101
|
Corsini E, Galbiati V, Esser PR, Pinto A, Racchi M, Marinovich M, Martin SF, Galli CL. Role of PKC-β in chemical allergen-induced CD86 expression and IL-8 release in THP-1 cells. Arch Toxicol 2013; 88:415-24. [PMID: 24136171 DOI: 10.1007/s00204-013-1144-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
We previously demonstrated an age-related decrease in receptor for activated C-kinase (RACK-1) expression and functional deficit in Langerhans cells' responsiveness. This defect specifically involves the translocation of protein kinase C (PKC)-β. The purpose of this study was to investigate the role of RACK-1 and PKC-β in chemical allergen-induced CD86 expression and IL-8 release in the human promyelocytic cell line THP-1 and primary human dendritic cells (DC). Dinitrochlorobenzene, p-phenylenediamine and diethyl maleate were used as contact allergens. The selective cell-permeable inhibitor of PKC-β and the broad PKC inhibitor GF109203X completely prevented chemical allergen- or lipopolysaccharide (LPS)-induced CD86 expression and significantly modulated IL-8 release (50 % reduction). The selective cell-permeable inhibitor of PKC-ε (also known to bind to RACK-1) failed to modulate allergen- or LPS-induced CD86 expression or allergen-induced IL-8 release, while modulating LPS-induced IL-8 release. The use of a RACK-1 pseudosubstrate, which directly activates PKC-β, resulted in dose-related increase in CD86 expression and IL-8 release. Similar results were obtained with human DC, confirming the relevance of results obtained in THP-1 cells. Overall, our findings demonstrate the role of PKC-β and RACK-1 in allergen-induced CD86 expression and IL-8 production, supporting a central role of PKC-β in the initiation of chemical allergen-induced DC activation.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Depuydt G, Xie F, Petyuk VA, Shanmugam N, Smolders A, Dhondt I, Brewer HM, Camp DG, Smith RD, Braeckman BP. Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans. Mol Cell Proteomics 2013; 12:3624-39. [PMID: 24002365 PMCID: PMC3861712 DOI: 10.1074/mcp.m113.027383] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Reduced signaling through the C. elegans insulin/insulin-like growth factor-1-like tyrosine kinase receptor daf-2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LC-MS/MS quantitative proteomics, we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction, as well as in the daf-2(e1370) insulin/insulin-like growth factor-1-receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that post-transcriptional regulation determines ribosome content. Proteomics also revealed the increased presence of many structural muscle cell components in long-lived worms, which appeared to result from the prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF-16, but not diet restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf-2-specific proteome changes include overexpression of aerobic metabolism enzymes and general activation of stress-responsive and immune defense systems, whereas the increased abundance of many protein subunits of the proteasome core complex is a dietary-restriction-specific characteristic.
Collapse
Affiliation(s)
- Geert Depuydt
- Biology Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Letzring DP, Wolf AS, Brule CE, Grayhack EJ. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA (NEW YORK, N.Y.) 2013; 19:1208-17. [PMID: 23825054 PMCID: PMC3753928 DOI: 10.1261/rna.039446.113] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Translation of CGA codon repeats in the yeast Saccharomyces cerevisiae is inefficient, resulting in dose-dependent reduction in expression and in production of an mRNA cleavage product, indicative of a stalled ribosome. Here, we use genetics and translation inhibitors to understand how ribosomes respond to CGA repeats. We find that CGA codon repeats result in a truncated polypeptide that is targeted for degradation by Ltn1, an E3 ubiquitin ligase involved in nonstop decay, although deletion of LTN1 does not improve expression downstream from CGA repeats. Expression downstream from CGA codons at residue 318, but not at residue 4, is improved by deletion of either ASC1 or HEL2, previously implicated in inhibition of translation by polybasic sequences. Thus, translation of CGA repeats likely causes ribosomes to stall and exploits known quality control systems. Expression downstream from CGA repeats at amino acid 4 is improved by paromomycin, an aminoglycoside that relaxes decoding specificity. Paromomycin has no effect if native tRNA(Arg(ICG)) is highly expressed, consistent with the idea that failure to efficiently decode CGA codons might occur in part due to rejection of the cognate tRNA(Arg(ICG)). Furthermore, expression downstream from CGA repeats is improved by inactivation of RPL1B, one of two genes encoding the universally conserved ribosomal protein L1. The effects of rpl1b-Δ and of either paromomycin or tRNA(Arg(ICG)) on CGA decoding are additive, suggesting that the rpl1b-Δ mutant suppresses CGA inhibition by means other than increased acceptance of tRNA(Arg(ICG)). Thus, inefficient decoding of CGA likely involves at least two independent defects in translation.
Collapse
Affiliation(s)
- Daniel P. Letzring
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | - Andrew S. Wolf
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | - Christina E. Brule
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | - Elizabeth J. Grayhack
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
- Corresponding authorE-mail
| |
Collapse
|
104
|
RACK1 to the future--a historical perspective. Cell Commun Signal 2013; 11:53. [PMID: 23915285 PMCID: PMC3750812 DOI: 10.1186/1478-811x-11-53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/18/2022] Open
Abstract
This perspective summarises the first and long overdue RACK1 meeting held at the University of Limerick, Ireland, May 2013, in which RACK1's role in the immune system, the heart and the brain were discussed and its contribution to disease states such as cancer, cardiac hypertrophy and addiction were described. RACK1 is a scaffolding protein and a member of the WD repeat family of proteins. These proteins have a unique architectural assembly that facilitates protein anchoring and the stabilisation of protein activity. A large body of evidence is accumulating which is helping to define the versatile role of RACK1 in assembling and dismantling complex signaling pathways from the cell membrane to the nucleus in health and disease. In this commentary, we first provide a historical perspective on RACK1. We also address many of the pertinent and topical questions about this protein such as its role in transcription, epigenetics and translation, its cytoskeletal contribution and the merits of targeting RACK1 in disease.
Collapse
|
105
|
Tarumoto Y, Kanoh J, Ishikawa F. Receptor for activated C-kinase (RACK1) homolog Cpc2 facilitates the general amino acid control response through Gcn2 kinase in fission yeast. J Biol Chem 2013; 288:19260-8. [PMID: 23671279 DOI: 10.1074/jbc.m112.445270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
General amino acid control (GAAC) is crucial for sensing and adaptation to nutrient availability. Amino acid starvation activates protein kinase Gcn2, which plays a central role in the GAAC response by phosphorylating the α-subunit of eukaryotic initiation factor 2 (eIF2α), leading to the translational switch to stimulate selective expression of stress-responsive genes. We report here that in fission yeast Schizosaccharomyces pombe, Cpc2, a homolog of mammalian receptor for activated C-kinase (RACK1), is important for the GAAC response. Deletion of S. pombe cpc2 impairs the amino acid starvation-induced phosphorylation of eIF2α and the expression of amino acid biosynthesis genes, thereby rendering cells severely sensitive to amino acid limitation. Unlike the Saccharomyces cerevisiae Cpc2 ortholog, which normally suppresses the GAAC response, our findings suggest that S. pombe Cpc2 promotes the GAAC response. We also found that S. pombe Cpc2 is required for starvation-induced Gcn2 autophosphorylation, which is essential for Gcn2 function. These results indicate that S. pombe Cpc2 facilitates the GAAC response through the regulation of Gcn2 activation and provide a novel insight for the regulatory function of RACK1 on Gcn2-mediated GAAC response.
Collapse
Affiliation(s)
- Yusuke Tarumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
106
|
Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E, Calamita P, Sanvito F, Biffo S. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci 2013; 70:1439-50. [PMID: 23212600 PMCID: PMC11113757 DOI: 10.1007/s00018-012-1215-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a conserved structural protein of 40S ribosomes. Strikingly, deletion of RACK1 in yeast homolog Asc1 is not lethal. Mammalian RACK1 also interacts with many nonribosomal proteins, hinting at several extraribosomal functions. A knockout mouse for RACK1 has not previously been described. We produced the first RACK1 mutant mouse, in which both alleles of RACK1 gene are defective in RACK1 expression (ΔF/ΔF), in a pure C57 Black/6 background. In a sample of 287 pups, we observed no ΔF/ΔF mice (72 expected). Dissection and genotyping of embryos at various stages showed that lethality occurs at gastrulation. Heterozygotes (ΔF/+) have skin pigmentation defects with a white belly spot and hypopigmented tail and paws. ΔF/+ have a transient growth deficit (shown by measuring pup size at P11). The pigmentation deficit is partly reverted by p53 deletion, whereas the lethality is not. ΔF/+ livers have mild accumulation of inactive 80S ribosomal subunits by polysomal profile analysis. In ΔF/+ fibroblasts, protein synthesis response to extracellular and pharmacological stimuli is reduced. These results highlight the role of RACK1 as a ribosomal protein converging signaling to the translational apparatus.
Collapse
Affiliation(s)
- Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Simone Gallo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Laura Magri
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Daniela Brina
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Elisa Pesce
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| | - Piera Calamita
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesca Sanvito
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| |
Collapse
|
107
|
Schepetilnikov M, Dimitrova M, Mancera-Martínez E, Geldreich A, Keller M, Ryabova LA. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J 2013; 32:1087-102. [PMID: 23524850 DOI: 10.1038/emboj.2013.61] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/15/2013] [Indexed: 11/09/2022] Open
Abstract
Mammalian target-of-rapamycin (mTOR) triggers S6 kinase (S6K) activation to phosphorylate targets linked to translation in response to energy, nutrients, and hormones. Pathways of TOR activation in plants remain unknown. Here, we uncover the role of the phytohormone auxin in TOR signalling activation and reinitiation after upstream open reading frame (uORF) translation, which in plants is dependent on translation initiation factor eIF3h. We show that auxin triggers TOR activation followed by S6K1 phosphorylation at T449 and efficient loading of uORF-mRNAs onto polysomes in a manner sensitive to the TOR inhibitor Torin-1. Torin-1 mediates recruitment of inactive S6K1 to polysomes, while auxin triggers S6K1 dissociation and recruitment of activated TOR instead. A putative target of TOR/S6K1-eIF3h-is phosphorylated and detected in polysomes in response to auxin. In TOR-deficient plants, polysomes were prebound by inactive S6K1, and loading of uORF-mRNAs and eIF3h was impaired. Transient expression of eIF3h-S178D in plant protoplasts specifically upregulates uORF-mRNA translation. We propose that TOR functions in polysomes to maintain the active S6K1 (and thus eIF3h) phosphorylation status that is critical for translation reinitiation.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex 67084, France
| | | | | | | | | | | |
Collapse
|
108
|
Stapleton D, Nelson C, Parsawar K, Flores-Opazo M, McClain D, Parker G. The 3T3-L1 adipocyte glycogen proteome. Proteome Sci 2013; 11:11. [PMID: 23521774 PMCID: PMC3622581 DOI: 10.1186/1477-5956-11-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/04/2013] [Indexed: 01/10/2023] Open
Abstract
Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle.
Collapse
Affiliation(s)
- David Stapleton
- University of Utah School of Medicine, Rm 4C464B SOM, 30 N 1900 E, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Valásek LS. 'Ribozoomin'--translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci 2013; 13:305-30. [PMID: 22708493 PMCID: PMC3434475 DOI: 10.2174/138920312801619385] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 01/16/2012] [Accepted: 02/16/2012] [Indexed: 02/05/2023]
Abstract
Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into
life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene
regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the
study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA
translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular
details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss
recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of
how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our
current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation.
Collapse
Affiliation(s)
- Leos Shivaya Valásek
- Laboratory of Eukaryotic Gene Regulation, Institute of Microbiology AS CR, Prague, Czech Republic.
| |
Collapse
|
110
|
Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene 2013; 33:1124-34. [PMID: 23455324 DOI: 10.1038/onc.2013.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/17/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022]
Abstract
Prostate tumor overexpressed-1 (PTOV1), a modulator of the Mediator transcriptional regulatory complex, is expressed at high levels in prostate cancer and other neoplasias in association with a more aggressive disease. Here we show that PTOV1 interacts directly with receptor of activated protein C kinase 1 (RACK1), a regulator of protein kinase C and Jun signaling and also a component of the 40S ribosome. Consistent with this interaction, PTOV1 was associated with ribosomes and its overexpression promoted global protein synthesis in prostate cancer cells and COS-7 fibroblasts in a mTORC1-dependent manner. Transfection of ectopic PTOV1 enhanced the expression of c-Jun protein without affecting the levels of c-Jun or RACK1 mRNA. Conversely, knockdown of PTOV1 caused significant declines in global protein synthesis and c-Jun protein levels. High levels of PTOV1 stimulated the motility and invasiveness of prostate cancer cells, which required c-Jun, whereas knockdown of PTOV1 strongly inhibited the tumorigenic and metastatic potentials of PC-3 prostate cancer cells. In human prostate cancer samples, the expression of high levels of PTOV1 in primary and metastatic tumors was significantly associated with increased nuclear localization of active c-Jun. These results unveil new functions of PTOV1 in the regulation of protein translation and in the progression of prostate cancer to an invasive and metastatic disease.
Collapse
|
111
|
The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control. ISRN MOLECULAR BIOLOGY 2013; 2013:548359. [PMID: 27335678 PMCID: PMC4890865 DOI: 10.1155/2013/548359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/21/2012] [Indexed: 12/02/2022]
Abstract
The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins.
Collapse
|
112
|
Boratkó A, Gergely P, Csortos C. RACK1 is involved in endothelial barrier regulation via its two novel interacting partners. Cell Commun Signal 2013; 11:2. [PMID: 23305203 PMCID: PMC3560227 DOI: 10.1186/1478-811x-11-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/07/2013] [Indexed: 01/17/2023] Open
Abstract
Background RACK1, receptor for activated protein kinase C, serves as an anchor in multiple signaling pathways. TIMAP, TGF-β inhibited membrane-associated protein, is most abundant in endothelial cells with a regulatory effect on the endothelial barrier function. The interaction of TIMAP with protein phosphatase 1 (PP1cδ) was characterized, yet little is known about its further partners. Results We identified two novel interacting partners of RACK1, namely, TGF-β inhibited membrane-associated protein, TIMAP, and farnesyl transferase. TIMAP is most abundant in endothelial cells where it is involved in the regulation of the barrier function. WD1-4 repeats of RACK1 were identified as critical regions of the interaction both with TIMAP and farnesyl transferase. Phosphorylation of TIMAP by activation of the cAMP/PKA pathway reduced the amount of TIMAP-RACK1 complex and enhanced translocation of TIMAP to the cell membrane in vascular endothelial cells. However, both membrane localization of TIMAP and transendothelial resistance were attenuated after RACK1 depletion. Farnesyl transferase, the enzyme responsible for prenylation and consequent membrane localization of TIMAP, is present in the RACK1-TIMAP complex in control cells, but it does not co-immunoprecipitate with TIMAP after RACK1 depletion. Conclusions Transient parallel linkage of TIMAP and farnesyl transferase to RACK1 could ensure prenylation and transport of TIMAP to the plasma membrane where it may attend in maintaining the endothelial barrier as a phosphatase regulator.
Collapse
Affiliation(s)
- Anita Boratkó
- Department of Medical Chemistry, University of Debrecen Medical and Health Science Center, Egyetem tér 1, Debrecen, H 4032, Hungary.
| | | | | |
Collapse
|
113
|
Jouffe C, Cretenet G, Symul L, Martin E, Atger F, Naef F, Gachon F. The circadian clock coordinates ribosome biogenesis. PLoS Biol 2013; 11:e1001455. [PMID: 23300384 PMCID: PMC3536797 DOI: 10.1371/journal.pbio.1001455] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/09/2012] [Indexed: 12/26/2022] Open
Abstract
Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.
Collapse
Affiliation(s)
- Céline Jouffe
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Gaspard Cretenet
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Laura Symul
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eva Martin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Florian Atger
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
114
|
Rodríguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W. The transcriptional response of Arabidopsis leaves to Fe deficiency. FRONTIERS IN PLANT SCIENCE 2013; 4:276. [PMID: 23888164 PMCID: PMC3719017 DOI: 10.3389/fpls.2013.00276] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/04/2013] [Indexed: 05/20/2023]
Abstract
Due to its ease to donate or accept electrons, iron (Fe) plays a crucial role in respiration and metabolism, including tetrapyrrole synthesis, in virtually all organisms. In plants, Fe is a component of the photosystems and thus essential for photosynthesis. Fe deficiency compromises chlorophyll (Chl) synthesis, leading to interveinal chlorosis in developing leaves and decreased photosynthetic activity. To gain insights into the responses of photosynthetically active cells to Fe deficiency, we conducted transcriptional profiling experiments on leaves from Fe-sufficient and Fe-deficient plants using the RNA-seq technology. As anticipated, genes associated with photosynthesis and tetrapyrrole metabolism were dramatically down-regulated by Fe deficiency. A sophisticated response comprising the down-regulation of HEMA1 and NYC1, which catalyze the first committed step in tetrapyrrole biosynthesis and the conversion of Chl b to Chl a at the commencement of Chl breakdown, respectively, and the up-regulation of CGLD27, which is conserved in plastid-containing organisms and putatively involved in xanthophyll biosynthesis, indicates a carefully orchestrated balance of potentially toxic tetrapyrrole intermediates and functional end products to avoid photo-oxidative damage. Comparing the responses to Fe deficiency in leaves to that in roots confirmed subgroup 1b bHLH transcription factors and POPEYE/BRUTUS as important regulators of Fe homeostasis in both leaf and root cells, and indicated six novel players with putative roles in Fe homeostasis that were highly expressed in leaves and roots and greatly induced by Fe deficiency. The data further revealed down-regulation of organ-specific subsets of genes encoding ribosomal proteins, which may be indicative of a change in ribosomal composition that could bias translation. It is concluded that Fe deficiency causes a massive reorganization of plastid activity, which is adjusting leaf function to the availability of Fe.
Collapse
Affiliation(s)
| | - I Chun Pan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Wenfeng Li
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Ping Lan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | | | - Wolfgang Schmidt
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan UniversityTaipei, Taiwan
- *Correspondence: Wolfgang Schmidt, Academia Sinica, Institute of Plant and Microbial Biology, Academia Road 128, Taipei 11529, Taiwan e-mail:
| |
Collapse
|
115
|
Carroll AJ. The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function. FRONTIERS IN PLANT SCIENCE 2013; 4:32. [PMID: 23459595 PMCID: PMC3585428 DOI: 10.3389/fpls.2013.00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/10/2013] [Indexed: 05/20/2023]
Abstract
The cytosolic ribosomal proteome of Arabidopsis thaliana has been studied intensively by a range of proteomics approaches and is now one of the most well characterized eukaryotic ribosomal proteomes. Plant cytosolic ribosomes are distinguished from other eukaryotic ribosomes by unique proteins, unique post-translational modifications and an abundance of ribosomal proteins for which multiple divergent paralogs are expressed and incorporated. Study of the A. thaliana ribosome has now progressed well beyond a simple cataloging of protein parts and is focused strongly on elucidating the functions of specific ribosomal proteins, their paralogous isoforms and covalent modifications. This review summarises current knowledge concerning the Arabidopsis cytosolic ribosomal proteome and highlights potentially fruitful areas of future research in this fast moving and important area.
Collapse
Affiliation(s)
- Adam J. Carroll
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
- *Correspondence: Adam J. Carroll, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, ACT 0200, Canberra, Australia. e-mail:
| |
Collapse
|
116
|
Affinity grid-based cryo-EM of PKC binding to RACK1 on the ribosome. J Struct Biol 2012; 181:190-4. [PMID: 23228487 DOI: 10.1016/j.jsb.2012.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 11/23/2022]
Abstract
Affinity grids (AG) are specialized EM grids that bind macromolecular complexes containing tagged proteins to obtain maximum occupancy for structural analysis through single-particle EM. In this study, utilizing AG, we show that His-tagged activated PKC βII binds to the small ribosomal subunit (40S). We reconstructed a cryo-EM map which shows that PKC βII interacts with RACK1, a seven-bladed β-propeller protein present on the 40S and binds in two different regions close to blades 3 and 4 of RACK1. This study is a first step in understanding the molecular framework of PKC βII/RACK1 interaction and its role in translation.
Collapse
|
117
|
Farah CA, Sossin WS. The role of C2 domains in PKC signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:663-83. [PMID: 22453964 DOI: 10.1007/978-94-007-2888-2_29] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
More than two decades ago, the discovery of the first C2 domain in conventional Protein Kinase Cs (cPKCs) and of its role as a calcium-binding motif began to shed light on the activation mechanism of this family of Serine/Threonine kinases which are involved in several critical signal transduction pathways. In this chapter, we review the current knowledge of the structure and the function of the different C2 domains in PKCs. The C2 domain of cPKCs is a calcium sensor and its calcium-dependent binding to phospholipids is crucial for kinase activation. While the functional role of the cPKC C2 domain is better understood, phylogenetic analysis revealed that the novel C2 domain is more ancient and related to the C2 domain in the fungal PKC family, while the cPKC C2 domain is first associated with PKC in metazoans. The C2 domain of novel PKCs (nPKCs) does not contain a calcium-binding motif but still plays a critical role in nPKCs activation by regulating C1-C2 domain interactions and consequently C2 domain-mediated inhibition in both the nPKCs of the epsilon family and the nPKCs of the delta family. Moreover, the C2 domain of the nPKCs of the delta family was shown to recognize phosphotyrosines in a novel mode different from the ones observed for the Src Homology 2 (SH2) and the phosphotyrosine binding domains (PTB). By binding to phosphotyrosines, the C2 domain regulates the activation of this subclass of PKCs. The C2 domain was also shown to be involved in protein-protein interactions and binding to the receptor for activated C-kinase (RACKs) thus contributing to the subcellular localization of PKCs. In summary, the C2 domain is a critical player that can sense the activated signaling pathway in response to external stimuli to specifically regulate the different conventional and novel PKC isoforms.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, BT 105, 3801 University Street, Montreal, QC H3A 2B4, Canada.
| | | |
Collapse
|
118
|
The ezrin metastatic phenotype is associated with the initiation of protein translation. Neoplasia 2012; 14:297-310. [PMID: 22577345 DOI: 10.1593/neo.11518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/13/2012] [Accepted: 03/16/2012] [Indexed: 12/14/2022] Open
Abstract
We previously associated the cytoskeleton linker protein, Ezrin, with the metastatic phenotype of pediatric sarcomas, including osteosarcoma and rhabdomyosarcoma. These studies have suggested that Ezrin contributes to the survival of cancer cells after their arrival at secondary metastatic locations. To better understand this role in metastasis, we undertook two noncandidate analyses of Ezrin function including a microarray subtraction of high-and low-Ezrin-expressing cells and a proteomic approach to identify proteins that bound the N-terminus of Ezrin in tumor lysates. Functional analyses of these data led to a novel and unifying hypothesis that Ezrin contributes to the efficiency of metastasis through regulation of protein translation. In support of this hypothesis, we found Ezrin to be part of the ribonucleoprotein complex to facilitate the expression of complex messenger RNA in cells and to bind with poly A binding protein 1 (PABP1; PABPC1). The relevance of these findings was supported by our identification of Ezrin and components of the translational machinery in pseudopodia of highly metastatic cells during the process of cell invasion. Finally, two small molecule inhibitors recently shown to inhibit the Ezrin metastatic phenotype disrupted the Ezrin/PABP1 association. Taken together, these results provide a novel mechanistic basis by which Ezrin may contribute to metastasis.
Collapse
|
119
|
Nagano K, Akpan A, Warnasuriya G, Corless S, Totty N, Yang A, Stein R, Zvelebil M, Stensballe A, Burlingame A, Waterfield M, Cramer R, Timms JF, Naaby-Hansen S. Functional proteomic analysis of long-term growth factor stimulation and receptor tyrosine kinase coactivation in Swiss 3T3 fibroblasts. Mol Cell Proteomics 2012; 11:1690-708. [PMID: 22956732 DOI: 10.1074/mcp.m112.019778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Swiss 3T3 fibroblasts, long-term stimulation with PDGF, but not insulin-like growth factor 1 (IGF-1) or EGF, results in the establishment of an elongated migratory phenotype, characterized by the formation of retractile dendritic protrusions and absence of actin stress fibers and focal adhesion complexes. To identify receptor tyrosine kinase-specific reorganization of the Swiss 3T3 proteome during phenotypic differentiation, we compared changes in the pattern of protein synthesis and phosphorylation during long-term exposure to PDGF, IGF-1, EGF, and their combinations using 2DE-based proteomics after (35)S- and (33)P-metabolic labeling. One hundred and five differentially regulated proteins were identified by mass spectrometry and some of these extensively validated. PDGF stimulation produced the highest overall rate of protein synthesis at any given time and induced the most sustained phospho-signaling. Simultaneous activation with two or three of the growth factors revealed both synergistic and antagonistic effects on protein synthesis and expression levels with PDGF showing dominance over both IGF-1 and EGF in generating distinct proteome compositions. Using signaling pathway inhibitors, PI3K was identified as an early site for signal diversification, with sustained activity of the PI3K/AKT pathway critical for regulating late protein synthesis and phosphorylation of target proteins and required for maintaining the PDGF-dependent motile phenotype. Several proteins were identified with novel PI3K/Akt-dependent synthesis and phosphorylations including eEF2, PRS7, RACK-1, acidic calponin, NAP1L1, Hsp73, and fascin. The data also reveal induction/suppression of key F-actin and actomyosin regulators and chaperonins that enable PDGFR to direct the assembly of a motile cytoskeleton, despite simultaneous antagonistic signaling activities. Together, the study demonstrates that long-term exposure to different growth factors results in receptor tyrosine kinase-specific regulation of relatively small subproteomes, and implies that the strength and longevity of receptor tyrosine kinase-specific signals are critical in defining the composition and functional activity of the resulting proteome.
Collapse
Affiliation(s)
- Kohji Nagano
- Discovery Research Department, Chugai Pharmaceutical Co. Ltd., Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Horiguchi G, Van Lijsebettens M, Candela H, Micol JL, Tsukaya H. Ribosomes and translation in plant developmental control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:24-34. [PMID: 22682562 DOI: 10.1016/j.plantsci.2012.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 05/06/2023]
Abstract
Ribosomes play a basic housekeeping role in global translation. However, a number of ribosomal-protein-defective mutants show common and rare developmental phenotypes including growth defects, changes in leaf development, and auxin-related phenotypes. This suggests that translational regulation may be occurring during development. In addition, proteomic and bioinformatic analyses have demonstrated a high heterogeneity in ribosome composition. Although this might be a sign of unequal roles of individual ribosomal proteins, it does not explain every ribosomal-protein-defective phenotype. Moreover, comprehensive interpretations concerning the relationship between ribosomal-protein-defective phenotypes and molecular changes in ribosome status are lacking. In this review, we address these phenotypes based on three models, ribosome insufficiency, heterogeneity, and aberrancy, to consider how ribosomes play developmental roles. We propose that the three models are not mutually exclusive, and ribosomal-protein-defective phenotypes can be explained with one or more of these models. The three models with reference to genetic, biochemical, and bioinformatic knowledge will serve as a foundation for future studies of translational regulation.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | |
Collapse
|
121
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
122
|
Tatzuke Y, Sunanaga T, Fujiwara S, Kawamura K. RACK1 regulates mesenchymal cell recruitment during sexual and asexual reproduction of budding tunicates. Dev Biol 2012; 368:393-403. [PMID: 22698545 DOI: 10.1016/j.ydbio.2012.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 01/01/2023]
Abstract
A homolog of receptor for activated protein kinase C1 (RACK1) was cloned from the budding tunicate Polyandrocarpa misakiensis. By RT-PCR and in situ hybridization analyses, PmRACK1 showed biphasic gene expression during asexual and sexual reproduction. In developing buds, the signal was exclusively observed in the multipotent atrial epithelium and undifferentiated mesenchymal cells that contributed to morphogenesis by the mesenchymal-epithelial transition (MET). In juvenile zooids, the signal was first observable in germline precursor cells that arose as mesenchymal cell aggregated in the ventral hemocoel. In mature zooids, the germinal epithelium in the ovary and the pharynx were the most heavily stained parts. GFP reporter assay indicated that the ovarian expression of PmRACK1 was constitutive from germline precursor cells to oocytes. To elucidate the in vivo function of PmRACK1, RNA interference was challenged. When growing buds were incubated with 5 nmol/mL siRNA, most mesenchymal cells remained round and appeared to have no interactions with the extracellular matrix (ECM), causing lower activity of MET without any apparent effects on cell proliferation. The resultant zooids became growth-deficient. The dwarf zooids did not form buds or mature gonads. Prior to RNAi, buds were treated with human BMP4 that could induce PmRACK1 expression, which resulted in MET activity. We conclude that in P. misakiensis, PmRACK1 plays roles in mesenchymal cell recruitment during formation of somatic and gonad tissues, which contributes to zooidal growth and sexual and asexual reproduction.
Collapse
Affiliation(s)
- Yuki Tatzuke
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | | | | | | |
Collapse
|
123
|
Ruan Y, Sun L, Hao Y, Wang L, Xu J, Zhang W, Xie J, Guo L, Zhou L, Yun X, Zhu H, Shen A, Gu J. Ribosomal RACK1 promotes chemoresistance and growth in human hepatocellular carcinoma. J Clin Invest 2012; 122:2554-66. [PMID: 22653060 DOI: 10.1172/jci58488] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/24/2012] [Indexed: 01/14/2023] Open
Abstract
Coordinated translation initiation is coupled with cell cycle progression and cell growth, whereas excessive ribosome biogenesis and translation initiation often lead to tumor transformation and survival. Hepatocellular carcinoma (HCC) is among the most common and aggressive cancers worldwide and generally displays inherently high resistance to chemotherapeutic drugs. We found that RACK1, the receptor for activated C-kinase 1, was highly expressed in normal liver and frequently upregulated in HCC. Aberrant expression of RACK1 contributed to in vitro chemoresistance as well as in vivo tumor growth of HCC. These effects depended on ribosome localization of RACK1. Ribosomal RACK1 coupled with PKCβII to promote the phosphorylation of eukaryotic initiation factor 4E (eIF4E), which led to preferential translation of the potent factors involved in growth and survival. Inhibition of PKCβII or depletion of eIF4E abolished RACK1-mediated chemotherapy resistance of HCC in vitro. Our results imply that RACK1 may function as an internal factor involved in the growth and survival of HCC and suggest that targeting RACK1 may be an efficacious strategy for HCC treatment.
Collapse
Affiliation(s)
- Yuanyuan Ruan
- Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
125
|
Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012; 13:355-69. [PMID: 22617470 DOI: 10.1038/nrm3359] [Citation(s) in RCA: 485] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than intrinsic regulatory capacity in mRNA translation. However, emerging studies reveal that ribosome activity may be highly regulated. Heterogeneity in ribosome composition resulting from differential expression and post-translational modifications of ribosomal proteins, ribosomal RNA (rRNA) diversity and the activity of ribosome-associated factors may generate 'specialized ribosomes' that have a substantial impact on how the genomic template is translated into functional proteins. Moreover, constitutive components of the ribosome may also exert more specialized activities by virtue of their interactions with specific mRNA regulatory elements such as internal ribosome entry sites (IRESs) or upstream open reading frames (uORFs). Here we discuss the hypothesis that intrinsic regulation by the ribosome acts to selectively translate subsets of mRNAs harbouring unique cis-regulatory elements, thereby introducing an additional level of regulation in gene expression and the life of an organism.
Collapse
Affiliation(s)
- Shifeng Xue
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
126
|
RACK1 research - ships passing in the night? FEBS Lett 2012; 586:2787-9. [PMID: 22580388 DOI: 10.1016/j.febslet.2012.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 01/09/2023]
Abstract
It should not be surprising that a protein with a name like RACK1 - short for receptor for activated C kinase 1 - is found in a variety of signaling complexes. Its alternative name, the splendidly unmemorable GNB2L1 - short for guanine nucleotide-binding protein subunit beta-2-like 1 - should reinforce this link to signaling complexes. There are currently over 400 publications listed in PubMed mentioning RACK1/GNB2L1 in the abstract, so it is certainly an actively studied protein with much involvement in different aspects of cell regulation being reported. RACK1 binds to the 40S ribosomal subunit, suggesting it links cell regulation and translation. It is also a target of intracellular parasites. And yet does this protein have the profile that it should? And why are there two kinds of RACK1 researcher who do not seem to communicate well?
Collapse
|
127
|
Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Ménesi D, Puskás LG, Juhász G. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy 2012; 8:1124-35. [PMID: 22562043 PMCID: PMC3429548 DOI: 10.4161/auto.20069] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
Collapse
Affiliation(s)
- Balázs Erdi
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 2012; 4:4/5/a011536. [PMID: 22550233 DOI: 10.1101/cshperspect.a011536] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.
Collapse
|
129
|
Klinge S, Voigts-Hoffmann F, Leibundgut M, Ban N. Atomic structures of the eukaryotic ribosome. Trends Biochem Sci 2012; 37:189-98. [DOI: 10.1016/j.tibs.2012.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/10/2012] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
|
130
|
EphB3 suppresses non-small-cell lung cancer metastasis via a PP2A/RACK1/Akt signalling complex. Nat Commun 2012; 3:667. [PMID: 22314363 DOI: 10.1038/ncomms1675] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/11/2012] [Indexed: 01/29/2023] Open
Abstract
Eph receptors are implicated in regulating the malignant progression of cancer. Here we find that despite overexpression of EphB3 in human non-small-cell lung cancer, as reported previously, the expression of its cognate ligands, either ephrin-B1 or ephrin-B2, is significantly downregulated, leading to reduced tyrosine phosphorylation of EphB3. Forced activation of EphB3 kinase in EphB3-overexpressing non-small-cell lung cancer cells inhibits cell migratory capability in vitro as well as metastatic seeding in vivo. Furthermore, we identify a novel EphB3-binding protein, the receptor for activated C-kinase 1, which mediates the assembly of a ternary signal complex comprising protein phosphatase 2A, Akt and itself in response to EphB3 activation, leading to reduced Akt phosphorylation and subsequent inhibition of cell migration. Our study reveals a novel tumour-suppressive signalling pathway associated with kinase-activated EphB3 in non-small-cell lung cancer, and provides a potential therapeutic strategy by activating EphB3 signalling, thus inhibiting tumour metastasis.
Collapse
|
131
|
Lupo J, Conti A, Sueur C, Coly PA, Couté Y, Hunziker W, Burmeister WP, Germi R, Manet E, Gruffat H, Morand P, Boyer V. Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1). Exp Cell Res 2012; 318:509-20. [PMID: 22245583 DOI: 10.1016/j.yexcr.2011.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 10/14/2022]
Abstract
We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity.
Collapse
Affiliation(s)
- Julien Lupo
- Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Yang J, Wang Q, Zheng W, Tuli J, Li Q, Wu Y, Hussein S, Dai XQ, Shafiei S, Li XG, Shen PY, Tu JC, Chen XZ. Receptor for activated C kinase 1 (RACK1) inhibits function of transient receptor potential (TRP)-type channel Pkd2L1 through physical interaction. J Biol Chem 2011; 287:6551-61. [PMID: 22174419 DOI: 10.1074/jbc.m111.305854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pkd2L1 (also called TRPP3) is a non-selective cation channel permeable to Ca(2+), Na(+), and K(+) and is activated by Ca(2+). It is also part of an acid-triggered off-response cation channel complex. We previously reported roles of the Pkd2L1 C-terminal fragments in its channel function, but the role of the N terminus remains unclear. Using a yeast two-hybrid screening, we found that the Pkd2L1 N terminus interacts with the receptor for activated C kinase 1 (RACK1), a scaffolding/anchoring protein implicated in various cellular functions. This interaction requires the last two Trp-Asp (WD) motifs of RACK1 and fragment Ala(19)-Pro(45) of Pkd2L1. The interaction was confirmed by GST pulldown, blot overlay, and co-immunoprecipitation assays. By (45)Ca tracer uptake and two-microelectrode voltage clamp electrophysiology, we found that in Xenopus oocytes with RACK1 overexpression Pkd2L1 channel activity is abolished or substantially reduced. Combining with oocyte surface biotinylation experiments, we demonstrated that RACK1 inhibits the function of Pkd2L1 channel on the plasma membrane in addition to reducing its total and plasma membrane expression. Overexpressing Pkd2L1 N- or C-terminal fragments as potential blocking peptides for the Pkd2L1-RACK1 interaction, we found that Pkd2L1 N-terminal fragment Met(1)-Pro(45), but not Ile(40)-Ile(97) or C-terminal fragments, abolishes the inhibition of Pkd2L1 channel by overexpressed and oocyte-native RACK1 likely through disrupting the Pkd2L1-RACK1 association. Taken together, our study demonstrated that RACK1 inhibits Pkd2L1 channel function through binding to domain Met(1)-Pro(45) of Pkd2L1. Thus, Pkd2L1 is a novel target channel whose function is regulated by the versatile scaffolding protein RACK1.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Physiology, University of Alberta, 7-29 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Kouba T, Rutkai E, Karásková M, Valášek LS. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Res 2011; 40:2683-99. [PMID: 22123745 PMCID: PMC3315329 DOI: 10.1093/nar/gkr1083] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several subunits of the multifunctional eukaryotic translation initiation factor 3 (eIF3) contain well-defined domains. Among them is the conserved bipartite PCI domain, typically serving as the principal scaffold for multisubunit 26S proteasome lid, CSN and eIF3 complexes, which constitutes most of the C-terminal region of the c/NIP1 subunit. Interestingly, the c/NIP1-PCI domain is exceptional in that its deletion, despite being lethal, does not affect eIF3 integrity. Here, we show that a short C-terminal truncation and two clustered mutations directly disturbing the PCI domain produce lethal or slow growth phenotypes and significantly reduce amounts of 40S-bound eIF3 and eIF5 in vivo. The extreme C-terminus directly interacts with blades 1–3 of the small ribosomal protein RACK1/ASC1, which is a part of the 40S head, and, consistently, deletion of the ASC1 coding region likewise affects eIF3 association with ribosomes. The PCI domain per se shows strong but unspecific binding to RNA, for the first time implicating this typical protein–protein binding domain in mediating protein–RNA interactions also. Importantly, as our clustered mutations severely reduce RNA binding, we conclude that the c/NIP1 C-terminal region forms an important intermolecular bridge between eIF3 and the 40S head region by contacting RACK1/ASC1 and most probably 18S rRNA.
Collapse
Affiliation(s)
- Tomáš Kouba
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, v.v.i., Prague, the Czech Republic
| | | | | | | |
Collapse
|
134
|
Zeidner LC, Buescher JL, Phiel CJ. A novel interaction between Glycogen Synthase Kinase-3α (GSK-3α) and the scaffold protein Receptor for Activated C-Kinase 1 (RACK1) regulates the circadian clock. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 2:318-327. [PMID: 22187666 PMCID: PMC3242428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
Glycogen synthase kinase-3α (GSK-3α) and GSK-3β are intracellular kinases with largely redundant functions. However, the deletion of each GSK-3 isoform in the mouse has distinct consequences, suggesting that these related enzymes also have non-overlapping isoform-specific functions. A yeast two-hybrid screen for GSK-3α interacting partners revealed an interaction with the Receptor for Activated C-Kinase 1 (RACK1). We confirm this interaction in mammalian cells, and provide evidence that RACK1 does not interact with GSK-3β. Structure-function analyses revealed that WD repeats 5-6 are required to interact with GSK-3α. Furthermore, this interaction is independent of GSK-3α activity. Finally, our data show that the GSK-3α-RACK1 interaction is necessary for regulating the circadian clock in mammalian cells. In summary, our data provides a mechanistic link between GSK-3 and RACK-1 in the regulation of the circadian clock, and demonstrates that this effect is specific to the GSK-3α isoform.
Collapse
Affiliation(s)
- Leigh C Zeidner
- Center for Molecular and Human GeneticsThe Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Jessica L Buescher
- Integrated Biomedical Science Graduate ProgramCollege of Medicine, The Ohio State University, 333 West 10 Avenue, Columbus, OH 43210USA
| | - Christopher J Phiel
- Center for Molecular and Human GeneticsThe Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
- Integrated Biomedical Science Graduate ProgramCollege of Medicine, The Ohio State University, 333 West 10 Avenue, Columbus, OH 43210USA
| |
Collapse
|
135
|
Neasta J, Kiely PA, He DY, Adams DR, O'Connor R, Ron D. Direct interaction between scaffolding proteins RACK1 and 14-3-3ζ regulates brain-derived neurotrophic factor (BDNF) transcription. J Biol Chem 2011; 287:322-336. [PMID: 22069327 DOI: 10.1074/jbc.m111.272195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RACK1 is a scaffolding protein that spatially and temporally regulates numerous signaling cascades. We previously found that activation of the cAMP signaling pathway induces the translocation of RACK1 to the nucleus. We further showed that nuclear RACK1 is required to promote the transcription of the brain-derived neurotrophic factor (BDNF). Here, we set out to elucidate the mechanism underlying cAMP-dependent RACK1 nuclear translocation and BDNF transcription. We identified the scaffolding protein 14-3-3ζ as a direct binding partner of RACK1. Moreover, we found that 14-3-3ζ was necessary for the cAMP-dependent translocation of RACK1 to the nucleus. We further observed that the disruption of RACK1/14-3-3ζ interaction with a peptide derived from the RACK1/14-3-3ζ binding site or shRNA-mediated 14-3-3ζ knockdown inhibited cAMP induction of BDNF transcription. Together, these data reveal that the function of nuclear RACK1 is mediated through its interaction with 14-3-3ζ. As RACK1 and 14-3-3ζ are two multifunctional scaffolding proteins that coordinate a wide variety of signaling events, their interaction is likely to regulate other essential cellular functions.
Collapse
Affiliation(s)
- Jérémie Neasta
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Patrick A Kiely
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Dao-Yao He
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - David R Adams
- Department of Chemistry, Heriot-Watt University, Riccarton Campus, Edinburgh EH14AS, Scotland, United Kingdom
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Dorit Ron
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608.
| |
Collapse
|
136
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
137
|
Otsuka M, Takata A, Yoshikawa T, Kojima K, Kishikawa T, Shibata C, Takekawa M, Yoshida H, Omata M, Koike K. Receptor for activated protein kinase C: requirement for efficient microRNA function and reduced expression in hepatocellular carcinoma. PLoS One 2011; 6:e24359. [PMID: 21935400 PMCID: PMC3174171 DOI: 10.1371/journal.pone.0024359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/07/2011] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that control physiological and pathological processes. A global reduction in miRNA abundance and function is a general trait of human cancers, playing a causal role in the transformed phenotype. Here, we sought to newly identify genes involved in the regulation of miRNA function by performing a genetic screen using reporter constructs that measure miRNA function and retrovirus-based random gene disruption. Of the six genes identified, RACK1, which encodes “receptor for activated protein kinase C” (RACK1), was confirmed to be necessary for full miRNA function. RACK1 binds to KH-type splicing regulatory protein (KSRP), a member of the Dicer complex, and is required for the recruitment of mature miRNAs to the RNA-induced silencing complex (RISC). In addition, RACK1 expression was frequently found to be reduced in hepatocellular carcinoma. These findings suggest the involvement of RACK1 in miRNA function and indicate that reduced miRNA function, due to decreased expression of RACK1, may have pathologically relevant roles in liver cancers.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus. PLoS One 2011; 6:e24067. [PMID: 21918681 PMCID: PMC3168876 DOI: 10.1371/journal.pone.0024067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022] Open
Abstract
Annexin A2 (ANXA2) is a protein implicated in diverse cellular functions, including exocytosis, DNA synthesis and cell proliferation. It was recently proposed to be involved in RNA metabolism because it was shown to associate with some cellular mRNA. Here, we identified ANXA2 as a RNA binding protein (RBP) that binds IBV (Infectious Bronchitis Virus) pseudoknot RNA. We first confirmed the binding of ANXA2 to IBV pseudoknot RNA by ultraviolet crosslinking and showed its binding to RNA pseudoknot with ANXA2 protein in vitro and in the cells. Since the RNA pseudoknot located in the frameshifting region of IBV was used as bait for cellular RBPs, we tested whether ANXA2 could regulate the frameshfting of IBV pseudoknot RNA by dual luciferase assay. Overexpression of ANXA2 significantly reduced the frameshifting efficiency from IBV pseudoknot RNA and knockdown of the protein strikingly increased the frameshifting efficiency. The results suggest that ANXA2 is a cellular RBP that can modulate the frameshifting efficiency of viral RNA, enabling it to act as an anti-viral cellular protein, and hinting at roles in RNA metabolism for other cellular mRNAs.
Collapse
|
139
|
Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1774-9. [PMID: 21635931 PMCID: PMC3154612 DOI: 10.1016/j.pnpbp.2011.05.010] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
Abstract
Recent studies demonstrate that rapid antidepressant response to ketamine is mediated by activation of the mammalian target of rapamycin (mTOR) signaling pathway, leading to increased synaptic proteins in the prefrontal cortex (PFC) of rats. Our postmortem studies indicate robust deficits in prominent postsynaptic proteins including N-methyl-d-aspartate (NMDA) receptor subunits (NR2A, NR2B), metabotropic glutamate receptor subtype 5 (mGluR5) and postsynaptic density protein 95kDa (PSD-95) in the PFC in major depressive disorder (MDD). We hypothesize that deficits in the mTOR-dependent translation initiation pathway contribute to the molecular pathology seen in the PFC of MDD subjects, and that a rapid reversal of these abnormalities may underlie antidepressant activity. The majority of known translational regulation occurs at the level of initiation. mTOR regulates translation initiation via its downstream components: p70-kDa ribosomal protein S6 kinase (p70S6K), and eukaryotic initiation factors 4E and 4B (eIF4E and eIF4B). In this study, we examined the expression of mTOR and its core downstream signaling targets: p70S6K, eIF4E, and eIF4B in the PFC of 12 depressed subjects and 12 psychiatrically healthy controls using Western blot. Levels of eIF4E phosphorylated at serine 209 (p-eIF4E-Ser209) and eIF4B phosphorylated at serine 504 (p-eIF4B-Ser504) were also examined. Adjacent cortical tissue samples from both cohorts of subjects were used in our previous postmortem analyses. There was a significant reduction in mTOR, p70S6K, eIF4B and p-eIF4B protein expression in MDD subjects relative to controls. No group differences were observed in eIF4E, p-eIF4E or actin levels. Our findings show deficits in mTOR-dependent translation initiation in MDD particularly via the p70S6K/eIF4B pathway, and indicate a potential association between marked deficits in synaptic proteins and dysregulation of mTOR signaling in MDD.
Collapse
Affiliation(s)
- Courtney S. Jernigan
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dharmendra B. Goswami
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mark C. Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Abiye H. Iyo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Agata Chandran
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
,Department of Psychiatry, Case Western Reserve University, Cleveland, OH
| | - Beata Karolewicz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
,Correspondence to: Beata Karolewicz, Ph.D., Department of Psychiatry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, phone: (601) 984-5896, fax: (601) 984-5899,
| |
Collapse
|
140
|
Wang L, Berndt P, Xia X, Kahnt J, Kahmann R. A seven-WD40 protein related to human RACK1 regulates mating and virulence in Ustilago maydis. Mol Microbiol 2011; 81:1484-98. [PMID: 21815950 DOI: 10.1111/j.1365-2958.2011.07783.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In mammalian cells RACK1 serves as a scaffold protein that has a role in integrating inputs from different signalling pathways and affects translation through association with ribosomes. Ustilago maydis contains a seven-WD40 repeat motif protein designated Rak1, which shows 68% identity to RACK1 and 51% identity to Asc1p of Saccharomyces cerevisiae. An asc1 mutant could be complemented by introduction of U. maydis rak1. The deletion of rak1 affected cell growth, cell wall integrity and specifically attenuated cell fusion. This latter defect was caused by reduced expression of prf1 encoding the regulator for pheromone (mfa) and pheromone-receptor genes. Rak1 interacts with a variety of ribosomal proteins and microarray analysis revealed that the deletion of rak1 led to severely reduced expression of rop1, a transcriptional activator of prf1. The constitutive expression of rop1 could rescue the defect of mfa1 expression as well as conjugation tube formation in response to pheromone induction in the rak1 mutant. Moreover, a solopathogenic rak1 mutant failed to respond to plant-derived stimuli, resulting in attenuated filamentation and pathogenicity. This could be partially rescued by constitutive expression of the b heterodimer. These data suggest that rak1 is a regulator of rop1 expression with additional roles after cell fusion.
Collapse
Affiliation(s)
- Lei Wang
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
141
|
Structure of the RACK1 dimer from Saccharomyces cerevisiae. J Mol Biol 2011; 411:486-98. [PMID: 21704636 DOI: 10.1016/j.jmb.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/20/2022]
Abstract
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.
Collapse
|
142
|
Trypanosomatid RACK1 Orthologs Show Functional Differences Associated with Translation Despite Similar Roles in Leishmania Pathogenesis. PLoS One 2011; 6:e20710. [PMID: 21677780 PMCID: PMC3108995 DOI: 10.1371/journal.pone.0020710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/11/2011] [Indexed: 11/22/2022] Open
Abstract
RACK1 proteins belong to the eukaryote WD40-repeat protein family and function as spatial regulators of multiple cellular events, including signaling pathways, the cell cycle and translation. For this latter role, structural and genetic studies indicate that RACK1 associates with the ribosome through two conserved positively charged amino acids in its first WD40 domain. Unlike RACK1s, including Trypanosoma brucei RACK1 (TbRACK1), only one of these two positively-charged residues is conserved in the first WD40 domain of the Leishmania major RACK1 ortholog, LACK. We compared virulence-attenuated LACK single copy (LACK/-) L. major, with L. major expressing either two LACK copies (LACK/LACK), or one copy each of LACK and TbRACK1 (LACK/TbRACK1), to evaluate the function of these structurally distinct RACK1 orthologs with respect to translation, viability at host temperatures and pathogenesis. Our results indicate that although the ribosome-binding residues are not fully conserved in LACK, both LACK and TbRACK1 co-sedimented with monosomes and polysomes in LACK/LACK and LACK/TbRACK1 L. major, respectively. LACK/LACK and LACK/TbRACK1 strains differed in their sensitivity to translation inhibitors implying that minor sequence differences between the RACK1 proteins can alter their functional properties. While biochemically distinguishable, both LACK/LACK and LACK/TbRACK1 lines were more tolerant of elevated temperatures, resistant to translation inhibitors, and displayed robust pathogenesis in vivo, contrasting to LACK/- parasites.
Collapse
|
143
|
The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans. EMBO Rep 2011; 12:581-6. [PMID: 21525958 PMCID: PMC3128278 DOI: 10.1038/embor.2011.66] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/13/2011] [Accepted: 03/23/2011] [Indexed: 01/16/2023] Open
Abstract
RACK1, a constituent of the ribosomal 40S subunit, is required for the association of miRISC with translating ribosomes. This suggests that RACK1 contributes to recruit miRISC to the site of translation and supports a post-initiation mode of miRNA-mediated gene repression. Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA–Argonaute complex—or miRNA-induced silencing complex (miRISC)—can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression.
Collapse
|
144
|
Jastrzebski K, Hannan KM, House CM, Hung SSC, Pearson RB, Hannan RD. A phospho-proteomic screen identifies novel S6K1 and mTORC1 substrates revealing additional complexity in the signaling network regulating cell growth. Cell Signal 2011; 23:1338-47. [PMID: 21440620 DOI: 10.1016/j.cellsig.2011.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/16/2011] [Indexed: 01/09/2023]
Abstract
S6K1, a critical downstream substrate of mTORC1, has been implicated in regulating protein synthesis and a variety of processes that impinge upon cell growth and proliferation. While the role of the cytoplasmic p70(S6K1) isoform in the regulation of translation has been intensively studied, the targets and function of the nuclear p85(S6K1) isoform remain unclear. Therefore, we carried out a phospho-proteomic screen to identify novel p85(S6K1) substrates. Four novel putative p85(S6K1) substrates, GRP75, CCTβ, PGK1 and RACK1, and two mTORC1 substrates, ANXA4 and PSMA6 were identified, with diverse roles in chaperone function, ribosome maturation, metabolism, vesicle trafficking and the proteasome, respectively. The chaperonin subunit CCTβ was further investigated and the site of phosphorylation mapped to serine 260, a site located in the chaperonin apical domain. Consistent with this domain being involved in folding substrate interactions, we found that phosphorylation of serine 260 modulates chaperonin folding activity.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Locked Bag 1, A'Beckett Street, Victoria 8006, Australia
| | | | | | | | | | | |
Collapse
|
145
|
Li Y, Massey K, Witkiewicz H, Schnitzer JE. Systems analysis of endothelial cell plasma membrane proteome of rat lung microvasculature. Proteome Sci 2011; 9:15. [PMID: 21447187 PMCID: PMC3080792 DOI: 10.1186/1477-5956-9-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial cells line all blood vessels to form the blood-tissue interface which is critical for maintaining organ homeostasis and facilitates molecular exchange. We recently used tissue subcellular fractionation combined with several multi-dimensional mass spectrometry-based techniques to enhance identification of lipid-embedded proteins for large-scale proteomic mapping of luminal endothelial cell plasma membranes isolated directly from rat lungs in vivo. The biological processes and functions of the proteins expressed at this important blood-tissue interface remain unexplored at a large scale. RESULTS We performed an unbiased systems analysis of the endothelial cell surface proteome containing over 1800 proteins to unravel the major functions and pathways apparent at this interface. As expected, many key functions of plasma membranes in general (i.e., cell surface signaling pathways, cytoskeletal organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, and vesicle-mediated transport) and endothelial cells in particular (i.e., blood vessel development and maturation, angiogenesis, regulation of endothelial cell proliferation, protease activity, and endocytosis) were significantly overrepresented in this proteome. We found that endothelial cells express multiple proteins that mediate processes previously reported to be restricted to neuronal cells, such as neuronal survival and plasticity, axon growth and regeneration, synaptic vesicle trafficking and neurotransmitter metabolic process. Surprisingly, molecular machinery for protein synthesis was also detected as overrepresented, suggesting that endothelial cells, like neurons, can synthesize proteins locally at the cell surface. CONCLUSION Our unbiased systems analysis has led to the potential discovery of unexpected functions in normal endothelium. The discovery of the existence of protein synthesis at the plasma membrane in endothelial cells provides new insight into the blood-tissue interface and endothelial cell surface biology.
Collapse
Affiliation(s)
- Yan Li
- Proteogenomics Research Institute for Systems Medicine, 11107 Roselle Street, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
146
|
Yang R, Gaidamakov SA, Xie J, Lee J, Martino L, Kozlov G, Crawford AK, Russo AN, Conte MR, Gehring K, Maraia RJ. La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability. Mol Cell Biol 2011; 31:542-56. [PMID: 21098120 PMCID: PMC3028612 DOI: 10.1128/mcb.01162-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/05/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022] Open
Abstract
The conserved RNA binding protein La recognizes UUU-3'OH on its small nuclear RNA ligands and stabilizes them against 3'-end-mediated decay. We report that newly described La-related protein 4 (LARP4) is a factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). Yeast two-hybrid analysis and reciprocal immunoprecipitations (IPs) from HeLa cells revealed that LARP4 interacts with RACK1, a 40S ribosome- and mRNA-associated protein. LARP4 cosediments with 40S ribosome subunits and polyribosomes, and its knockdown decreases translation. Mutagenesis of the RNA binding or PABP interaction motifs decrease LARP4 association with polysomes. Several translation and mRNA metabolism-related proteins use a PAM2 sequence containing a critical invariant phenylalanine to make direct contact with the MLLE domain of PABP, and their competition for the MLLE is thought to regulate mRNA homeostasis. Unlike all ∼150 previously analyzed PAM2 sequences, LARP4 contains a variant PAM2 (PAM2w) with tryptophan in place of the phenylalanine. Binding and nuclear magnetic resonance (NMR) studies have shown that a peptide representing LARP4 PAM2w interacts with the MLLE of PABP within the affinity range measured for other PAM2 motif peptides. A cocrystal of PABC bound to LARP4 PAM2w shows tryptophan in the pocket in PABC-MLLE otherwise occupied by phenylalanine. We present evidence that LARP4 expression stimulates luciferase reporter activity by promoting mRNA stability, as shown by mRNA decay analysis of luciferase and cellular mRNAs. We propose that LARP4 activity is integrated with other PAM2 protein activities by PABP as part of mRNA homeostasis.
Collapse
Affiliation(s)
- Ruiqing Yang
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Sergei A. Gaidamakov
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Jingwei Xie
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Joowon Lee
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Luigi Martino
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Guennadi Kozlov
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Amanda K. Crawford
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Amy N. Russo
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Maria R. Conte
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Kalle Gehring
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| | - Richard J. Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Department of Biochemistry, McGill University, Montreal, QC, Canada, Commissioned Corps, U.S. Public Health Service, Washington, DC
| |
Collapse
|
147
|
Kim SW, Joo YJ, Kim J. Asc1p, a ribosomal protein, plays a pivotal role in cellular adhesion and virulence in Candida albicans. J Microbiol 2011; 48:842-8. [DOI: 10.1007/s12275-010-0422-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/16/2010] [Indexed: 11/28/2022]
|
148
|
Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, Weston DJ, Ellis BE, Chen JG. Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. PLANT PHYSIOLOGY 2011; 155:370-83. [PMID: 21098678 PMCID: PMC3075769 DOI: 10.1104/pp.110.160663] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/18/2010] [Indexed: 05/20/2023]
Abstract
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.
Collapse
|
149
|
Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 2010; 331:730-6. [PMID: 21205638 DOI: 10.1126/science.1198308] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eukaryotic ribosomes are substantially larger and more complex than their bacterial counterparts. Although their core function is conserved, bacterial and eukaryotic protein synthesis differ considerably at the level of initiation. The eukaryotic small ribosomal subunit (40S) plays a central role in this process; it binds initiation factors that facilitate scanning of messenger RNAs and initiation of protein synthesis. We have determined the crystal structure of the Tetrahymena thermophila 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (eIF1) at a resolution of 3.9 angstroms. The structure reveals the fold of the entire 18S ribosomal RNA and of all ribosomal proteins of the 40S subunit, and defines the interactions with eIF1. It provides insights into the eukaryotic-specific aspects of protein synthesis, including the function of eIF1 as well as signaling and regulation mediated by the ribosomal proteins RACK1 and rpS6e.
Collapse
Affiliation(s)
- Julius Rabl
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstrasse 20, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
150
|
Biswas A, Mukherjee S, Das S, Shields D, Chow CW, Maitra U. Opposing action of casein kinase 1 and calcineurin in nucleo-cytoplasmic shuttling of mammalian translation initiation factor eIF6. J Biol Chem 2010; 286:3129-38. [PMID: 21084295 DOI: 10.1074/jbc.m110.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6), a highly conserved protein from yeast to mammals, is essential for 60 S ribosome biogenesis and assembly. Both yeast and mammalian eIF6 are phosphorylated at Ser-174 and Ser-175 by the nuclear isoform of casein kinase 1 (CK1). The molecular basis of eIF6 phosphorylation, however, remains elusive. In the present work, we show that subcellular distribution of eIF6 in the nuclei and the cytoplasm of mammalian cells is mediated by dephosphorylation and phosphorylation, respectively. This nucleo-cytoplasmic shuttling is dependent on the phosphorylation status at Ser-174 and Ser-175 of eIF6. We demonstrate that Ca(2+)-activated calcineurin phosphatase binds to and promotes nuclear localization of eIF6. Increase in intracellular concentration of Ca(2+) leads to rapid translocation of eIF6 from the cytoplasm to the nucleus, an event that is blocked by specific calcineurin inhibitors cyclosporin A or FK520. Nuclear export of eIF6 is regulated by phosphorylation at Ser-174 and Ser-175 by the nuclear isoform of CK1. Mutation of eIF6 at the phosphorylatable Ser-174 and Ser-175 to alanine or treatment of cells with the CK1 inhibitor, D4476 inhibits nuclear export of eIF6 and results in nuclear accumulation of eIF6. Together, these results establish eIF6 as a substrate for calcineurin and suggest a novel paradigm for calcineurin function in 60 S ribosome biogenesis via regulating the nuclear accumulation of eIF6.
Collapse
Affiliation(s)
- Arunima Biswas
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|