101
|
|
102
|
Wang Q, Xia J, Jia P, Pao W, Zhao Z. Application of next generation sequencing to human gene fusion detection: computational tools, features and perspectives. Brief Bioinform 2012; 14:506-19. [PMID: 22877769 DOI: 10.1093/bib/bbs044] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Gene fusions are important genomic events in human cancer because their fusion gene products can drive the development of cancer and thus are potential prognostic tools or therapeutic targets in anti-cancer treatment. Major advancements have been made in computational approaches for fusion gene discovery over the past 3 years due to improvements and widespread applications of high-throughput next generation sequencing (NGS) technologies. To identify fusions from NGS data, existing methods typically leverage the strengths of both sequencing technologies and computational strategies. In this article, we review the NGS and computational features of existing methods for fusion gene detection and suggest directions for future development.
Collapse
|
103
|
Flammiger A, Bayer F, Cirugeda-Kühnert A, Huland H, Tennstedt P, Simon R, Minner S, Bokemeyer C, Sauter G, Schlomm T, Trepel M. Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer. APMIS 2012; 120:901-8. [PMID: 23009114 DOI: 10.1111/j.1600-0463.2012.02924.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/01/2012] [Indexed: 12/11/2022]
Abstract
The number of tumor-infiltrating lymphocytes is functionally important and correlates with clinical outcome in several tumor entities. Herein we explore the impact of the density of T and B lymphocytes in prostate cancer tissue on prostate-specific antigen (PSA) recurrence after prostatectomy in 3261 prostate cancer tissue samples. The number of prostate cancer-infiltrating CD3-positive T cells and CD20-positive B cells per tissue spot in a tissue microarray format was determined by immunohistochemistry and was correlated with clinical and pathological data from the same patient cohort. Patients with very low and very high numbers of CD3-positive T cells per tissue spot had a significantly shorter PSA recurrence-free survival compared to patients with intermediate numbers of T cells (p = 0.0188). Furthermore, a high number of CD3-positive T cells per tissue spot was associated with fusion type prostate cancer identified by ERG expression analysis. The number of CD20-positive B cells per tissue spot was not associated with other clinical and histopathological parameters. This study indicates that the density of T but not B cells plays a functional role in the biology of prostate cancer and may have an impact on clinical outcome in this frequent neoplasia.
Collapse
Affiliation(s)
- Anna Flammiger
- Departments of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum (University Cancer Center Hamburg), Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, Martin NE, Kunz L, Penney KL, Ligon AH, Suppan C, Flavin R, Sesso HD, Rider JR, Sweeney C, Stampfer MJ, Fiorentino M, Kantoff PW, Sanda MG, Giovannucci EL, Ding EL, Loda M, Mucci LA. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 2012; 21:1497-509. [PMID: 22736790 DOI: 10.1158/1055-9965.epi-12-0042] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Whether the genomic rearrangement transmembrane protease, serine 2 (TMPRSS2):v-ets erythroblastosis virus E26 oncogene homolog (ERG) has prognostic value in prostate cancer is unclear. METHODS Among men with prostate cancer in the prospective Physicians' Health and Health Professionals Follow-Up Studies, we identified rearrangement status by immunohistochemical assessment of ERG protein expression. We used Cox models to examine associations of ERG overexpression with biochemical recurrence and lethal disease (distant metastases or cancer-specific mortality). In a meta-analysis including 47 additional studies, we used random-effects models to estimate associations between rearrangement status and outcomes. RESULTS The cohort consisted of 1,180 men treated with radical prostatectomy between 1983 and 2005. During a median follow-up of 12.6 years, 266 men experienced recurrence and 85 men developed lethal disease. We found no significant association between ERG overexpression and biochemical recurrence [hazard ratio (HR), 0.99; 95% confidence interval (CI), 0.78-1.26] or lethal disease (HR, 0.93; 95% CI, 0.61-1.43). The meta-analysis of prostatectomy series included 5,074 men followed for biochemical recurrence (1,623 events), and 2,049 men followed for lethal disease (131 events). TMPRSS2:ERG was associated with stage at diagnosis [risk ratio (RR)(≥T3 vs. T2), 1.23; 95% CI, 1.16-1.30) but not with biochemical recurrence (RR, 1.00; 95% CI, 0.86-1.17) or lethal disease (RR, 0.99; 95% CI, 0.47-2.09). CONCLUSIONS These results suggest that TMPRSS2:ERG, or ERG overexpression, is associated with tumor stage but does not strongly predict recurrence or mortality among men treated with radical prostatectomy. IMPACT This is the largest prospective cohort study to examine associations of ERG overexpression and lethal prostate cancer among men treated with radical prostatectomy.
Collapse
Affiliation(s)
- Andreas Pettersson
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Tradonsky A, Rubin T, Beck R, Ring B, Seitz R, Mair S. A search for reliable molecular markers of prognosis in prostate cancer: a study of 240 cases. Am J Clin Pathol 2012; 137:918-30. [PMID: 22586051 DOI: 10.1309/ajcpf3qwig8fwxih] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Most prostate cancers are treated, although more than 80% remain clinically insignificant and fewer than 3% are fatal. This retrospective study of 240 radical prostatectomy cases with comprehensive follow-up was a search for reliable markers of prostate cancer prognosis evaluable on biopsy specimens to enable minimization of unnecessary treatment, morbidity, and costs. Representative cancer and benign tissue from each prostatectomy specimen was made into tissue microarrays and stained with antibodies targeting 20 gene sequences. Traditional clinical and pathologic prognosticators and the 20 antibody stains were correlated with patient outcomes. By univariable analysis 4 of 20 antibodies (STMN1/stathmin 1, CYP4Z1/cytochrome p450-4z1, CDH1/E-cadherin, and Hey2), Gleason score, perineural invasion, and apical involvement were statistically significant outcome predictors for biopsy tissue. By multivariate analysis, Gleason score, Hey2, and CYP4Z1 were independently predictive. STMN1 and CDH1 were not independent of Gleason score but remain useful because marker interpretation is objective and Gleason scores often differ for biopsy and prostatectomy specimens.
Collapse
|
106
|
Gordanpour A, Nam RK, Sugar L, Bacopulos S, Seth A. MicroRNA detection in prostate tumors by quantitative real-time PCR (qPCR). J Vis Exp 2012:e3874. [PMID: 22643910 DOI: 10.3791/3874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, 18-24 nucleotide long, non-coding RNA molecules. They are involved in virtually every cellular process including development, apoptosis, and cell cycle regulation. MiRNAs are estimated to regulate the expression of 30% to 90% of human genes by binding to their target messenger RNAs (mRNAs). Widespread dysregulation of miRNAs has been reported in various diseases and cancer subtypes. Due to their prevalence and unique structure, these small molecules are likely to be the next generation of biomarkers, therapeutic agents and/or targets. Methods used to investigate miRNA expression include SYBR green I dye-based as well as Taqman-probe based qPCR. If miRNAs are to be effectively used in the clinical setting, it is imperative that their detection in fresh and/or archived clinical samples be accurate, reproducible, and specific. qPCR has been widely used for validating expression of miRNAs in whole genome analyses such as microarray studies. The samples used in this protocol were from patients who underwent radical prostatectomy for clinically localized prostate cancer; however other tissues and cell lines can be substituted in. Prostate specimens were snap-frozen in liquid nitrogen after resection. Clinical variables and follow-up information for each patient were collected for subsequent analysis. Quantification of miRNA levels in prostate tumor samples. The main steps in qPCR analysis of tumors are: Total RNA extraction, cDNA synthesis, and detection of qPCR products using miRNA-specific primers. Total RNA, which includes mRNA, miRNA, and other small RNAs were extracted from specimens using TRIzol reagent. Qiagen's miScript System was used to synthesize cDNA and perform qPCR (Figure 1). Endogenous miRNAs are not polyadenylated, therefore during the reverse transcription process, a poly(A) polymerase polyadenylates the miRNA. The miRNA is used as a template to synthesize cDNA using oligo-dT and Reverse Transcriptase. A universal tag sequence on the 5' end of oligo-dT primers facilitates the amplification of cDNA in the PCR step. PCR product amplification is detected by the level of fluorescence emitted by SYBR Green, a dye which intercalates into double stranded DNA. Specific miRNA primers, along with a Universal Primer that binds to the universal tag sequence will amplify specific miRNA sequences. The miScript Primer Assays are available for over a thousand human-specific miRNAs, and hundreds of murine-specific miRNAs. Relative quantification method was used here to quantify the expression of miRNAs. To correct for variability amongst different samples, expression levels of a target miRNA is normalized to the expression levels of a reference gene. The choice of a gene on which to normalize the expression of targets is critical in relative quantification method of analysis. Examples of reference genes typically used in this capacity are the small RNAs RNU6B, RNU44, and RNU48 as they are considered to be stably expressed across most samples. In this protocol, RNU6B is used as the reference gene.
Collapse
Affiliation(s)
- Aida Gordanpour
- Department of Laboratory Medicine & Pathobiology, University of Toronto
| | | | | | | | | |
Collapse
|
107
|
Sabaliauskaite R, Jarmalaite S, Petroska D, Dasevicius D, Laurinavicius A, Jankevicius F, Lazutka JR. Combined analysis of TMPRSS2-ERG and TERT for improved prognosis of biochemical recurrence in prostate cancer. Genes Chromosomes Cancer 2012; 51:781-91. [PMID: 22505341 DOI: 10.1002/gcc.21963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/08/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease with diverse clinical outcomes. TMPRSS2-ERG is the most common gene fusion in PCa, whereas activation of telomerase is a common feature of various malignancies. The aim of our study was to explore the combined utility of these and some other biomarkers in predicting biochemical recurrence after radical prostatectomy. Prostate specimens and urine sediments from 179 previously untreated patients with pT2-pT3 stage PCa were analyzed for expression of telomerase (TERT and TR) and the TMPRSS2-ERG fusion gene by means of reverse transcription PCR. Real-time PCR was used for quantification of ERG and SPINK1 expression. In total, 74% (117/158) of the prostate adenocarcinomas were positive for the TMPRSS2-ERG and/or TERT expression. Noninvasively, these transcripts were identified in 31% (19/61) of catheterized urine specimens. Significantly higher expression of ERG was detected in TMPRSS2-ERG-positive tumors (P<0.0001), whereas more intense expression of SPINK1 was characteristic for the TMPRSS2-ERG-negative tumors (P=0.003). TERT-positive cases also had elevated levels of ERG (P=0.016), suggesting a possible link between aberrant expression of ERG and reactivation of TERT in prostate tumors. The cases negative for both transcripts, TMPRSS2-ERG and TERT, rarely recurred (P=0.014) and showed significantly longer biochemical recurrence-free period (P=0.022) as compared to the TMPRSS2-ERG and/or TERT-positive cases. The results of our study suggest that combined analysis of TMPRSS2-ERG and TERT expression can be a valuable tool for early prediction of biochemical recurrence of PCa after radical prostatectomy.
Collapse
Affiliation(s)
- Rasa Sabaliauskaite
- Division of Human Genome Research Centre, Faculty of Natural Sciences, Vilnius University, and National Center of Pathology, Urology Department, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
108
|
Kron K, Liu L, Trudel D, Pethe V, Trachtenberg J, Fleshner N, Bapat B, van der Kwast T. Correlation of ERG expression and DNA methylation biomarkers with adverse clinicopathologic features of prostate cancer. Clin Cancer Res 2012; 18:2896-904. [PMID: 22452941 DOI: 10.1158/1078-0432.ccr-11-2901] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fusion of the TMPRSS2 gene with the ERG oncogene and aberrant DNA methylation patterns are commonly found in prostate cancer. The aim of this study was to analyze the relationship between ERG expression, DNA methylation of three biomarkers, and clinicopathologic features of prostate cancer. EXPERIMENTAL DESIGN Immunohistochemistry for ERG protein was conducted as a surrogate for TMPRSS2-ERG fusions. We analyzed methylation of CYP26A1, TBX15, and HOXD3 in 219 prostatectomy specimens by the quantitative MethyLight assay. DNA methylation was compared between ERG-positive and -negative cases and correlations of ERG and DNA methylation with clinicopathologic features were analyzed using χ(2), Spearman correlation, logistic regression, and Cox regression. RESULTS ERG expression varied according to Gleason pattern (almost absent in pattern II, highest in pattern III, and lower in pattern IV/V) and showed a strong positive correlation with methylation levels of CYP26A1, TBX15, and HOXD3 (Spearman P < 0.005). TBX15 and HOXD3 methylation were significantly associated with pathologic stage, Gleason score, and Gleason pattern (P ≤ 0.015). In multivariate regression analysis, PSA, TBX15 high methylation, and HOXD3 high methylation were significantly associated with stage (P < 0.05), whereas ERG expression was negatively correlated with Gleason score (P = 0.003). In univariate time-to-recurrence analysis, a combination of HOXD3/TBX15 high methylation predicted recurrence in ERG-positive and -negative cases (P < 0.05). CONCLUSIONS CYP26A1, TBX15, and HOXD3 are methylation markers of prostate cancer associated with ERG expression and clinicopathologic variables, suggesting that incorporation of these markers may be useful in a pre- and posttreatment clinical setting.
Collapse
Affiliation(s)
- Ken Kron
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Bismar TA, Dolph M, Teng LH, Liu S, Donnelly B. ERG protein expression reflects hormonal treatment response and is associated with Gleason score and prostate cancer specific mortality. Eur J Cancer 2012; 48:538-46. [DOI: 10.1016/j.ejca.2012.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/22/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
110
|
ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol 2012; 25:471-9. [PMID: 22080055 DOI: 10.1038/modpathol.2011.176] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In prostate cancer genomic rearrangements involving genes encoding ETS transcription factors are commonly present, with androgen-regulated transmembrane protease, serine 2 (TMPRSS2)-v-ets erythroblastosis virus E26 oncogen homologue (ERG) gene fusion occurring in 40-70%. Studies on the predictive value of ERG rearrangement as detected by in-situ hybridization or polymerase chain reaction have resulted in varying outcomes. The objective of this study was to correlate immunohistochemical ERG protein expression with clinico-pathological parameters at radical prostatectomy specimens, and to determine its predictive value for postoperative disease recurrence and progression in a prostate cancer screening cohort. Since androgen receptor is downregulated by ERG in cell lines, we also compared the expression of respective proteins. We selected 481 participants from the European Randomized Study of Screening for Prostate Cancer treated by radical prostatectomy for prostate adenocarcinoma. A tissue microarray was constructed containing representative cores of all prostate cancer specimens as well as 22 xenografts and seven cell lines. Immunohistochemical expression of ERG and androgen receptor was correlated with prostate-specific antigen (PSA), Gleason sum, pT-stage, surgical margins, biochemical recurrence, local recurrence, overall death and disease-specific death. ERG expression was detected in 284 patients (65%). Expression occurred significantly more frequent in patients with PSA ≤10 ng/ml (P=0.024). There was no significant association between ERG and Gleason sum, pT-stage or surgical margin status. PSA (P=0.011), Gleason sum (P=0.003), pT-stage (P=0.001) and surgical margin status (P<0.001) all had independent value for postoperative biochemical recurrence, while positive surgical margin (P=0.021) was the only independent predictor for local recurrence. ERG protein expression did not have prognostic value for the clinical end points in uni- and multivariate analyses. A positive correlation existed between ERG and androgen receptor expression in single tissue cores (P<0.001). In conclusion, immunohistochemical ERG expression has no predictive value for prostate cancer recurrence or progression after radical prostatectomy. Increasing ERG levels are associated with the upregulation of androgen receptor expression in clinical specimens.
Collapse
|
111
|
Abstract
Oncogenic activation of ERG resulting from gene fusion is present in over half of all patients with prostate cancer in Western countries. Although the underlying genetic mechanisms have been extensively studied, evaluation of the ERG oncoprotein--the translational product of ERG gene fusions--has just begun. The robust correlation between ERG oncoprotein detection and gene fusion status enables rapid characterization of this protein in large patient cohorts. Recent studies have focused on characterizing the ERG oncoprotein and determining its potential role in the diagnosis and biological stratification of prostate cancer.
Collapse
|
112
|
Bismar TA, Yoshimoto M, Duan Q, Liu S, Sircar K, Squire JA. Interactions and relationships of PTEN, ERG, SPINK1 and AR in castration-resistant prostate cancer. Histopathology 2012; 60:645-52. [DOI: 10.1111/j.1365-2559.2011.04116.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
113
|
St John J, Powell K, Conley-Lacomb MK, Chinni SR. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression. ACTA ACUST UNITED AC 2012; 4:94-101. [PMID: 23264855 DOI: 10.4172/1948-5956.1000119] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TMPRSS2-Ets gene fusions were identified in prostate cancers where the promoter of transmembrane protease, serine 2 (TMPRSS2) fused with coding sequence of the erythroblastosis virus E26 (Ets) gene family members. TMPRSS2 is an androgen responsive transmembrane serine protease. Ets family members are oncogenic transcription factors that contain a highly conserved Ets DNA binding domain and an N-terminal regulatory domain.Fusion of these gene results in androgen dependent transcription of Ets factor in prostate tumor cells. The ERG is the most common fusion partner with TMPRSS2 promoter in prostate cancer patients. The high prevalence of these gene fusions, in particular TMPRSS2-ERG, makes them attractive as potential diagnostic and prognostic indicators, as well as making them a potential target for tailored therapies.This review focuses on the clinical and biological significance of TMPRSS2-ERG fusions and their role in PC development and progression.
Collapse
Affiliation(s)
- Jason St John
- Departments of Urology and Pathology, Wayne State University School of Medicine and The Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
114
|
Sreenath TL, Dobi A, Petrovics G, Srivastava S. Oncogenic activation of ERG: A predominant mechanism in prostate cancer. J Carcinog 2011; 10:37. [PMID: 22279422 PMCID: PMC3263025 DOI: 10.4103/1477-3163.91122] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/10/2011] [Indexed: 12/15/2022] Open
Abstract
Prevalent gene fusions involving regulatory sequences of the androgen receptor (AR) regulated genes (primarily TMPRSS2) and protein coding sequences of nuclear transcription factors of the ETS gene family (predominantly ERG) result in unscheduled androgen dependent ERG expression in prostate cancer (CaP).Cumulative data from a large number of studies in the past six years accentuate ERG alterations in more than half of all CaP patients in Western countries. Studies underscore that ERG functions are involved in the biology of CaP. ERG expression in normal context is selective to endothelial cells, specific hematopoetic cells and pre-cartilage cells. Normal functions of ERG are highlighted in hematopoetic stem cells. Emerging data continues to unravel molecular and cellular mechanisms by which ERG may contribute to CaP. Herein, we focus on biological and clinical aspects of ERG oncogenic alterations, potential of ERG-based stratification of CaP and the possibilities of targeting the ERG network in developing new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Taduru L Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | |
Collapse
|
115
|
|
116
|
Toubaji A, Albadine R, Meeker AK, Isaacs WB, Lotan T, Haffner MC, Chaux A, Epstein JI, Han M, Walsh PC, Partin AW, De Marzo AM, Platz EA, Netto GJ. Increased gene copy number of ERG on chromosome 21 but not TMPRSS2-ERG fusion predicts outcome in prostatic adenocarcinomas. Mod Pathol 2011; 24:1511-20. [PMID: 21743434 PMCID: PMC3360950 DOI: 10.1038/modpathol.2011.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of TMPRSS2-ERG gene fusion in prostate cancer prognostication remains controversial. We evaluated the prognostic role of TMPRSS2-ERG fusion using fluorescence in situ hybridization analysis in a case-control study nested in The Johns Hopkins retropubic radical prostatectomy cohort. In all, 10 tissue microarrays containing paired tumors and normal tissues obtained from 172 cases (recurrence) and 172 controls (non-recurrence) matched on pathological grade, stage, race/ethnicity, and age at the time of surgery were analyzed. All radical prostatectomies were performed at our institution between 1993 and 2004. Recurrence was defined as biochemical recurrence, development of clinical evidence of metastasis, or death from prostate carcinoma. Each tissue microarray spot was scored for the presence of TMPRSS2-ERG gene fusion and for ERG gene copy number gains. The odds ratio of recurrence and 95% confidence intervals were estimated from conditional logistic regression. Although the percentage of cases with fusion was slightly lower in cases than in controls (50 vs 57%), the difference was not statistically significant (P=0.20). The presence of fusion due to either deletion or split event was not associated with recurrence. Similarly, the presence of duplicated ERG deletion, duplicated ERG split, or ERG gene copy number gain with a single ERG fusion was not associated with recurrence. ERG gene polysomy without fusion was significantly associated with recurrence (odds ratio 2.0, 95% confidence interval 1.17-3.42). In summary, TMPRSS2-ERG fusion was not prognostic for recurrence after retropubic radical prostatectomy for clinically localized prostate cancer, although men with ERG gene copy number gain without fusion were twice more likely to recur.
Collapse
Affiliation(s)
- Antoun Toubaji
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Roula Albadine
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - William B Isaacs
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tamara Lotan
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael C Haffner
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alcides Chaux
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jonathan I Epstein
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Misop Han
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Patrick C Walsh
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alan W Partin
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elizabeth A Platz
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - George J Netto
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
117
|
Schwartzman J, Mongoue-Tchokote S, Gibbs A, Gao L, Corless CL, Jin J, Zarour L, Higano C, True LD, Vessella RL, Wilmot B, Bottomly D, McWeeney SK, Bova GS, Partin AW, Mori M, Alumkal J. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics 2011; 6:1248-56. [PMID: 21946329 DOI: 10.4161/epi.6.10.17727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.
Collapse
Affiliation(s)
- Jacob Schwartzman
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol 2011; 35:1014-20. [PMID: 21677539 DOI: 10.1097/pas.0b013e31821e8761] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND TMPRSS2-ERG fusions have been identified in about one-half of all prostatic adenocarcinomas (PCas). Fluorescence in situ hybridization (FISH) and reverse transcription polymerase chain reaction have been the most commonly used techniques in this setting. The aim of this study was to evaluate the utility of ERG immunoexpression as a surrogate for TMPRSS2-ERG fusion in a large series of PCa cases. MATERIALS AND METHODS Four hundred twenty-seven radical retropubic prostatectomy tissue samples were used to construct 10 tissue microarrays (TMAs). FISH analysis was previously conducted using dual-color interphase break-apart probes for the 5' and 3' regions of the ERG gene. ERG expression was evaluated using a commercial rabbit anti-ERG monoclonal antibody (clone EPR3864; Epitomics, Burlingame, CA). Each TMA spot was independently assessed, and any nuclear staining positivity was considered as indicative of ERG expression. RESULTS TMPRSS2-ERG fusions were detected by FISH in 195 (45.7%) of the PCa cases. ERG immunoexpression was found in 192 (45.0%) of the PCa cases and in none of the nontumoral tissue samples. Mean ERG H-scores were significantly higher in tumors harboring FISH-detected TMPRSS2-ERG fusions (P<0.00001), and there was a strong association between ERG immunohistochemical expression and the TMPRSS2-ERG status defined by FISH (P<0.00001), with a sensitivity of 86% (95% CI, 80%-90%) and a specificity of 89% (95% CI, 84%-93%). Receiver-operating characteristic curve analysis showed that ERG immunoexpression had a high accuracy for identifying TMPRSS2-ERG fusions detected by FISH, with an area under the curve of 0.87 (95% CI, 0.84%-0.91; P<0.00001). CONCLUSIONS We found that ERG immunohistochemical expression has a high accuracy for defining the TMPRSS-ERG fusion status. ERG immunohistochemistry may offer an accurate, simpler, and less costly alternative for evaluation of ERG fusion status in PCa than FISH.
Collapse
|
119
|
van Leenders GJLH, Boormans JL, Vissers CJ, Hoogland AM, Bressers AAJWM, Furusato B, Trapman J. Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol 2011; 24:1128-38. [PMID: 21499236 DOI: 10.1038/modpathol.2011.65] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomic rearrangements involving genes encoding erythroblast transformation-specific transcription factors are commonly present in prostate cancer. The TMPRSS2-ERG gene fusion that leads to ERG overexpression occurs in ~70% of prostate cancers. Implementation of fusion gene detection in pathological practice, however, has been hampered by the lack of reliable ERG antibodies. The objective of this study was first to compare ERG immunohistochemistry using the recently described antibody EPR3864 with ERG mRNA by quantitative PCR and, second, to investigate ERG immunohistochemistry in diagnostic prostate cancer needle biopsies. We analyzed 41 primary prostate adenocarcinomas obtained by radical prostatectomy and 83 consecutive prostate cancer needle biopsies. In the prostatectomy specimens, immunohistochemical ERG expression was highly concordant with the ERG mRNA overexpression (sensitivity 100% and specificity 85%). ERG overexpression was due to TMPRSS2-ERG gene fusion in all cases. ERG protein expression was identified in 51/83 adenocarcinomas (61%) on needle biopsies. ERG expression was more frequent in tumors infiltrating ≥2 needle biopsies (P<0.001) or occupying ≥50% of a single biopsy (P=0.018). Expression of ERG also occurred in 11/21 (52%) high-grade prostate intraepithelial neoplasia lesions. In 5/87 (6%) needle biopsies containing benign secretory glands, weak ERG staining was focally observed. In all of these cases, respective glands were adjacent to adenocarcinomas. In conclusion, immunohistochemistry for ERG strongly correlated with ERG mRNA overexpression and was specific for prostate cancer on needle biopsies. Therefore, ERG immunohistochemistry is an important adjunctive tool for pathophysiological studies on ERG gene fusions, and might support the pathological diagnosis of adenocarcinoma in a subset of prostate needle biopsies.
Collapse
Affiliation(s)
- Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
120
|
Barros-Silva JD, Ribeiro FR, Rodrigues Â, Cruz R, Martins AT, Jerónimo C, Henrique R, Teixeira MR. Relative 8q gain predicts disease-specific survival irrespective of the TMPRSS2-ERG fusion status in diagnostic biopsies of prostate cancer. Genes Chromosomes Cancer 2011; 50:662-671. [DOI: 10.1002/gcc.20888] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
121
|
Minner S, Enodien M, Sirma H, Luebke AM, Krohn A, Mayer PS, Simon R, Tennstedt P, Müller J, Scholz L, Brase JC, Liu AY, Schlüter H, Pantel K, Schumacher U, Bokemeyer C, Steuber T, Graefen M, Sauter G, Schlomm T. ERG Status Is Unrelated to PSA Recurrence in Radically Operated Prostate Cancer in the Absence of Antihormonal Therapy. Clin Cancer Res 2011; 17:5878-88. [DOI: 10.1158/1078-0432.ccr-11-1251] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
122
|
Braun M, Scheble VJ, Menon R, Scharf G, Wilbertz T, Petersen K, Beschorner C, Reischl M, Kuefer R, Schilling D, Stenzl A, Kristiansen G, Rubin MA, Fend F, Perner S. Relevance of cohort design for studying the frequency of the ERG rearrangement in prostate cancer. Histopathology 2011; 58:1028-36. [DOI: 10.1111/j.1365-2559.2011.03862.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
Abstract
PURPOSE OF REVIEW Prognostic clinical, pathological, and molecular parameters identify patients with nonmetastatic prostate cancer that are at risk for the development of future metastatic disease and shorter survival. In metastatic castration-resistant prostate cancer, docetaxel-based chemotherapy prolongs survival and improves quality of life, and is the standard of care. It may be rational to hypothesize that early utilization of chemotherapy may delay the onset of distant metastasis and prolong survival in the earlier nonmetastatic disease. A discussion on ongoing clinical trials and natural history aspects applicable to clinical trials design in this setting are presented herein. RECENT FINDINGS Preliminary data suggest that chemotherapy is well tolerated, feasible, and potentially active in nonmetastatic prostate cancer. However, results from prospective randomized trials were not published yet. SUMMARY In nonmetastatic prostate cancer, application of chemotherapy remains an open question awaiting prospective validation and should be routinely applied outside of clinical trials. In view of the long natural history, evaluation of conventional endpoints as time to distant metastasis and survival are challenging even in the high-risk patients. Appropriate patient selection based on predictive biomarkers and surrogate endpoints may provide critical information for patient selection and study design.
Collapse
|
124
|
Li Y, Kong D, Wang Z, Ahmad A, Bao B, Padhye S, Sarkar FH. Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila) 2011; 4:1495-506. [PMID: 21680704 DOI: 10.1158/1940-6207.capr-11-0077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of prostate cancer and its progression to castrate-resistant prostate cancer (CRPC) after antiandrogen ablation therapy are driven by persistent biological activity of androgen receptor (AR) signaling. Moreover, studies have shown that more than 50% of human prostate cancers overexpress ERG (v-ets avian erythroblastosis virus E26 oncogene related gene) due to AR-regulated TMPRSS2-ERG fusion gene. However, the reported roles of TMPRSS2-ERG fusion in cancer progression are not clear. In this study, we investigated the signal transduction in the AR/TMPRSS2-ERG/Wnt signaling network for studying the aggressive behavior of prostate cancer cells and further assessed the effects of BR-DIM and CDF [natural agents-derived synthetic formulation and analogue of 3,3'-diindolylmethane (DIM) and curcumin, respectively, with improved bioavailability] on the regulation of AR/TMPRSS2-ERG/Wnt signaling. We found that activation of AR resulted in the induction of ERG expression through TMPRSS2-ERG fusion. Moreover, we found that ERG overexpression and nuclear translocation activated the activity of Wnt signaling. Furthermore, forced overexpression of ERG promoted invasive capacity of prostate cancer cells. More important, we found that BR-DIM and CDF inhibited the signal transduction in the AR/TMPRSS2-ERG/Wnt signaling network, leading to the inactivation of Wnt signaling consistent with inhibition of prostate cancer cell invasion. In addition, BR-DIM and CDF inhibited proliferation of prostate cancer cells and induced apoptotic cell death. On the basis of our findings, we conclude that because BR-DIM and CDF downregulate multiple signaling pathways including AR/TMPRSS2-ERG/Wnt signaling, these agents could be useful for designing novel strategies for the prevention and/or treatment of prostate cancer.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Doyen J, Alix-Panabières C, Hofman P, Parks SK, Chamorey E, Naman H, Hannoun-Lévi JM. Circulating tumor cells in prostate cancer: a potential surrogate marker of survival. Crit Rev Oncol Hematol 2011; 81:241-56. [PMID: 21680196 DOI: 10.1016/j.critrevonc.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/23/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023] Open
Abstract
Prostate-specific antigen (PSA) levels in blood are widely used in prostate cancer (PCa) for the management of this disease at every stage of progression. Currently, PSA levels combined with clinical stage and Gleason score provide the best predictor of survival and the main element to monitor treatment efficiency. However, these areas could be improved by utilizing emerging biomarkers. Recently, circulating tumor cells (CTCs) and disseminating tumor cells (DTCs) have been detected in PCa and may be a new surrogate candidate. Here we provide a systematic review of the literature in order to describe the current evidence of CTC/DTC surrogacy regarding outcome of prostate cancer patients. We also discuss several markers that could be used to increase the sensitivity and specificity of CTC/DTC detection. CTC/DTC detection is performed using a wide variety of techniques. Initially, reverse transcriptase polymerase chain reaction (RT-PCR) based methods were utilized with weak correlation between their positive detection and patients' outcome. More recent immunological techniques have indicated a reproducible correlation with outcome. Such surrogate markers may enable clinicians to provide early detection for inefficient treatments and patients with poor prognosis that are candidates for treatment intensification. Dissecting the micrometastasis phenomenon in CTCs/DTCs is a key point to increase surrogacy of this biomarker.
Collapse
Affiliation(s)
- Jérôme Doyen
- Department of Radiation Oncology, Antoine-Lacassagne Cancer Center, Nice, France.
| | | | | | | | | | | | | |
Collapse
|
126
|
Cytogenomic aberrations associated with prostate cancer. Cancer Genet 2011; 204:57-67. [PMID: 21504704 DOI: 10.1016/j.cancergencyto.2010.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 12/28/2022]
Abstract
Genetic changes associated with prostate cancer have finally begun to elucidate some of the mechanisms involved in the etiology of this complex and common disease. We highlight consistent and relatively frequent abnormalities seen by various methodologies. Specifically, the results of conventional and molecular cytogenetic studies, genome-wide association studies with single nucleotide polymorphisms, recurrent gene fusions, and epigenetic analyses are discussed.
Collapse
|
127
|
Furusato B, van Leenders GJ, Trapman J, Kimura T, Egawa S, Takahashi H, Furusato M, Visakorpi T, Hano H. Immunohistochemical ETS-related gene detection in a Japanese prostate cancer cohort: Diagnostic use in Japanese prostate cancer patients. Pathol Int 2011; 61:409-14. [DOI: 10.1111/j.1440-1827.2011.02675.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
128
|
Abstract
As next-generation sequence (NGS) production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled stringently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming genomic mutations, polymorphisms, fusions and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly.
Collapse
Affiliation(s)
- René L Warren
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
129
|
Using molecular markers to help predict who will fail after radical prostatectomy. Prostate Cancer 2011; 2011:290160. [PMID: 22096655 PMCID: PMC3200300 DOI: 10.1155/2011/290160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/16/2011] [Indexed: 11/25/2022] Open
Abstract
Recent phase III trial data clearly demonstrate that adjuvant therapy can reduce recurrence and increase survival after prostatectomy for prostate cancer. There is great interest in being able to accurately predict who is at risk of failure to avoid treating those who may not benefit. The standard markers consisting of prostate specific antigen (PSA), Gleason score, and pathological stage are not very specific, so there is an unmet need for other markers to aid in prognostic stratification. Numerous studies have been conducted with various markers and more recently gene signatures, but it is unclear whether any of them are really useful. We conducted a comprehensive review of the literature to determine the current status of molecular markers in predicting outcome after radical prostatectomy.
Collapse
|
130
|
[The progress of TMPRSS2-ETS gene fusions and their mechanism in prostate cancer]. YI CHUAN = HEREDITAS 2011; 33:117-22. [PMID: 21377967 DOI: 10.3724/sp.j.1005.2011.00117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gene fusions between transmembrane protease serine 2 (TMPRSS2) and E26 (ETS) transcription factors are present in over 50% of patients with prostate cancer. TMPRSS2-ERG is the most common gene fusion type. The ERG overexpression induced by TMPRSS2-ERG gene fusion contributes to the development of prostate cancer. Both androgen receptor binding and genotoxic stress induce chromosomal proximity and TMPRSS2-ETS gene fusions. TMPRSS2-ERG gene fusion functions as a biomarker for prostate cancer, which can be easily detected in urine. This review focuses on the characteristics, oncogenic and rearranged mechanism, and clinical application of TMPRSS2-ETS gene fusions.
Collapse
|
131
|
Koochekpour S. Genetic and epigenetic changes in human prostate cancer. IRANIAN RED CRESCENT MEDICAL JOURNAL 2011; 13:80-98. [PMID: 22737441 PMCID: PMC3371912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 11/29/2022]
Abstract
Acquired or inherited genetic alterations either alone or in combination with epigenetic alterations are associated with prostate carcinogenesis and its progression toward advance metastatic or castration-resistant disease. A major objective of translational cancer research in post-genome era is to discover the repertoire of genetic and epigenetic variations associated with prostate cancer. Genome-wide association studies have been at least partially successful in identifying potential germline polymorphisms and allelic imbalances such as microsatellite instability and loss of heterozygosity associated with prostate cancer susceptibility. Epigenetic mechanisms such as DNA hyper- or hypomethylation and histone modifications are reversible genetic alterations which allow stable inheritance of cellular phenotypes without any changes in the DNA sequence or quantity. Epigenetic modifications can potentially be used for the molecular classification, detection, and risk assessment in prostate cancer. Chemical inhibitors of DNA methyltransferases and histone deacetylases have been used in different clinical trials and hold promise as novel chemotherapeutics to be effective alone or in combination with other therapeutic interventions in prostate cancer.
Collapse
Affiliation(s)
- S Koochekpour
- Department of Urology and Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University, Health Sciences Center, New Orleans, USA
| |
Collapse
|
132
|
Gordanpour A, Stanimirovic A, Nam RK, Moreno CS, Sherman C, Sugar L, Seth A. miR-221 Is down-regulated in TMPRSS2:ERG fusion-positive prostate cancer. Anticancer Res 2011; 31:403-410. [PMID: 21378318 PMCID: PMC3281770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Expression profiling studies using microarrays and other methods have shown that microRNAs (miRNAs) are dysregulated in a wide variety of human cancers. The up-regulation of miR-221 has been reported in carcinomas of the pancreas, breast, and papillary thyroid, as well as in glioblastoma and chronic lymphocytic leukaemia. In prostate cancer, however, down-regulation of miR-221 has been repeatedly confirmed in miRNA expression studies. Also unique to prostate cancer, and found in more than 50% of patients, is the aberrant expression of a known oncogene, the TMPRSS2:ERG fusion. To date, there has been no published study describing miRNA associations in prostate tumours that overexpress the ERG oncogene from the TMPRSS2:ERG fusion transcript. Herein we report that in a large and diverse cohort of prostate carcinoma samples, miR-221 is down-regulated in patients with tumours bearing TMPRSS2:ERG fusion transcripts, thus providing a link between miRNA and gene fusion expression.
Collapse
Affiliation(s)
- Aida Gordanpour
- Department of Laboratory Medicine and Pathobiology, University of Toronto, and Sunnybrook Research Institute, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
133
|
Lee K, Chae JY, Kwak C, Ku JH, Moon KC. TMPRSS2-ERG Gene Fusion and Clinicopathologic Characteristics of Korean Prostate Cancer Patients. Urology 2010; 76:1268.e7-13. [DOI: 10.1016/j.urology.2010.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/19/2010] [Accepted: 06/04/2010] [Indexed: 02/07/2023]
|
134
|
ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod Pathol 2010; 23:1492-8. [PMID: 20693979 DOI: 10.1038/modpathol.2010.149] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incidence and clinical significance of the TMPRSS2:ERG gene fusion in prostate cancer has been investigated with contradictory results. It is now common knowledge that significant variability in gene alterations exists according to ethnic background in various kinds of cancer. In this study, we evaluated gene fusions involving the ETS gene family in Japanese prostate cancer. Total RNA from 194 formalin-fixed and paraffin-embedded prostate cancer samples obtained by radical prostatectomy was subjected to reverse-transcriptase polymerase chain reaction to detect the common TMPRSS2:ERG T1-E4 and T1-E5 fusion transcripts and five other non-TMPRSS2:ERG fusion transcripts. We identified 54 TMPRSS2:ERG-positive cases (54/194, 28%) and two HNRPA2B1:ETV1-positive cases (2/194, 1%). The SLC45A3-ELK4 transcript, a fusion transcript without structural gene rearrangement, was detectable in five cases (5/194, 3%). The frequencies of both TMPRSS2:ERG- and non-TMPRSS2:ERG-positive cases were lower than those reported for European, North American or Brazilian patients. Internodular heterogeneity of TMPRSS2:ERG was observed in 5 out of 11 multifocal cases (45%); a frequency similar to that found in European and North American cases. We found a positive correlation between the TMPRSS2:ERG fusion and a Gleason score of ≤7 and patient age, but found no relationship with pT stage or plasma prostate-specific antigen concentration. To exclude the possibility that Japanese prostate cancer displays novel TMPRSS2:ERG transcript variants or has unique 5' fusion partners for the ETS genes, we performed 5' RACE using fresh-frozen prostate cancer samples. We identified only the normal 5' cDNA ends for ERG, ETV1 and ETV5 in fusion-negative cases. Because we identified a relatively low frequency of TMPRSS2:ERG and other fusions, further evaluation is required before this promising molecular marker should be introduced into the management of Japanese prostate cancer patients.
Collapse
|
135
|
Scheble VJ, Braun M, Wilbertz T, Stiedl AC, Petersen K, Schilling D, Reischl M, Seitz G, Fend F, Kristiansen G, Perner S. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 2010; 56:937-43. [PMID: 20636794 DOI: 10.1111/j.1365-2559.2010.03564.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS Small cell prostatic cancer is a rare but aggressive disease. Currently, its histogenetic origin is unclear and its distinction from metastatic small cell lung cancer is challenging. The aim of our study was to determine whether the ERG rearrangement commonly observed in acinar prostatic cancer can distinguish small cell prostatic cancer from small cell lung cancer samples. METHODS AND RESULTS We assessed 15 small cell prostatic cancers and 22 small cell lung cancers for ERG rearrangement using fluorescence in situ hybridization. Commonly used and novel immunohistochemical markers (i.e. androgen receptor, calcium activated nucleotidase 1, Golgi phosphoprotein 2, prostate-specific antigen, prostate-specific membrane antigen, CD56, epithelial membrane antigen, thyroid transcription factor 1, chromogranin A, synaptophysin and Ki67) were further studied. ERG rearrangement occurred in 86% of small cell prostatic cancers but in none of the small cell lung cancers and was the best marker to differentiate between both tumours (P < 0.0001). CONCLUSIONS The ERG rearrangement is commonly observed in small cell prostatic cancer, supporting the hypothesis that ERG rearrangement occurs in aggressive prostatic cancers. Furthermore, the ERG rearrangement is the most significant marker to differentiate between small cell prostatic cancer and small cell lung cancer. Moreover, our data suggest that small cell prostatic cancer is not a tumour entity on its own, but a dedifferentiated variant of common acinar prostatic cancer.
Collapse
Affiliation(s)
- Veit J Scheble
- Institute of Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Fine SW, Gopalan A, Leversha MA, Al-Ahmadie HA, Tickoo SK, Zhou Q, Satagopan JM, Scardino PT, Gerald WL, Reuter VE. TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol 2010; 23:1325-33. [PMID: 20562851 PMCID: PMC3413944 DOI: 10.1038/modpathol.2010.120] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TMPRSS2-ERG gene rearrangement is seen in about half of clinically localized prostate cancers, yet controversy exists with regard to its prognostic implications. Similarly, the relationship of TMPRSS2-ERG fusion to Gleason score and morphology remains uncertain. We assigned Gleason scores and recorded morphological features for 521 clinically localized prostate cancers sampled in triplicate and arrayed in eight tissue microarray blocks. Fluorescence in situ hybridization was performed to delineate TMPRSS2-ERG aberrations. Using maximum Gleason score, based on three core evaluation, and overall Gleason score, based on prostatectomy sections, Fisher's exact test was performed for tumors with TMPRSS2-ERG translocation/deletion, copy number increase (≥ 3) of the TMPRSS2-ERG region without translocation/deletion, and copy number increase and concomitant translocation/deletion. In all, 217 (42%) translocation/deletion and 30 (5.9%) copy number increase-alone cases were detected. Among 217 translocation/deletion cases, 32 had translocation/deletion with copy number increase. In all, 237, 200, and 75 cancers had maximum core-specific Gleason score of 6, 7, and 8-10, respectively. Tumors with translocation/deletion tended toward lower Gleason scores than those without (P=0.002) with similar results for overall Gleason score (P=0.02); copy number increase cases tended toward higher Gleason scores than those without (P<0.001). Gleason score of 8-10 tumors demonstrated lower odds of translocation/deletion (odds ratio (OR) 0.38; 95% CI 0.21-0.68) and higher odds of copy number increase alone (OR 7.33; 95% CI 2.65-20.31) or copy number increase+translocation/deletion (OR 3.03; 95% CI 1.12-8.15) relative to Gleason score of <7 tumors. No significant difference in TMPRSS2-ERG incidence was observed between patients with and without cribriform glands, glomerulations, signet-ring cells, or intraductal cancer (P=0.821, 0.095, 0.132, 0.375). TMPRSS2-ERG gene fusion is associated with lower core-specific and overall Gleason scores and not with high-grade morphologies. Conversely, TMPRSS2-ERG copy number increase, with or without rearrangement, is associated with higher Gleason score. These findings indicate that translocation/deletion of TMPRSS2-ERG is not associated with histological features of aggressive prostate cancer.
Collapse
Affiliation(s)
- Samson W. Fine
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Anuradha Gopalan
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Margaret A. Leversha
- Departments of Molecular Cytogenetics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Satish K. Tickoo
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Qin Zhou
- Departments of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jaya M. Satagopan
- Departments of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Peter T. Scardino
- Departments of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - William L. Gerald
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Victor E. Reuter
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
137
|
Giri VN, Ruth K, Hughes L, Uzzo RG, Chen DYT, Boorjian SA, Viterbo R, Rebbeck TR. Racial differences in prediction of time to prostate cancer diagnosis in a prospective screening cohort of high-risk men: effect of TMPRSS2 Met160Val. BJU Int 2010; 107:466-70. [PMID: 20735386 DOI: 10.1111/j.1464-410x.2010.09522.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION To evaluate the TMPRSS2-ERG gene polymorphism with respect to self-identified race or ethnicity (SIRE), time to prostate cancer (PCA) diagnosis, and screening parameters in the Prostate Cancer Risk Assessment Program, a prospective screening program for high-risk men. PATIENTS AND METHODS A total of 631 men aged between 35 and 69 years were studied. 'High-risk' was defined as ≥ one first degree or two second degree relatives with PCA, any African American (AA) man regardless of familial PCA, and men with BRCA1/2 mutations. Men with elevated prostate-specific antigen (PSA) concentrations or other indications for PCA underwent biopsy. Men were followed from time of study entry to PCA diagnosis. Cox models were used to evaluate time to PCA diagnosis by genotype. RESULTS Genotype distribution differed significantly by SIRE (CT/TT vs CC, P < 0.0001). Among 183 Caucasian men with at least one follow-up visit, PCA was more than doubled in men carrying CT/TT vs CC genotypes (hazard ratio = 2.55, 95% CI = 1.14-5.70) after controlling for age and PSA. No association was seen among AA men by TMPRSS2 genotype. CONCLUSIONS The T-allele of the Met160Val variant in TMPRSS2, which has been associated with the TMPRSS2-ERG fusion, may be informative of time to PCA diagnosis for a subset of high-risk Caucasian men who are undergoing regular PCA screening. This variant, along with other genetic markers, warrant further study for personalizing PCA screening.
Collapse
Affiliation(s)
- Veda N Giri
- Cancer Prevention and Control Program, Department of Clinical Genetics, Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Scheble VJ, Braun M, Beroukhim R, Mermel CH, Ruiz C, Wilbertz T, Stiedl AC, Petersen K, Reischl M, Kuefer R, Schilling D, Fend F, Kristiansen G, Meyerson M, Rubin MA, Bubendorf L, Perner S. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod Pathol 2010; 23:1061-7. [PMID: 20473283 PMCID: PMC3606550 DOI: 10.1038/modpathol.2010.87] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of specific somatic gene alterations is crucial for the insight into the development, progression, and clinical behavior of individual cancer types. The recently discovered recurrent ERG rearrangement in prostate cancer might represent a prostate cancer-specific alteration that has not been systematically assessed in tumors other than prostate cancer. Aim of this study was to assess, whether the ERG rearrangement and the distinct deletion site between TMPRSS2 and ERG, both predominantly resulting in a TMPRSS2-ERG fusion, occur in tumors other than prostate cancer. We assessed 54 different tumor types (2942 samples in total) for their ERG rearrangement status by fluorescence in situ hybridization (FISH). To calibrate, we analyzed 285 prostate cancer samples for the ERG rearrangement frequency. Additionally, we interrogated a high-resolution single nucleotide polymorphism (SNP) data set across 3131 cancer specimens (26 tumor types) for copy number alterations. None of the 54 different tumor types assessed by FISH harbored an ERG rearrangement, whereas the prostate cancer samples revealed an ERG rearrangement in 49.5% of cases. Furthermore, within the 26 tumor types assessed for copy number alterations by SNP, the distinct deletion site between TMPRSS2 and ERG (21q22.2-3) was detectable exclusively in prostate cancer. Although Ewing's sarcoma and AML have known rearrangements rarely involving ERG, we hypothesize that the ERG rearrangement as well as the distinct deletion site on 21q22.2-3 between TMPRSS2 and ERG are prostate-cancer-specific genomic alterations. These observations provide further insight into the oncogenesis of prostate cancer and might be critical for the development of ERG rearrangement assessment as a clinical tool.
Collapse
Affiliation(s)
- Veit J. Scheble
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Martin Braun
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Craig H. Mermel
- Cancer Program, Medical and Population Genetics Group, The Broad Institute of M.I.T. and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Christian Ruiz
- Department of Pathology University Hospital Basel, Basel, Switzerland
| | - Theresia Wilbertz
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Ann-Cathrin Stiedl
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Karen Petersen
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Markus Reischl
- Institute for Applied Informatics, Research Center Karlsruhe
| | - Rainer Kuefer
- Department of Urology, University Hospital of Ulm, Ulm, Germany
| | - David Schilling
- Department of Urology Comprehensive Cancer Center, University Hospital of Tuebingen, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Glen Kristiansen
- Institute of Surgical Pathology University Hospital Zurich, Zurich, Switzerland
| | - Matthew Meyerson
- Cancer Program, Medical and Population Genetics Group, The Broad Institute of M.I.T. and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Lukas Bubendorf
- Department of Pathology University Hospital Basel, Basel, Switzerland
| | - Sven Perner
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
139
|
The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 2010; 428:325-46. [PMID: 20507279 DOI: 10.1042/bj20100046] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.
Collapse
|
140
|
Clarke RA, Schirra HJ, Catto JW, Lavin MF, Gardiner RA. Markers for detection of prostate cancer. Cancers (Basel) 2010; 2:1125-54. [PMID: 24281110 PMCID: PMC3835122 DOI: 10.3390/cancers2021125] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 12/15/2022] Open
Abstract
Early detection of prostate cancer is problematic, not just because of uncertainly whether a diagnosis will benefit an individual patient, but also as a result of the imprecise and invasive nature of establishing a diagnosis by biopsy. Despite its low sensitivity and specificity for identifying patients harbouring prostate cancer, serum prostate specific antigen (PSA) has become established as the most reliable and widely-used diagnostic marker for this condition. In its wake, many other markers have been described and evaluated. This review focuses on the supporting evidence for the most prominent of these for detection and also for predicting outcome in prostate cancer.
Collapse
Affiliation(s)
- Raymond A. Clarke
- Prostate Cancer Institute, Cancer Care Centre, St George Hospital Clinical School of Medicine, University of New South Wales, Kogarah, NSW 2217, Australia; E-Mail:
| | - Horst J. Schirra
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD, 4072, Australia; E-Mail:
| | - James W. Catto
- Academic Urology Unit and Institute for Cancer Studies, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK; E-Mail:
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia; E-Mail:
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Robert A. Gardiner
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| |
Collapse
|
141
|
Androgens Induce Functional CXCR4 through ERG Factor Expression in TMPRSS2-ERG Fusion-Positive Prostate Cancer Cells. Transl Oncol 2010; 3:195-203. [PMID: 20563261 DOI: 10.1593/tlo.09328] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 12/29/2009] [Accepted: 01/11/2010] [Indexed: 11/18/2022] Open
Abstract
TMPRSS2-ERG fusion transcripts have been shown to be expressed in a majority of prostate cancer (PC) patients because of chromosomal translocations or deletions involving the TMPRSS2 gene promoter and the ERG gene coding sequence. These alterations cause androgen-dependent ERG transcription factor expression in PC patients. We and others have shown that chemokine receptor CXCR4 expression is upregulated in PC tumor cells, and its ligand, CXCL12, is expressed in bone stromal cells. The CXCL12/CXCR4 axis functions in PC progression to enhance invasion and metastasis. To address the regulation of CXCR4 expression, we identified several putative ERG consensus-binding sites in the promoter region of CXCR4. We hypothesized that androgen-dependent regulation of the ERG transcription factor could induce CXCR4 expression in PC cells. Results of the current study show that 1) prostate tumor cells coexpress higher ERG and CXCR4 compared with benign tissue, 2) CXCR4 expression is increased in the TMPRSS2-ERG fusion-positive cell line, 3) ERG transcription factor binds to the CXCR4 gene promoter, 4) synthetic androgen (R1881) upregulates both ERG and CXCR4 in TMPRSS2-ERG fusion-positive VCaP cells, 5) small interfering RNA-mediated down-regulation of ERG resulted in the loss of androgen-dependent regulation of CXCR4 expression in VCaP cells, and 6) R1881-activated TMPRSS2-ERG expression functionally activates CXCR4 in VCaP cells. These findings provide a link between TMPRSS2-ERG translocations and enhanced metastasis of tumor cells through CXCR4 function in PC cells.
Collapse
|
142
|
Gallagher DJ, Vijai J, Cronin AM, Bhatia J, Vickers AJ, Gaudet MM, Fine S, Reuter V, Scher HI, Halldén C, Dutra-Clarke A, Klein RJ, Scardino PT, Eastham JA, Lilja H, Kirchhoff T, Offit K. Susceptibility loci associated with prostate cancer progression and mortality. Clin Cancer Res 2010; 16:2819-32. [PMID: 20460480 DOI: 10.1158/1078-0432.ccr-10-0028] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prostate cancer is a heterogeneous disease with a variable natural history that is not accurately predicted by currently used prognostic tools. EXPERIMENTAL DESIGN We genotyped 798 prostate cancer cases of Ashkenazi Jewish ancestry treated for localized prostate cancer between June 1988 and December 2007. Blood samples were prospectively collected and de-identified before being genotyped and matched to clinical data. The survival analysis was adjusted for Gleason score and prostate-specific antigen. We investigated associations between 29 single nucleotide polymorphisms (SNP) and biochemical recurrence, castration-resistant metastasis, and prostate cancer-specific survival. Subsequently, we did an independent analysis using a high-resolution panel of 13 SNPs. RESULTS On univariate analysis, two SNPs were associated (P<0.05) with biochemical recurrence, three SNPs were associated with clinical metastases, and one SNP was associated with prostate cancer-specific mortality. Applying a Bonferroni correction (P<0.0017), one association with biochemical recurrence (P=0.0007) was significant. Three SNPs showed associations on multivariable analysis, although not after correcting for multiple testing. The secondary analysis identified an additional association with prostate cancer-specific mortality in KLK3 (P<0.0005 by both univariate and multivariable analysis). CONCLUSIONS We identified associations between prostate cancer susceptibility SNPs and clinical end points. The rs61752561 in KLK3 and rs2735839 in the KLK2-KLK3 intergenic region were strongly associated with prostate cancer-specific survival, and rs10486567 in the 7JAZF1 gene were associated with biochemical recurrence. A larger study will be required to independently validate these findings and determine the role of these SNPs in prognostic models.
Collapse
Affiliation(s)
- David J Gallagher
- Department of Medicine, Clinical Genetics Service, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, Albert Einstein College of Medicine, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Leinonen KA, Tolonen TT, Bracken H, Stenman UH, Tammela TLJ, Saramäki OR, Visakorpi T. Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. Clin Cancer Res 2010; 16:2845-51. [PMID: 20442300 DOI: 10.1158/1078-0432.ccr-09-2505] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of the study was to examine whether TMPRSS2:ERG fusion or SPINK1 protein expression is associated with hormone responsiveness of prostate cancer and can thus be used as a biomarker. EXPERIMENTAL DESIGN Diagnostic needle biopsies from prostate cancer patients primarily treated by endocrine therapy were evaluated for TMPRSS2:ERG fusion with fluorescence in situ hybridization and SPINK1 protein expression with immunohistochemistry. RESULTS The frequency of TMPRSS2:ERG fusion in 178 biopsies of hormonally treated patients was 34%. Of the fusion-positive cases, 71% showed deletion between the two genes, and 23% showed gain of the fusion. The fusion was associated with high Ki-67 staining (P=0.001), age at diagnosis (P=0.024), and tumor area (P=0.006), but not with Gleason score, T stage, M stage, prostate-specific antigen (PSA), or progression-free survival. Strong positive SPINK1 expression was found in 11% (21 of 186) of the biopsies. SPINK1-positive cases had significantly shorter progression-free survival compared with SPINK1-negative cases (P=0.001). The expression was not associated with any other clinicopathologic variables studied. In a multivariate analysis, SPINK1 expression showed independent prognostic value, with a relative risk of 2.3 (95% confidence interval, 1.1-4.6). SPINK1 expression and the fusion were not associated with each other. CONCLUSIONS There was no association between TMPRSS2:ERG fusion and prognosis, suggesting that TMPRSS2:ERG rearrangement does not implicate hormone dependence of the cancer. SPINK1 expression, found in approximately 10% of prostate cancers, was associated with aggressive form of the disease and could serve as a biomarker in endocrine-treated prostate cancer.
Collapse
Affiliation(s)
- Katri A Leinonen
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Department of Urology, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Chromosomal rearrangements that result in high level expression of ETS gene family members are common events in human prostate cancer. Most frequently, the androgen-activated gene TMPRSS2 is found fused to the ERG gene. Fusions involving ETV1, ETV4 and ETV5 occur less frequently but exhibit greater variability in fusion structure with 12 unique 5' fusion partners identified so far. ETS gene rearrangement seems to be a key event in driving prostate neoplastic development: the rearrangement occurs as an early event and continues to be expressed in metastatic and castration-resistant disease. However, ETS alterations seem insufficient on their own to induce cancer formation. No consistent associations are seen between the presence of ETS alteration and clinical outcome, with the possible exception that duplication of rearranged ERG, reflecting aneuploidy, is associated with poor outcome. Thus, factors other than ERG gene status may be the major determinants of poor clinical outcome. Expression signatures of prostate cancers containing the TMPRSS2-ERG fusion suggest involvement of beta-estradiol signaling, and reveal higher levels of expression of HDAC1 and ion channel genes when compared to cancers that lack the rearrangement. These observations suggest new therapeutic possibilities for patients harboring ETS gene fusions.
Collapse
|
145
|
Sørensen KD, Ørntoft TF. Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev Mol Diagn 2010; 10:49-64. [PMID: 20014922 DOI: 10.1586/erm.09.74] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy in males in the Western world. This review focuses on advances in biomarker discovery for prostate cancer by microarray profiling of mRNA and microRNA expression. Novel biomarkers are strongly needed to enable more accurate detection of prostate cancer, improve prediction of tumor aggressiveness and facilitate discovery of new therapeutic targets for tailored medicine. Promising molecular markers identified from gene expression profiling studies include AMACR, EZH2, TMPRSS2-ERG, miR-221 and miR-141, which are described in more detail. In addition, a compilation of prognostic gene expression signatures for prediction of prostate cancer patient outcome is provided, and their possible clinical utility is discussed. Furthermore, limitations in the application of microarray-based expression profiling for identification of prostate cancer biomarkers are addressed.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark.
| | | |
Collapse
|
146
|
Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer 2010; 102:678-84. [PMID: 20104229 PMCID: PMC2837564 DOI: 10.1038/sj.bjc.6605554] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The discovery of ERG/ETV1 gene rearrangements and PTEN gene loss warrants investigation in a mechanism-based prognostic classification of prostate cancer (PCa). The study objective was to evaluate the potential clinical significance and natural history of different disease categories by combining ERG/ETV1 gene rearrangements and PTEN gene loss status. METHODS We utilised fluorescence in situ hybridisation (FISH) assays to detect PTEN gene loss and ERG/ETV1 gene rearrangements in 308 conservatively managed PCa patients with survival outcome data. RESULTS ERG/ETV1 gene rearrangements alone and PTEN gene loss alone both failed to show a link to survival in multivariate analyses. However, there was a strong interaction between ERG/ETV1 gene rearrangements and PTEN gene loss (P<0.001). The largest subgroup of patients (54%), lacking both PTEN gene loss and ERG/ETV1 gene rearrangements comprised a 'good prognosis' population exhibiting favourable cancer-specific survival (85.5% alive at 11 years). The presence of PTEN gene loss in the absence of ERG/ETV1 gene rearrangements identified a patient population (6%) with poorer cancer-specific survival that was highly significant (HR=4.87, P<0.001 in multivariate analysis, 13.7% survival at 11 years) when compared with the 'good prognosis' group. ERG/ETV1 gene rearrangements and PTEN gene loss status should now prospectively be incorporated into a predictive model to establish whether predictive performance is improved. CONCLUSIONS Our data suggest that FISH studies of PTEN gene loss and ERG/ETV1 gene rearrangements could be pursued for patient stratification, selection and hypothesis-generating subgroup analyses in future PCa clinical trials and potentially in patient management.
Collapse
|
147
|
Barwick BG, Abramovitz M, Kodani M, Moreno CS, Nam R, Tang W, Bouzyk M, Seth A, Leyland-Jones B. Prostate cancer genes associated with TMPRSS2-ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br J Cancer 2010; 102:570-6. [PMID: 20068566 PMCID: PMC2822948 DOI: 10.1038/sj.bjc.6605519] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Recent studies have indicated that prostate cancer patients with the TMPRSS2–ERG gene fusion have a higher risk of recurrence. To identify markers associated with TMPRSS2–ERG fusion and prognostic of biochemical recurrence, we analysed a cohort of 139 men with prostate cancer for 502 molecular markers. Methods: RNA from radical prostatectomy tumour specimens was analysed using cDNA-mediated, annealing, selection, extension and ligation (DASL) to determine mRNAs associated with TMPRSS2–ERG T1/E4 fusion and prognostic of biochemical recurrence. Differentially expressed mRNAs in T1/E4-positive tumours were determined using significance analysis of microarrays (false discovery rate (FDR) <5%). Univariate and multivariate Cox regression determined genes, gene signatures and clinical factors prognostic of recurrence (P-value <0.05, log–rank test). Analysis of two prostate microarray studies (GSE1065 and GSE8402) validated the findings. Results: In the 139 patients from this study and from a 455-patient Swedish cohort, 15 genes in common were differentially regulated in T1/E4 fusion-positive tumours (FDR <0.05). The most significant mRNAs in both cohorts coded ERG. Nine genes were found prognostic of recurrence in this study and in a 596-patient Minnesota cohort. A molecular recurrence score was significant in prognosticating recurrence (P-value 0.000167) and remained significant in multivariate analysis of a mixed clinical model considering Gleason score and TMPRSS2–ERG fusion status. Conclusions: TMPRSS2–ERG T1/E4 fusion-positive tumours had differentially regulated mRNAs observed in multiple studies, the most significant one coded for ERG. Several mRNAs were consistently associated with biochemical recurrence and have potential clinical utility but will require further validation for successful translation.
Collapse
Affiliation(s)
- B G Barwick
- Emory Biomarker Service Center, Emory University, 1365C Clifton Road, NE, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
It has become increasingly evident that the study of DNA is inadequate to explain many, if not most, aspects of the development and progression of neoplastic lesions from pre-invasive lesions to metastasis. Thus, the term "genetic" can no longer refer to just the study of the genome. Much of the action in genetic research now shifts to the methods by which the pre-mRNA from one gene is processed to yield multiple different proteins, different quantities of the same protein as well as other forms of regulating RNA. Thus, the age of post-transcriptional processing and epigenetic control of the transfer of information from the genome has arrived. The mechanisms of post-transcriptional processing and epigenetic control that must be characterized in greater detail including alternate splicing, regulation of mRNA degradation, RNA regulatory factors including those factors which extensively edit mRNAs, control of translation, and control of protein stability and degradation. This chapter reviews many of the processes that control information from the genome to proteins and how these factors lead from less than 40,000 genes to more than an order of magnitude increase more proteins which actually control the phenotypes of cells - normal or neoplastic. It is usually the products of genes (e.g., mRNA, microRNA and proteins) that are the molecular markers that will control translational research and ultimately, individualized (personal) medical approaches to disease. This chapter emphasizes how the process of neoplasia "hijacks" the normal processes of cellular operations, especially those processes that are important in the normal development of the organisms - including proliferation, cellular death, angiogenesis, cellular mobility and invasion, and immunoregulation to ensure neoplastic development, survival and progression. This chapter reviews the wide range of processes controlling the information that flows from the genome to proteins and emphasizes how molecular steps in pure processes can be used as biomarkers to study prevention, treatment and/or management of diseases.
Collapse
Affiliation(s)
- Sudhir Srivastava
- National Cancer Institute, National Institutes of Health, Bethesda MD, USA.
| | | |
Collapse
|
149
|
Beuzeboc P, Soulié M, Richaud P, Salomon L, Staerman F, Peyromaure M, Mongiat-Artus P, Cornud F, Paparel P, Davin JL, Molinié V. Gènes de fusion et cancer de la prostate. De la découverte à la valeur pronostique et aux perspectives thérapeutiques. Prog Urol 2009; 19:819-24. [DOI: 10.1016/j.purol.2009.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/27/2009] [Accepted: 06/03/2009] [Indexed: 02/07/2023]
|
150
|
Hermans KG, Boormans JL, Gasi D, van Leenders GJHL, Jenster G, Verhagen PCMS, Trapman J. Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin Cancer Res 2009; 15:6398-403. [PMID: 19825963 DOI: 10.1158/1078-0432.ccr-09-1176] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To gain insight in the mechanism and clinical relevance of TMPRSS2-ERG expression in prostate cancer, we determined the specific characteristics of fusion transcripts starting at TMPRSS2 exon 1 and at a more upstream and less characterized exon 0. EXPERIMENTAL DESIGN We used quantitative PCR analysis to investigate expression of wild-type TMPRSS2(exon 0) and TMPRSS2(exon 1) and of ERG fusion transcripts. Expression was tested in normal tissue samples, in prostate cancer cell lines and xenografts, and in fresh-frozen clinical prostate cancer samples (primary tumors and recurrences). Expression in clinical samples was correlated with disease progression. RESULTS TMPRSS2(exon 0) and TMPRSS2(exon 1) transcripts were similarly androgen regulated in prostate cancer cell lines, but the expression levels of TMPRSS2(exon 1) were much higher. Comparison of expression in different tissues showed TMPRSS2(exon 0) expression to be much more prostate specific. In androgen receptor-positive prostate cancer xenografts, TMPRSS2(exon 1) transcripts were expressed at similar levels, but TMPRSS2(exon 0) transcripts were expressed at very variable levels. The same phenomenon was observed for TMPRSS2-ERG fusion transcripts. In clinical prostate cancers, the expression of TMPRSS2(exon 0)-ERG was even more variable. Expression of TMPRSS2(exon 0)-ERG transcripts was detected in 55% (24 of 44) of gene fusion-positive primary tumors but only in 15% (4 of 27) of gene fusion-positive recurrences and at much lower levels. Furthermore, in primary tumors, expression of TMPRSS2(exon 0)-ERG transcripts was an independent predictor of biochemical progression-free survival. CONCLUSION The expression of TMPRSS2(exon 0)-ERG fusion transcripts in prostate cancer is associated with a less-aggressive biological behavior.
Collapse
Affiliation(s)
- Karin G Hermans
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|