101
|
Qian W, Zhang J. Protein subcellular relocalization in the evolution of yeast singleton and duplicate genes. Genome Biol Evol 2009; 1:198-204. [PMID: 20333190 PMCID: PMC2817416 DOI: 10.1093/gbe/evp021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2009] [Indexed: 12/18/2022] Open
Abstract
Gene duplication is the primary source of new genes, but the mechanisms underlying the functional divergence and retention of duplicate genes are not well understood. Because eukaryotic proteins are localized to subcellular structures and localization can be altered by a single amino acid replacement, it was recently proposed that protein subcellular relocalization (PSR) plays an important role in the functional divergence and retention of duplicate genes. Although numerous examples of distinct subcellular localizations of paralogous proteins have been reported, it is unknown whether PSR occurs more frequently after gene duplication than without duplication. By analyzing experimentally determined and computationally predicted genome-wide protein subcellular localization data of the budding yeast Saccharomyces cerevisiae and two other fungi (Schizosaccharomyces pombe and Kluyveromyces waltii), we show that even singleton genes have an appreciable rate of relocalization in evolution and that duplicate genes do not relocalize more frequently than singletons. These results suggest that subcellular relocalization is unlikely to have been a major mechanism for duplicate gene retention and functional divergence at the genomic scale.
Collapse
|
102
|
Zhang Z, Mo D, Cong P, He Z, Ling F, Li A, Niu Y, Zhao X, Zhou C, Chen Y. Molecular cloning, expression patterns and subcellular localization of porcine TMCO1 gene. Mol Biol Rep 2009; 37:1611-8. [PMID: 19449125 DOI: 10.1007/s11033-009-9573-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 05/01/2009] [Indexed: 12/22/2022]
Abstract
The product of transmembrane and coiled-coil domains 1 (TMCO1) gene is a member of DUF841 superfamily of several eukaryotic proteins with unknown function. The partial DNA sequence of porcine TMCO1 was first cloned with a pig 567 bp ORF encoding 188 amino acids. By tissues expression analysis, the TMCO1 was found highly expressed in the liver, kidney and heart. The porcine TMCO1 protein was subsequently demonstrated to localize in the mitochondrion by confocal fluorescence microscopy. This data provides an important basis for conducing further studies on the functions and regulatory mechanisms underlying the role of TMCO1 gene.
Collapse
Affiliation(s)
- Zhisheng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Frechin M, Senger B, Brayé M, Kern D, Martin RP, Becker HD. Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 2009; 23:1119-30. [PMID: 19417106 DOI: 10.1101/gad.518109] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is impossible to predict which pathway, direct glutaminylation of tRNA(Gln) or tRNA-dependent transamidation of glutamyl-tRNA(Gln), generates mitochondrial glutaminyl-tRNA(Gln) for protein synthesis in a given species. The report that yeast mitochondria import both cytosolic glutaminyl-tRNA synthetase and tRNA(Gln) has challenged the widespread use of the transamidation pathway in organelles. Here we demonstrate that yeast mitochondrial glutaminyl-tRNA(Gln) is in fact generated by a transamidation pathway involving a novel type of trimeric tRNA-dependent amidotransferase (AdT). More surprising is the fact that cytosolic glutamyl-tRNA synthetase ((c)ERS) is imported into mitochondria, where it constitutes the mitochondrial nondiscriminating ERS that generates the mitochondrial mischarged glutamyl-tRNA(Gln) substrate for the AdT. We show that dual localization of (c)ERS is controlled by binding to Arc1p, a tRNA nuclear export cofactor that behaves as a cytosolic anchoring platform for (c)ERS. Expression of Arc1p is down-regulated when yeast cells are switched from fermentation to respiratory metabolism, thus allowing increased import of (c)ERS to satisfy a higher demand of mitochondrial glutaminyl-tRNA(Gln) for mitochondrial protein synthesis. This novel strategy that enables a single protein to be localized in both the cytosol and mitochondria provides a new paradigm for regulation of the dynamic subcellular distribution of proteins between membrane-separated compartments.
Collapse
Affiliation(s)
- Mathieu Frechin
- UPR 9002, Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
104
|
De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti GM, Szabò I, Zoratti M. Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 2009; 45:509-16. [PMID: 19406468 DOI: 10.1016/j.ceca.2009.03.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/13/2009] [Accepted: 03/23/2009] [Indexed: 11/28/2022]
Abstract
Patch-clamping mitoplasts isolated from human colon carcinoma 116 cells has allowed the identification and characterization of the intermediate conductance Ca(2+)-activated K(+)-selective channel K(Ca)3.1, previously studied only in the plasma membrane of various cell types. Its identity has been established by its biophysical and pharmacological properties. Its localisation in the inner membrane of mitochondria is indicated by Western blots of subcellular fractions, by recording of its activity in mitochondria made fluorescent by a mitochondria-targeted fluorescent protein and by the co-presence of channels considered to be markers of the inner membrane. Moderate increases of mitochondrial matrix [Ca(2+)] will cause mtK(Ca)3.1 opening, thus linking inner membrane K(+) permeability and transmembrane potential to Ca(2+) signalling.
Collapse
Affiliation(s)
- Umberto De Marchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
105
|
Anandatheerthavarada HK, Sepuri NBV, Avadhani NG. Mitochondrial targeting of cytochrome P450 proteins containing NH2-terminal chimeric signals involves an unusual TOM20/TOM22 bypass mechanism. J Biol Chem 2009; 284:17352-17363. [PMID: 19401463 DOI: 10.1074/jbc.m109.007492] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In this study, we investigated the mechanism of delivery of chimeric signal containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27A1 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of a chimeric signal containing client protein by Hsp90 required the cytosol-exposed NH(2)-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to import CYP proteins. These results suggest that compared with the unimodal mitochondrial targeting signals, the chimeric mitochondrial targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Naresh Babu V Sepuri
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Narayan G Avadhani
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
106
|
Carrie C, Giraud E, Whelan J. Protein transport in organelles: Dual targeting of proteins to mitochondria and chloroplasts. FEBS J 2009; 276:1187-95. [PMID: 19187233 DOI: 10.1111/j.1742-4658.2009.06876.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As many as fifty proteins have now been experimentally demonstrated to be targeted to both mitochondria and plastids, a phenomenon referred to as dual targeting. Although the first reported case of dual targeting of a protein was reported in 1995, there is still little understanding of the mechanism of dual targeting and any similarities or differences with respect to the targeting of location-specific proteins. This minireview summarizes dual targeting in terms of signals, passenger proteins, receptors, regulation, why proteins may need to be dual targeted and the future challenges that remain in this area.
Collapse
Affiliation(s)
- Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
107
|
Krause K, Krupinska K. Nuclear regulators with a second home in organelles. TRENDS IN PLANT SCIENCE 2009; 14:194-9. [PMID: 19285907 DOI: 10.1016/j.tplants.2009.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 05/20/2023]
Abstract
In plants, increasing evidence points towards the existence of nuclear proteins that are also targeted to either mitochondria - a well-known phenomenon from yeast and mammalians - or to plastids. One such protein is Whirly1, which was the first protein to be identified in the nucleus and plastids of the same plant cell. Like Whirly1, most of the dual targeted (nucleus and organelle) proteins have functions in the maintenance of DNA, telomere structuring or gene expression. In some instances, proteins were even shown to be relocated from one compartment to another upon environmental or developmental clues. We hypothesize that one rationale of dual targeting is storage or sequestration of these proteins inside the organelles until specific conditions require their activity in the nucleus.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biology, University of Tromsø, 9037 Tromsø, Norway
| | | |
Collapse
|
108
|
Regev-Rudzki N, Battat E, Goldberg I, Pines O. Dual localization of fumarase is dependent on the integrity of the glyoxylate shunt. Mol Microbiol 2009; 72:297-306. [DOI: 10.1111/j.1365-2958.2009.06659.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
109
|
Mitschke J, Fuss J, Blum T, Höglund A, Reski R, Kohlbacher O, Rensing SA. Prediction of dual protein targeting to plant organelles. THE NEW PHYTOLOGIST 2009; 183:224-236. [PMID: 19368670 DOI: 10.1111/j.1469-8137.2009.02832.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
* Dual targeting of proteins to more than one subcellular localization has been found in animals, in fungi and in plants. In the latter, ambiguous N-terminal targeting signals have been described that result in the protein being located in both mitochondria and plastids. We have developed ambiguous targeting predictor (ATP), a machine-learning implementation that classifies such ambiguous targeting signals. * Ambiguous targeting predictor is based on a support vector machine implementation that makes use of 12 different amino acid features. Prediction results were validated using fluorescent protein fusion. * Both in silico and in vivo evaluations demonstrate that ambiguous targeting predictor is useful for predicting dual targeting to mitochondria and plastids. Proteins that are targeted to both organelles by tandemly arrayed signals (so-called twin targeting) can be predicted by both ambiguous targeting predictor and a combination of single targeting prediction tools. Comparison of ambiguous targeting predictor with previous experimental approaches, as well as in silico approaches, shows good congruence. * Based on the prediction results, land plant genomes are expected to encode, on average, > 400 proteins that are located in mitochondria and plastids. Ambiguous targeting predictor is helpful for functional genome annotation and can be used as a tool to further our understanding about dual protein targeting and its evolution.
Collapse
Affiliation(s)
- Jan Mitschke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Janina Fuss
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Torsten Blum
- Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, D-72076 Tübingen, Germany
| | - Annette Höglund
- Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, D-72076 Tübingen, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
- FRISYS, Faculty of Biology, University of Freiburg, Hauptstr. 1, D-79104 Freiburg, Germany
| | - Oliver Kohlbacher
- Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, D-72076 Tübingen, Germany
| | - Stefan A Rensing
- FRISYS, Faculty of Biology, University of Freiburg, Hauptstr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
110
|
Zoratti M, De Marchi U, Gulbins E, Szabò I. Novel channels of the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:351-63. [PMID: 19111672 DOI: 10.1016/j.bbabio.2008.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022]
Abstract
Along with a large number of carriers, exchangers and "pumps", the inner mitochondrial membrane contains ion-conducting channels which endow it with controlled permeability to small ions. Some have been shown to be the mitochondrial counterpart of channels present also in other cellular membranes. The manuscript summarizes the current state of knowledge on the major inner mitochondrial membrane channels, properties, identity and proposed functions. Considerable attention is currently being devoted to two K(+)-selective channels, mtK(ATP) and mtBK(Ca). Their activation in "preconditioning" is considered by many to underlie the protection of myocytes and other cells against subsequent ischemic damage. We have recently shown that in apoptotic lymphocytes inner membrane mtK(V)1.3 interacts with the pro-apoptotic protein Bax after the latter has inserted into the outer mitochondrial membrane. Whether the just-discovered mtIK(Ca) has similar cellular role(s) remains to be seen. The Ca(2+) "uniporter" has been characterized electrophysiologically, but still awaits a molecular identity. Chloride-selective channels are represented by the 107 pS channel, the first mitochondrial channel to be observed by patch-clamp, and by a approximately 400 pS pore we have recently been able to fully characterize in the inner membrane of mitochondria isolated from a colon tumour cell line. This we propose to represent a component of the Permeability Transition Pore. The available data exclude the previous tentative identification with porin, and indicate that it coincides instead with the still molecularly unidentified "maxi" chloride channel.
Collapse
|
111
|
Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc Natl Acad Sci U S A 2008; 105:12313-8. [PMID: 18719119 DOI: 10.1073/pnas.0805709105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
K(+) channels operate in the plasma membrane and in membranes of organelles including mitochondria. The mechanisms and topogenic information for their differential synthesis and targeting is unknown. This article describes 2 similar viral K(+) channels that are differentially sorted; one protein (Kesv) is imported by the Tom complex into the mitochondria, the other (Kcv) to the plasma membrane. By creating chimeras we discovered that mitochondrial sorting of Kesv depends on a hierarchical combination of N- and C-terminal signals. Crucial is the length of the second transmembrane domain; extending its C terminus by > or = 2 hydrophobic amino acids redirects Kesv from the mitochondrial to the plasma membrane. Activity of Kesv in the plasma membrane is detected electrically or by yeast rescue assays only after this shift in sorting. Hence only minor structural alterations in a transmembrane domain are sufficient to switch sorting of a K(+) channel between the plasma membrane and mitochondria.
Collapse
|
112
|
Abstract
Biological processes are regulated to provide cells with exquisite adaptability to changing environmental conditions and cellular demands. The mechanisms regulating secretory and membrane protein translocation into the endoplasmic reticulum (ER) are unknown. A conceptual framework for translocational regulation is proposed based on our current mechanistic understanding of ER protein translocation and general principles of regulatory control.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
113
|
Regev-Rudzki N, Yogev O, Pines O. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J Cell Sci 2008; 121:2423-31. [DOI: 10.1242/jcs.029207] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dual localization of proteins in the cell has appeared in recent years to be a more abundant phenomenon than previously reported. One of the mechanisms by which a single translation product is distributed between two compartments, involves retrograde movement of a subset of processed molecules back through the organelle-membrane. Here, we investigated the specific contribution of the mitochondrial targeting sequence (MTS), as a cis element, in the distribution of two proteins, aconitase and fumarase. Whereas the cytosolic presence of fumarase is obvious, the cytosolic amount of aconitase is minute. Therefore, we created (1) MTS-exchange mutants, exchanging the MTS of aconitase and fumarase with each other as well as with those of other proteins and, (2) a set of single mutations, limited to the MTS of these proteins. Distribution of both proteins is affected by mutations, a fact particularly evident for aconitase, which displays extraordinary amounts of processed protein in the cytosol. Thus, we show for the first time, that the MTS has an additional role beyond targeting: it determines the level of retrograde movement of proteins back into the cytosol. Our results suggest that the translocation rate and folding of proteins during import into mitochondria determines the extent to which molecules are withdrawn back into the cytosol.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ohad Yogev
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ophry Pines
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| |
Collapse
|
114
|
Lee S, Chappell J. Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. PLANT PHYSIOLOGY 2008; 147:1017-33. [PMID: 18467455 PMCID: PMC2442544 DOI: 10.1104/pp.108.115824] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 04/22/2008] [Indexed: 05/20/2023]
Abstract
Magnolia grandiflora (Southern Magnolia) is a primitive evergreen tree that has attracted attention because of its horticultural distinctiveness, the wealth of natural products associated with it, and its evolutionary position as a basal angiosperm. Three cDNAs corresponding to terpene synthase (TPS) genes expressed in young leaves were isolated, and the corresponding enzymes were functionally characterized in vitro. Recombinant Mg25 converted farnesyl diphosphate (C(15)) predominantly to beta-cubebene, while Mg17 converted geranyl diphosphate (C(5)) to alpha-terpineol. Efforts to functionally characterize Mg11 were unsuccessful. Transcript levels for all three genes were prominent in young leaf tissue and significantly elevated for Mg25 and Mg11 messenger RNAs in stamens. A putative amino-terminal signal peptide of Mg17 targeted the reporter green fluorescent protein to both chloroplasts and mitochondria when transiently expressed in epidermal cells of Nicotiana tabacum leaves. Phylogenetic analyses indicated that Mg25 and Mg11 belonged to the angiosperm sesquiterpene synthase subclass TPS-a, while Mg17 aligned more closely to the angiosperm monoterpene synthase subclass TPS-b. Unexpectedly, the intron-exon organizations for the three Magnolia TPS genes were different from one another and from other well-characterized TPS gene sets. The Mg17 gene consists of six introns arranged in a manner similar to many other angiosperm sesquiterpene synthases, but Mg11 contains only four introns, and Mg25 has only a single intron located near the 5' terminus of the gene. Our results suggest that the structural diversity observed in the Magnolia TPS genes could have occurred either by a rapid loss of introns from a common ancestor TPS gene or by a gain of introns into an intron-deficient progenote TPS gene.
Collapse
Affiliation(s)
- Sungbeom Lee
- Plant Physiology, Biochemistry, and Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | |
Collapse
|
115
|
Berthomé R, Thomasset M, Maene M, Bourgeois N, Froger N, Budar F. pur4 mutations are lethal to the male, but not the female, gametophyte and affect sporophyte development in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:650-60. [PMID: 18441219 PMCID: PMC2409037 DOI: 10.1104/pp.108.120014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/22/2008] [Indexed: 05/24/2023]
Abstract
Purine metabolism is crucial in living cells and involves three complex pathways in plants: the de novo synthesis, the salvage, and the degradation pathways. The relative importance of each pathway in plant development and reproduction, however, is still unclear. We identified two T-DNA insertions in the Arabidopsis (Arabidopsis thaliana) PUR4 gene (At1g74260) that encodes formylglycinamidine ribonucleotide synthase (EC 6.3.5.3), the fourth enzyme in the de novo purine biosynthesis pathway. The mutated alleles were never transmitted through the pollen of heterozygous plants but could be inherited through the female gametophyte, indicating that de novo purine synthesis is specifically necessary for pollen development. Because the pur4 mutations were lethal to the male gametophyte, homozygous pur4 plants could not be obtained. However, the reproductive phenotype of hetererozygous plants carrying the pur4-2 mutated allele was more severe than that carrying the pur4-1 mutated allele, and pur4-2/+ plants showed slightly delayed early development. We showed that the pur4-2 allele produces an antisense transcript and that the amount of PUR4 mRNA is reduced in these plants. Transient expression of a translational fusion with the green fluorescent protein in Arabidopsis plantlets showed that the formylglycinamidine ribonucleotide synthase protein is dually targeted to chloroplast and mitochondria, suggesting that at least some steps of the de novo purine biosynthesis pathway can take place in both organelles in Arabidopsis, a dual location previously thought to be a peculiarity of ureide-forming tropical legumes.
Collapse
Affiliation(s)
- Richard Berthomé
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA UR254, 78026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
116
|
Zaretsky JZ, Wreschner DH. Protein multifunctionality: principles and mechanisms. TRANSLATIONAL ONCOGENOMICS 2008; 3:99-136. [PMID: 21566747 PMCID: PMC3022353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins.
Collapse
Affiliation(s)
- Joseph Z Zaretsky
- Department Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Haim Levanon St., 69978 Tel-Aviv, Israel
| | | |
Collapse
|
117
|
Anandatheerthavarada HK, Sepuri NBV, Biswas G, Avadhani NG. An unusual TOM20/TOM22 bypass mechanism for the mitochondrial targeting of cytochrome P450 proteins containing N-terminal chimeric signals. J Biol Chem 2008; 283:19769-80. [PMID: 18480056 DOI: 10.1074/jbc.m801464200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic-inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In the present study, we investigated the mechanism of delivery of chimeric signal-containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal-containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of chimeric signal-containing client proteins by Hsp90 required the cytosol-exposed N-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to bind CYP proteins. These results suggest that, compared with the unimodal mitochondria-targeting signals, the chimeric mitochondria-targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
118
|
Dinur-Mills M, Tal M, Pines O. Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge. PLoS One 2008; 3:e2161. [PMID: 18478128 PMCID: PMC2367453 DOI: 10.1371/journal.pone.0002161] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/20/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In eukaryotic cells, identical proteins can be located in different subcellular compartments (termed dual-targeted proteins). METHODOLOGY/PRINCIPAL FINDINGS We divided a reference set of mitochondrial proteins (published single gene studies) into two groups: i) Dual targeted mitochondrial proteins and ii) Exclusive mitochondrial proteins. Mitochondrial proteins were considered dual-targeted if they were also found or predicted to be localized to the cytosol, the nucleus, the endoplasmic reticulum (ER) or the peroxisome. We found that dual localized mitochondrial proteins have i) A weaker mitochondrial targeting sequence (MitoProtII score, hydrophobic moment and number of basic residues) and ii) a lower whole-protein net charge, when compared to exclusive mitochondrial proteins. We have also generated an annotation list of dual-targeted proteins within the predicted yeast mitochondrial proteome. This considerably large group of dual-localized proteins comprises approximately one quarter of the predicted mitochondrial proteome. We supported this prediction by experimental verification of a subgroup of the predicted dual targeted proteins. CONCLUSIONS/SIGNIFICANCE Taken together, these results establish dual targeting as a widely abundant phenomenon that should affect our concepts of gene expression and protein function. Possible relationships between the MTS/mature sequence traits and protein dual targeting are discussed.
Collapse
Affiliation(s)
- Maya Dinur-Mills
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
119
|
Meineke B, Engl G, Kemper C, Vasiljev-Neumeyer A, Paulitschke H, Rapaport D. The outer membrane form of the mitochondrial protein Mcr1 follows a TOM-independent membrane insertion pathway. FEBS Lett 2008; 582:855-60. [DOI: 10.1016/j.febslet.2008.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
120
|
Puyaubert J, Denis L, Alban C. Dual targeting of Arabidopsis holocarboxylase synthetase1: a small upstream open reading frame regulates translation initiation and protein targeting. PLANT PHYSIOLOGY 2008; 146:478-91. [PMID: 18156294 PMCID: PMC2245827 DOI: 10.1104/pp.107.111534] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/13/2007] [Indexed: 05/24/2023]
Abstract
Protein biotinylation is an original and very specific posttranslational modification, compartmented in plants, between mitochondria, plastids, and the cytosol. This reaction modifies and activates few carboxylases committed in key metabolisms and is catalyzed by holocarboxylase synthetase (HCS). The molecular bases of this complex compartmentalization and the relative function of each of the HCS genes, HCS1 and HCS2, identified in Arabidopsis (Arabidopsis thaliana) are mainly unknown. Here, we showed by reverse genetics that the HCS1 gene is essential for plant viability, whereas disruption of the HCS2 gene in Arabidopsis does not lead to any obvious phenotype when plants are grown under standard conditions. These findings strongly suggest that HCS1 is the only protein responsible for HCS activity in Arabidopsis cells, including the cytosolic, mitochondrial, and plastidial compartments. A closer study of HCS1 gene expression enabled us to propose an original mechanism to account for this multiplicity of localizations. Located in the HCS1 messenger RNA 5'-untranslated region, an upstream open reading frame regulates the translation initiation of HCS1 and the subsequent targeting of HCS1 protein. Moreover, an exquisitely precise alternative splicing of HCS1 messenger RNA can regulate the presence and absence of this upstream open reading frame. The existence of these complex and interdependent mechanisms creates a rich molecular platform where different parameters and factors could control HCS targeting and hence biotin metabolism.
Collapse
Affiliation(s)
- Juliette Puyaubert
- CNRS (UMR 5168)/CEA/Université Joseph Fourier/INRA (UMR 1200), CEA-Grenoble, Institut de Recherche en Technologies et Sciences pour le Vivant, Grenoble cedex 9, France
| | | | | |
Collapse
|
121
|
Zhang X, Azhar G, Helms S, Zhong Y, Wei JY. Identification of a subunit of NADH-dehydrogenase as a p49/STRAP-binding protein. BMC Cell Biol 2008; 9:8. [PMID: 18230186 PMCID: PMC2268686 DOI: 10.1186/1471-2121-9-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 01/29/2008] [Indexed: 11/16/2022] Open
Abstract
Background The p49/STRAP (or SRFBP1) protein was recently identified in our laboratory as a cofactor of serum response factor that contributes to the regulation of SRF target genes in the heart. Results In the present study, we report that NDUFAB1, a nuclear encoded subunit of NADH dehydrogenase, represented the majority of the cDNA clones that interacted with p49/STRAP in multiple screenings using the yeast two-hybrid system. The p49/STRAP and NDUFAB1 proteins interacted and co-localized with each other in the cell. The p49/STRAP protein contains four classic nuclear localization sequence motifs, and it was observed to be present predominantly in the nucleus. Overexpression of p49/STRAP altered the intracellular level of NAD, and reduced the NAD/NADH ratio. Overexpression of p49/STRAP also induced the deacetylation of serum response factor. Conclusion These data suggest that p49/STRAP plays a role in the regulation of intracellular processes such as cardiac cellular metabolism, gene expression, and possibly aging.
Collapse
Affiliation(s)
- Xiaomin Zhang
- From the Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Little Rock, AR, USA.
| | | | | | | | | |
Collapse
|
122
|
Schmauch C, Maniak M. Competition between targeting signals in hybrid proteins provides information on their relative in vivo affinities for subcellular compartments. Eur J Cell Biol 2007; 87:57-68. [PMID: 18054409 DOI: 10.1016/j.ejcb.2007.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 11/28/2022] Open
Abstract
After their translation and folding in the cytoplasm, proteins may be imported into an organelle, associate with a membrane, or rather become part of large, highly localised cytoplasmic structures such as the cytoskeleton. The localisation of a protein is governed by the strength of binding to its immediate target, such as an import receptor for an organelle or a major component of the cytoskeleton, e.g. actin. We have experimentally provided a set of actin-binding proteins with competing targeting information and expressed them at various concentrations to analyse the strength of the signal that governs their subcellular localisation. Our microscopic observations indicate that organellar sorting signals override the targeting preference of most cytoskeletal proteins. Among these signals, the nuclear localisation signal of SV40 is strongest, followed by the oligomerised PHB domain that targets vacuolin to the endosomal surface, and finally the tripeptide SKL mediating transport into the peroxisome. The actin-associated protein coronin, however, can only be misled by the nuclear localisation signal. Interestingly, the targeting behaviour of this model set of hybrid proteins in living Dictyostelium amoebae correlates surprisingly well with the affinities of their constituent signals derived from in vitro experiments conducted in various other organisms. Accordingly, this approach allows estimating the in vivo affinity of a protein to its target even if the latter is not known, as in the case of vacuolin.
Collapse
|
123
|
Lee C, Kramer G, Graham DE, Appling DR. Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase. J Biol Chem 2007; 282:27744-53. [PMID: 17652090 DOI: 10.1074/jbc.m704572200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Changkeun Lee
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
124
|
Pujol C, Maréchal-Drouard L, Duchêne AM. How Can Organellar Protein N-terminal Sequences Be Dual Targeting Signals? In silico Analysis and Mutagenesis Approach. J Mol Biol 2007; 369:356-67. [PMID: 17433818 DOI: 10.1016/j.jmb.2007.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/23/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Organellar nuclear-encoded proteins can be mitochondrial, chloroplastic or localized in both mitochondria and chloroplasts. Most of the determinants for organellar targeting are localized in the N-terminal part of the proteins, which were therefore analyzed in Arabidopsis thaliana. The mitochondrial, chloroplastic and dual N-terminal sequences have an overall similar composition. However, Arg is rare in the first 20 residues of chloroplastic and dual sequences, and Ala is more frequent at position 2 of these two types of sequence as compared to mitochondrial sequences. According to these observations, mutations were performed in three dual targeted proteins and analyzed by in vitro import into isolated mitochondria and chloroplasts. First, experiments performed with wild-type proteins suggest that the binding of precursor proteins to mitochondria is highly efficient, whereas the import and processing steps are more efficient in chloroplasts. Moreover, different processing sites are recognized by the mitochondrial and chloroplastic processing peptidases. Second, the mutagenesis approach shows the positive role of Arg residues for enhancing mitochondrial import or processing, as expected by the in silico analysis. By contrast, mutations at position 2 have dramatic and unpredicted effects, either enhancing or completely abolishing import. This suggests that the nature of the second amino acid residue of the N-terminal sequence is essential for the import of dual targeted sequences.
Collapse
Affiliation(s)
- Claire Pujol
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) Conventionné avec l'Université Louis Pasteur (Strasbourg 1), 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | |
Collapse
|
125
|
Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K. Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics 2007; 277:631-46. [PMID: 17295027 DOI: 10.1007/s00438-007-0214-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 01/14/2007] [Indexed: 12/24/2022]
Abstract
A group of nuclear transcription factors, the Whirly proteins, were recently shown to be targeted also to chloroplasts and mitochondria. In order to find out whether other proteins might share this feature, an in silico-based screening of transcription factors from Arabidopsis and rice was carried out with the aim of identifying putative N-terminal chloroplast and mitochondrial targeting sequences. For this, the individual predictions of several independent programs were combined to a consensus prediction using a naïve Bayes method. This consensus prediction shows a higher specificity at a given sensitivity value than each of the single programs. In both species, transcription factors from a variety of protein families that possess putative N-terminal plastid or mitochondrial target peptides as well as nuclear localization sequences, were found. A search for homologues within members of the AP2/EREBP protein family revealed that target peptide-containing proteins are conserved among monocotyledonous and dicotyledonous species. Fusion of one of these proteins to GFP revealed, indeed, a dual targeting activity of this protein. We propose that dually targeted transcription factors might be involved in the communication between the nucleus and the organelles in plant cells. We further discuss how recent results on the physical interaction between the organelles and the nucleus could have significance for the regulation of the localization of these proteins.
Collapse
Affiliation(s)
- Rainer Schwacke
- Institute of Botany, University of Cologne, Gyrhofstr. 15, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
126
|
Regev-Rudzki N, Pines O. Eclipsed distribution: A phenomenon of dual targeting of protein and its significance. Bioessays 2007; 29:772-82. [PMID: 17621655 DOI: 10.1002/bies.20609] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
One of the surprises from genome sequencing projects is the apparently small number of predicted genes in different eukaryotic cells, particularly human. One possible reason for this 'shortage' of genes is multiple distribution of proteins; a single protein is targeted to more than one subcellular compartment and consequently participates in different biochemical pathways and might have completely different functions. Indeed, in recent years, there have been reports on proteins that were found to be localized in cellular compartments other than those initially attributed to them. Furthermore, the phenomenon of highly uneven isoprotein distribution was recently observed and termed 'eclipsed distribution'. In these cases, the amount of one of the isoproteins, in one of the locations, is significantly minute and its detection by standard biochemical and visualization methods is masked by the presence of the dominant isoprotein. In fact, the minute amounts of eclipsed proteins can be essential. Since detecting eclipsed distribution is difficult, we assume that this phenomenon is probably more common than currently recorded. Hence, developing methods for localization and functional detection of eclipsed proteins is a challenge in cell biology research. Finally, eclipsed distribution may lead to cellular pathologies as has been suggested to occur in human disorders such as Prion diseases and Alzheimer. This review provides a short description of the eclipsed distribution phenomenon followed by an overview of protein distribution mechanisms, examples of eclipsed distribution and experimental approaches for revealing these elusive proteins.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Molecular Biology, Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
127
|
Abstract
In recent years, a growing number of proteins have been shown to be localized in more than one subcellular location, although encoded from a single gene. Fundamental aspects in the research of such dual-distributed proteins involve determination of their subcellular localization and their location-specific functions. The lack of sensitive and suitable tools to address these issues has led us to develop a novel tool for functional detection of cytosolic/nuclear isoproteins in the cell, which we term location-specific depletion or subcellular knockout. The depletion of the protein occurs post-translationally via degradation by the ubiquitin-proteasome system, which operates only in the cytosol and the nucleus. As an example, we fused the yeast tricarboxylic acid (TCA) cycle enzyme aconitase to a degron sequence (SL17) recognizable by the ubiquitin-proteasome system. This fusion resulted in the degradation of the cytosolic enzyme, specifically eliminating its activity within the cytosolic glyoxylate shunt without disrupting the protein's activity within the mitochondrial TCA cycle. We show that the degradation of the fusion protein can be attributed specifically to the ubiquitin-proteasome system and that inhibition of this degradation restores its cytosolic activity. This novel tool can be used to detect small subpopulations of dual-targeted proteins, thereby revealing isoproteins that were considered to be confined to a single compartment. The particular advantage of this specific subcellular depletion is that it can reveal the functions of the cytosolic/nuclear isoproteins.
Collapse
Affiliation(s)
- Lee Shlevin
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
128
|
Palmieri L, Arrigoni R, Blanco E, Carrari F, Zanor MI, Studart-Guimaraes C, Fernie AR, Palmieri F. Molecular identification of an Arabidopsis S-adenosylmethionine transporter. Analysis of organ distribution, bacterial expression, reconstitution into liposomes, and functional characterization. PLANT PHYSIOLOGY 2006; 142:855-65. [PMID: 16950860 PMCID: PMC1630753 DOI: 10.1104/pp.106.086975] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite much study of the role of S-adenosylmethionine (SAM) in the methylation of DNA, RNA, and proteins, and as a cofactor for a wide range of biosynthetic processes, little is known concerning the intracellular transport of this essential metabolite. Screening of the Arabidopsis (Arabidopsis thaliana) genome yielded two potential homologs of yeast (Saccharomyces cerevisiae) and human SAM transporters, designated as SAMC1 and SAMC2, both of which belong to the mitochondrial carrier protein family. The SAMC1 gene is broadly expressed at the organ level, although only in specialized tissues of roots with high rates of cell division, and appears to be up-regulated in response to wounding stress, whereas the SAMC2 gene is very poorly expressed in all organs/tissues analyzed. Direct transport assays with the recombinant and reconstituted SAMC1 were utilized to demonstrate that this protein displays a very narrow substrate specificity confined to SAM and its closest analogs. Further experiments revealed that SAMC1 was able to function in uniport and exchange reactions and characterized the transporter as highly active, but sensitive to physiologically relevant concentrations of S-adenosylhomocysteine, S-adenosylcysteine, and adenosylornithine. Green fluorescent protein-based cell biological analysis demonstrated targeting of SAMC1 to mitochondria. Previous proteomic analyses identified this protein also in the chloroplast inner envelope. In keeping with these results, bioinformatics predicted dual localization for SAMC1. These findings suggest that the provision of cytosolically synthesized SAM to mitochondria and possibly also to plastids is mediated by SAMC1 according to the relative demands for this metabolite in the organelles.
Collapse
Affiliation(s)
- Luigi Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci 2006; 26:9057-68. [PMID: 16943564 PMCID: PMC6675337 DOI: 10.1523/jneurosci.1469-06.2006] [Citation(s) in RCA: 613] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is one of the major intracellular lesions of Alzheimer's disease (AD). However, the causative factors involved in the mitochondrial dysfunction in human AD are not well understood. Here we report that nonglycosylated full-length and C-terminal truncated amyloid precursor protein (APP) accumulates exclusively in the protein import channels of mitochondria of human AD brains but not in age-matched controls. Furthermore, in AD brains, mitochondrially associated APP formed stable approximately 480 kDa complexes with the translocase of the outer mitochondrial membrane 40 (TOM40) import channel and a super complex of approximately 620 kDa with both mitochondrial TOM40 and the translocase of the inner mitochondrial membrane 23 (TIM23) import channel TIM23 in an "N(in mitochondria)-C(out cytoplasm)" orientation. Accumulation of APP across mitochondrial import channels, which varied with the severity of AD, inhibited the entry of nuclear-encoded cytochrome c oxidase subunits IV and Vb proteins, which was associated with decreased cytochrome c oxidase activity and increased levels of H2O2. Regional distribution of mitochondrial APP showed higher levels in AD-vulnerable brain regions, such as the frontal cortex, hippocampus, and amygdala. Mitochondrial accumulation of APP was also observed in the cholinergic, dopaminergic, GABAergic, and glutamatergic neuronal types in the category III AD brains. The levels of translocationally arrested mitochondrial APP directly correlated with mitochondrial dysfunction. Moreover, apolipoprotein genotype analysis revealed that AD subjects with the E3/E4 alleles had the highest content of mitochondrial APP. Collectively, these results suggest that abnormal accumulation of APP across mitochondrial import channels, causing mitochondrial dysfunction, is a hallmark of human AD pathology.
Collapse
Affiliation(s)
- Latha Devi
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Badanavalu M. Prabhu
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Domenico F. Galati
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Narayan G. Avadhani
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
130
|
Davis JR, Kakar M, Lim CS. Controlling protein compartmentalization to overcome disease. Pharm Res 2006; 24:17-27. [PMID: 16969692 DOI: 10.1007/s11095-006-9133-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
Over the past decade, considerable progress has been made to improve our understanding of the intracellular transport of proteins. Mechanisms of nuclear import and export involving classical receptors have been studied. Signal sequences required for directing a protein molecule to a specific cellular compartment have been defined. Knowledge of subcellular trafficking of proteins has also increased our understanding of diseases caused due to mislocalization of proteins. A specific protein on deviating from its native cellular compartment may result in disease due to loss of its normal functioning and aberrant activity in the "wrong" compartment. Mislocalization of proteins results in diseases that range from metabolic disorders to cancer. In this review we discuss some of the diseases caused due to mislocalization. We further focus on application of nucleocytoplasmic transport to drug delivery. Various rationales to treat diseases by exploiting intracellular transport machinery have been proposed. Although the pathways for intracellular movement of proteins have been defined, these have not been adequately utilized for management of diseases involving mislocalized proteins. This review stresses the need for designing drug delivery systems utilizing these mechanisms as this area is least exploited but offers great potential.
Collapse
Affiliation(s)
- James R Davis
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
131
|
Karniely S, Rayzner A, Sass E, Pines O. Alpha-complementation as a probe for dual localization of mitochondrial proteins. Exp Cell Res 2006; 312:3835-46. [PMID: 17034789 DOI: 10.1016/j.yexcr.2006.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/12/2006] [Accepted: 08/15/2006] [Indexed: 11/23/2022]
Abstract
There are a growing number of proteins which are reported to reside in multiple compartments within the eukaryotic cell. However, lack of appropriate methods limits our knowledge on the true extent of this phenomenon. In this study, we demonstrate a novel application of beta-galactosidase alpha-complementation to study dual distribution of proteins in yeast cells. Using a simple colony color phenotype, we show that alpha-complementation depends on co-compartmentalization of alpha and omega fragments and exploit this to probe dual localization of proteins between the cytosol and mitochondria in yeast. The quality of our assay was assessed by analysis of the known dual targeted enzyme fumarase and several mutant derivatives, which are exclusively localized to one or the other of these subcellular compartments. Addition of the alpha fragment did not abolish the enzymatic activity of the tagged proteins nor did it affect their localization. By examining 10 yeast gene products for distribution between the cytosol and the mitochondria, we demonstrate the potential of alpha-complementation to screen the mitochondrial proteome for dual distribution. Our data indicate the distribution of two uncharacterized proteins--Bna3 and Nif3--between the cytosol and the mitochondria.
Collapse
Affiliation(s)
- Sharon Karniely
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
132
|
Singh B, Gupta RS. Mitochondrial import of human and yeast fumarase in live mammalian cells: Retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence. Biochem Biophys Res Commun 2006; 346:911-8. [PMID: 16774737 DOI: 10.1016/j.bbrc.2006.05.188] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.
Collapse
Affiliation(s)
- Bhag Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada L8N 3Z5
| | | |
Collapse
|
133
|
Kaltimbacher V, Bonnet C, Lecoeuvre G, Forster V, Sahel JA, Corral-Debrinski M. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA (NEW YORK, N.Y.) 2006; 12:1408-17. [PMID: 16751614 PMCID: PMC1484424 DOI: 10.1261/rna.18206] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As previously established in yeast, two sequences within mRNAs are responsible for their specific localization to the mitochondrial surface-the region coding for the mitochondrial targeting sequence and the 3'UTR. This phenomenon is conserved in human cells. Therefore, we decided to use mRNA localization as a tool to address to mitochondria, a protein that is not normally imported. For this purpose, we associated a nuclear recoded ATP6 gene with the mitochondrial targeting sequence and the 3'UTR of the nuclear SOD2 gene, which mRNA exclusively localizes to the mitochondrial surface in HeLa cells. The ATP6 gene is naturally located into the organelle and encodes a highly hydrophobic protein of the respiratory chain complex V. In this study, we demonstrated that hybrid ATP6 mRNAs, as the endogenous SOD2 mRNA, localize to the mitochondrial surface in human cells. Remarkably, fusion proteins localize to mitochondria in vivo. Indeed, ATP6 precursors synthesized in the cytoplasm were imported into mitochondria in a highly efficient way, especially when both the MTS and the 3'UTR of the SOD2 gene were associated with the re-engineered ATP6 gene. Hence, these data indicate that mRNA targeting to the mitochondrial surface represents an attractive strategy for allowing the mitochondrial import of proteins originally encoded by the mitochondrial genome without any amino acid change in the protein that could interfere with its biologic activity.
Collapse
Affiliation(s)
- Valérie Kaltimbacher
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U592 and Université Pierre et Marie Curie (UPMC-Paris6), Hôpital St. Antoine, 75571 Paris, Cedex 12 France
| | | | | | | | | | | |
Collapse
|
134
|
Porras P, Padilla CA, Krayl M, Voos W, Bárcena JA. One Single In-frame AUG Codon Is Responsible for a Diversity of Subcellular Localizations of Glutaredoxin 2 in Saccharomyces cerevisiae. J Biol Chem 2006; 281:16551-62. [PMID: 16606613 DOI: 10.1074/jbc.m600790200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxins belong to a family of small proteins with glutathione-dependent disulfide oxidoreductase activity involved in cellular defense against oxidative stress. The product of the yeast GRX2 gene is a protein that is localized both in the cytosol and mitochondria. To throw light onto the mechanism responsible for the dual subcellular distribution of Grx2 we analyzed mutant constructs containing different targeting information. By altering amino acid residues around the two in-frame translation initiation start sites of the GRX2 gene, we could demonstrate that the cytosolic isoform of Grx2 was synthesized from the second AUG, lacking an N-terminal extension. Translation from the first AUG resulted in a long isoform carrying a mitochondrial targeting presequence. The mitochondrial targeting properties of the presequence and the influence of the mature part of Grx2 were analyzed by the characterization of the import kinetics of specific fusion proteins. Import of the mitochondrial isoform is relatively inefficient and results in the accumulation of a substantial amount of unprocessed form in the mitochondrial outer membrane. Substitution of Met(35), the second translation start site, to Val resulted in an exclusive targeting to the mitochondrial matrix. Our results show that a plethora of Grx2 subcellular localizations could spread its antioxidant functions all over the cell, but one single A to G [corrected] mutation converts Grx2 into a typical protein of the mitochondrial matrix. The "A" denotes adenine, rather than alanine, and the "G" refers to guanine, not glycine [corrected]
Collapse
Affiliation(s)
- Pablo Porras
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | | | | | | | | |
Collapse
|
135
|
Abstract
The mitochondrion houses a variety of redox pathways, utilized for protection from oxidative damage and assembly of the organelle. The glutathione/glutaredoxin and thioredoxin systems function in the mitochondrial matrix. The intermembrane space is protected from oxidative damage via superoxide dismutase and glutathione. Subunits in the cytochrome bc (1) complex utilize disulfide bonds for enzymatic activity, whereas cytochrome oxidase relies on disulfide linkages for copper acquisition. A redox pathway (Mia40p and Erv1p) mediates the import of intermembrane space proteins such as the small Tim proteins, Cox17p, and Cox19p, which have disulfide bonds. Many of the candidate proteins with disulfide bridges possess a twin CX3C motif or CX9C motif and utilize both metal binding and disulfide linkages for function. It may seem surprising that the intermembrane space has developed redox pathways, considering that the buffered environment should be reducing like the cytosol. However, the prokaryotic origin of the mitochondrion suggests that the intermembrane space may be akin to the oxidative environment of the bacterial periplasm. Although the players forming disulfide bonds are not conserved between mitochondria and prokaryotes, the mitochondrion may have maintained redox chemistry as an assembly mechanism in the intermembrane space for the import of proteins and metals and enzymatic activity.
Collapse
Affiliation(s)
- Carla M Koehler
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095-1569, USA.
| | | | | |
Collapse
|
136
|
Lingelbach K, Przyborski JM. The long and winding road: Protein trafficking mechanisms in the Plasmodium falciparum infected erythrocyte. Mol Biochem Parasitol 2006; 147:1-8. [PMID: 16540187 DOI: 10.1016/j.molbiopara.2006.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/19/2006] [Accepted: 01/31/2006] [Indexed: 11/17/2022]
Abstract
Mature human erythrocytes infected with the human malarial parasite Plasmodium falciparum are extensively modified to provide a more comfortable "home" for their intracellular guests. This process is mediated by parasite-encoded factors that are exported into, and through the host erythrocyte. This intra- yet simultaneously extra-cellular protein trafficking and sorting system has, in the past decades received much attention, also due to its unusual nature. Recent reports have highlighted the importance of a short peptide sequence, referred to individually as Plasmodium export element (PEXEL), vacuolar translocation signal (VTS) or generally as host cell targeting signal (HCT) in the export of both soluble and membrane bound proteins, allowing the partial definition of the parasite's "exportome". Mechanistically however, the discovery of this sequence raises as many questions as it answers. In this article, we comment on current models of protein transport to the host cell, discuss the mechanistic problems highlighted by these signals, and suggest what might be the next important steps in studying the protein export mechanisms of an obligate intracellular parasite that chooses to inhabit a de-nucleated host cell.
Collapse
|
137
|
Griffin S, Clarke D, McCormick C, Rowlands D, Harris M. Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes. J Virol 2006; 79:15525-36. [PMID: 16306623 PMCID: PMC1315988 DOI: 10.1128/jvi.79.24.15525-15536.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The hepatitis C virus (HCV) p7 protein forms an amantadine-sensitive ion channel required for viral replication in chimpanzees, though its precise role in the life cycle of HCV is unknown. In an attempt to gain some insights into p7 function, we examined the intracellular localization of p7 using epitope tags and an anti-p7 peptide antibody, antibody 1055. Immunofluorescence labeling of p7 at its C terminus revealed an endoplasmic reticulum (ER) localization independent of the presence of its signal peptide, whereas labeling the N terminus gave a mitochondrial-type distribution in brightly labeled cells. Both of these patterns could be visualized within individual cells, suggestive of separate pools of p7 where the N and C termini differed in accessibility to antibody. These patterns were disrupted by preventing signal peptide cleavage. Subcellular fractionation revealed that p7 was enriched in a heavy membrane fraction associated with mitochondria as well as normal ER-derived microsomes. The complex regulation of the intracellular distribution of p7 suggests that p7 plays multiple roles in the HCV life cycle either intracellularly or as a virion component.
Collapse
Affiliation(s)
- Stephen Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
138
|
Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W. Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 2006; 281:9909-18. [PMID: 16452484 DOI: 10.1074/jbc.m507862200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyruvate formate-lyase (PFL) catalyzes the non-oxidative conversion of pyruvate to formate and acetyl-CoA. PFL and its activating enzyme (PFL-AE) are common among strict anaerobic and microaerophilic prokaryotes but are very rare among eukaryotes. In a proteome survey of isolated Chlamydomonas reinhardtii mitochondria, we found several PFL-specific peptides leading to the identification of cDNAs for PFL and PFL-AE, establishing the existence of a PFL system in this photosynthetic algae. Anaerobiosis and darkness led to increased PFL transcripts but had little effect on protein levels, as determined with antiserum raised against C. reinhardtii PFL. Protein blots revealed the occurrence of PFL in both chloroplast and mitochondria purified from aerobically grown cells. Mass spectrometry sequencing of C. reinhardtii mitochondrial proteins, furthermore, identified peptides for phosphotransacetylase and acetate kinase. The phosphotransacetylase-acetate kinase pathway is a common route of ATP synthesis or acetate assimilation among prokaryotes but is novel among eukaryotes. In addition to PFL and pyruvate dehydrogenase, the algae also expresses pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde/alcohol dehydrogenase. Among eukaryotes, the oxygen producer C. reinhardtii has the broadest repertoire of pyruvate-, ethanol-, and acetate-metabolizing enzymes described to date, many of which were previously viewed as specific to anaerobic eukaryotic lineages.
Collapse
Affiliation(s)
- Ariane Atteia
- Institute of Botany, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Brun C, Philip-Couderc P, Raggenbass M, Roatti A, Baertschi AJ. Intracellular targeting of truncated secretory peptides in the mammalian heart and brain. FASEB J 2006; 20:732-4. [PMID: 16443679 DOI: 10.1096/fj.05-4338fje] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Secretory polypeptides are vital for nervous system function, sleep, reproduction, growth, and metabolism. Ribosomes scanning the 5'-end of mRNA usually detect the first AUG site for initiating translation. The nascent propeptide chain is then directed via a signal-peptide into the endoplasmic reticulum, processed through the Golgi stacks, and packaged into secretory vesicles. By expressing prepropeptide-EGFP fusion proteins, we observed unusual destinations, mitochondria, nucleus, and cytoplasm, of neuropeptide Y (NPY), atrial natriuretic peptide, and growth hormone in living murine cardiac cells and hypothalamic slices. Subcellular expression was modulated by Zn++ or mutations of N-terminal prohormone sequences but was not due to overexpression in the trans-Golgi network. Mitochondrial targeting of NPY also occurred without the EGFP tag, was enhanced by site-directed mutagenesis of the first AUG initiation site, and abolished by mutation of the second AUG. Immunological methods indicated the presence of N-terminal truncated NPY in mitochondria. Imaging studies showed depolarization of NPY-containing mitochondria. P-SORT software correctly predicted the secondary intracellular destinations and suggested such destinations for many neuropeptides and peptide hormones known. Thus, mammalian cells may retarget secretory peptides from extracellular to intracellular sites by skipping the first translation-initiation codon and thereby alter mitochondrial function, gene expression, and secretion.
Collapse
Affiliation(s)
- Cécile Brun
- Department of Neuroscience, Centre Médical Universitaire, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
140
|
Zahedi RP, Sickmann A, Boehm AM, Winkler C, Zufall N, Schönfisch B, Guiard B, Pfanner N, Meisinger C. Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 2006; 17:1436-50. [PMID: 16407407 PMCID: PMC1382330 DOI: 10.1091/mbc.e05-08-0740] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondria consist of four compartments-outer membrane, intermembrane space, inner membrane, and matrix--with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of approximately 85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sjögren-Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.
Collapse
Affiliation(s)
- Rene P Zahedi
- Rudolf-Virchow-Center for Experimental Biomedicine, Universität Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Mackenzie SA. Plant organellar protein targeting: a traffic plan still under construction. Trends Cell Biol 2005; 15:548-54. [PMID: 16143534 DOI: 10.1016/j.tcb.2005.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/21/2005] [Accepted: 08/22/2005] [Indexed: 11/30/2022]
Abstract
It has long been understood that specific features of a protein and its corresponding import apparatus dictate the behavior of mitochondrial proteins in their intracellular targeting behavior. In plants, the process by which proteins are directed to organelles has been influenced uniquely by the introduction to the cell of plastids. Parallel functions carried out within the mitochondrion and plastid permit the sharing of proteins and emergence of mechanisms to facilitate dual-targeting of the nuclear-encoded products to both compartments. These include transcriptional and translational variations, relaxation of translation initiation controls and conditional cellular influences. Details of the dual targeting system are emerging from recent studies, and evidence of variation in protein targeting behavior across plant families and across organisms implies that the system itself is in flux. This trend towards multi-targeting enhances protein versatility across eukaryotes - one means of cellular response to developmental or environmental influence.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Plant Science Initiative, N300 Beadle Center for Genetics Research, University of Nebraska, Lincoln, NE 68588-0660, USA.
| |
Collapse
|