
Collapse
Affiliation(s)
- Ashish Kulkarni
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
| | - Prithvi Pandey
- India Innovation Research Center , Invictus Oncology, New Delhi 110092, India
| | | | | | - Aaron Goldman
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Harvard Digestive Diseases Center , Boston, Massachusetts 02115, United States
| | - Venkata Sabbisetti
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | | | - Sudip Roy
- India Innovation Research Center , Invictus Oncology, New Delhi 110092, India
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| |
Collapse
|