101
|
Schilders G, van Dijk E, Raijmakers R, Pruijn GJM. Cell and Molecular Biology of the Exosome: How to Make or Break an RNA. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:159-208. [PMID: 16939780 DOI: 10.1016/s0074-7696(06)51005-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The identification and characterization of the exosome complex has shown that the exosome is a complex of 3' --> 5' exoribonucleases that plays a key role in the processing and degradation of a wide variety of RNA substrates. Advances in the understanding of exosome function have led to the identification of numerous cofactors that are required for a selective recruitment of the exosome to substrate RNAs, for their structural alterations to facilitate degradation, and to aid in their complete degradation/processing. Structural data obtained by two-hybrid interaction analyses and X-ray crystallography show that the core of the exosome adopts a doughnut-like structure and demonstrates that probably not all exosome subunits are active exoribonucleases. Despite all data obtained on the structure and function of the exosome during the last decade, there are still a lot of unanswered questions. What is the molecular mechanism by which cofactors select and target substrate RNAs to the exosome and modulate its function for correct processing or degradation? How can the exosome discriminate between processing or degradation of a specific substrate RNA? What is the precise structure of exosome subunits and how do they contribute to its function? Here we discuss studies that provide some insight to these questions and speculate on the mechanisms that control the exosome.
Collapse
Affiliation(s)
- Geurt Schilders
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
102
|
Ramos CRR, Oliveira CLP, Torriani IL, Oliveira CC. The Pyrococcus exosome complex: structural and functional characterization. J Biol Chem 2005; 281:6751-9. [PMID: 16407194 DOI: 10.1074/jbc.m512495200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exosome is a conserved eukaryotic enzymatic complex that plays an essential role in many pathways of RNA processing and degradation. Here, we describe the structural characterization of the predicted archaeal exosome in solution using small angle x-ray scattering. The structure model calculated from the small angle x-ray scattering pattern provides an indication of the existence of a disk-shaped structure, corresponding to the "RNases PH ring" complex formed by the proteins aRrp41 and aRrp42. The RNases PH ring complex corresponds to the core of the exosome, binds RNA, and has phosphorolytic and polymerization activities. Three additional molecules of the RNA-binding protein aRrp4 are attached to the core as extended and flexible arms that may direct the substrates to the active sites of the exosome. In the presence of aRrp4, the activity of the core complex is enhanced, suggesting a regulatory role for this protein. The results shown here also indicate the participation of the exosome in RNA metabolism in Archaea, as was established in Eukarya.
Collapse
Affiliation(s)
- Celso Raul Romero Ramos
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
103
|
Lorentzen E, Conti E. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell 2005; 20:473-81. [PMID: 16285928 DOI: 10.1016/j.molcel.2005.10.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/06/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
The exosome is a macromolecular complex that plays fundamental roles in the biogenesis and turnover of a large number of RNA species. Here we report the crystal structures of the Rrp41-Rrp42 core complex of the S. solfataricus exosome bound to short single-stranded RNAs and to ADP. The RNA binding cleft recognizes four nucleotides in a sequence-unspecific manner, mainly by electrostatic interactions with the phosphate groups. Interactions at the 2' hydroxyls of the sugars provide specificity for RNA over DNA. The structures show both the bound substrate and the cleaved product of the reaction, suggesting a catalytic mechanism for the 3'-5' phosphorolytic activity of the exosome.
Collapse
Affiliation(s)
- Esben Lorentzen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
104
|
Büttner K, Wenig K, Hopfner KP. Structural Framework for the Mechanism of Archaeal Exosomes in RNA Processing. Mol Cell 2005; 20:461-71. [PMID: 16285927 DOI: 10.1016/j.molcel.2005.10.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/26/2005] [Accepted: 10/21/2005] [Indexed: 11/24/2022]
Abstract
Exosomes emerge as central 3'-->5' RNA processing and degradation machineries in eukaryotes and archaea. We determined crystal structures of two 230 kDa nine subunit archaeal exosome isoforms. Both exosome isoforms contain a hexameric ring of RNase phosphorolytic (PH) domain subunits with a central chamber. Tungstate soaks identified three phosphorolytic active sites in this processing chamber. A trimer of Csl4 or Rrp4 subunits forms a multidomain macromolecular interaction surface on the RNase-PH domain ring with central S1 domains and peripheral KH and zinc-ribbon domains. Structural and mutational analyses suggest that the S1 domains and a subsequent neck in the RNase-PH domain ring form an RNA entry pore to the processing chamber that only allows access of unstructured RNA. This structural framework can mechanistically unify observed features of exosomes, including processive degradation of unstructured RNA, the requirement for regulatory factors to degrade structured RNA, and left-over tails in rRNA trimming.
Collapse
Affiliation(s)
- Katharina Büttner
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
105
|
Makarova KS, Koonin EV. Evolutionary and functional genomics of the Archaea. Curr Opin Microbiol 2005; 8:586-94. [PMID: 16111915 DOI: 10.1016/j.mib.2005.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/05/2005] [Indexed: 11/20/2022]
Abstract
In the past two years, archaeal genomics has achieved several breakthroughs. On the evolutionary front the most exciting development was the sequencing and analysis of the genome of Nanoarchaeum equitans, a tiny parasitic organism that has only approximately 540 genes. The genome of Nanoarchaeum shows signs of extreme rearrangement including the virtual absence of conserved operons and the presence of several split genes. Nanoarchaeum is distantly related to other archaea, and it has been proposed to represent a deep archaeal branch that is distinct from Euryarchaeota and Crenarchaeota. This would imply that many features of its gene repertoire and genome organization might be ancestral. However, additional genome analysis has provided a more conservative suggestion - that Nanoarchaeum is a highly derived euryarchaeon. Also there have been substantial developments in functional genomics, including the discovery of the elusive aminoacyl-tRNA synthetase that is involved in both the biosynthesis of cysteine and its incorporation into proteins in methanogens, and the first experimental validation of the predicted archaeal exosome.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
106
|
Ettema TJG, de Vos WM, van der Oost J. Discovering novel biology by in silico archaeology. Nat Rev Microbiol 2005; 3:859-69. [PMID: 16175172 DOI: 10.1038/nrmicro1268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are prokaryotes that evolved in parallel with bacteria. Since the discovery of the distinct status of the Archaea, extensive physiological and biochemical research has been conducted to elucidate the molecular basis of their remarkable lifestyle and their unique biology. Here, we discuss how in-depth comparative genomics has been used to improve the annotation of archaeal genomes. Combined with experimental verification, bioinformatic analysis contributes to the ongoing discovery of novel metabolic conversions and control mechanisms, and as such to a better understanding of the intriguing biology of the Archaea.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6703 CT Wageningen, The Netherlands
| | | | | |
Collapse
|
107
|
|
108
|
Farhoud MH, Wessels HJCT, Steenbakkers PJM, Mattijssen S, Wevers RA, van Engelen BG, Jetten MSM, Smeitink JA, van den Heuvel LP, Keltjens JT. Protein complexes in the archaeon Methanothermobacter thermautotrophicus analyzed by blue native/SDS-PAGE and mass spectrometry. Mol Cell Proteomics 2005; 4:1653-63. [PMID: 16037073 DOI: 10.1074/mcp.m500171-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methanothermobacter thermautotrophicus is a thermophilic archaeon that produces methane as the end product of its primary metabolism. The biochemistry of methane formation has been extensively studied and is catalyzed by individual enzymes and proteins that are organized in protein complexes. Although much is known of the protein complexes involved in methanogenesis, only limited information is available on the associations of proteins involved in other cell processes of M. thermautotrophicus. To visualize and identify interacting and individual proteins of M. thermautotrophicus on a proteome-wide scale, protein preparations were separated using blue native electrophoresis followed by SDS-PAGE. A total of 361 proteins, corresponding to almost 20% of the predicted proteome, was identified using peptide mass fingerprinting after MALDI-TOF MS. All previously characterized complexes involved in energy generation could be visualized. Furthermore the expression and association of the heterodisulfide reductase and methylviologen-reducing hydrogenase complexes depended on culture conditions. Also homomeric supercomplexes of the ATP synthase stalk subcomplex and the N5-methyl-5,6,7,8-tetrahydromethanopterin:coenzyme M methyltransferase complex were separated. Chemical cross-linking experiments confirmed that the multimerization of both complexes was not experimentally induced. A considerable number of previously uncharacterized protein complexes were reproducibly visualized. These included an exosome-like complex consisting of four exosome core subunits, which associated with a tRNA-intron endonuclease, thereby expanding the constituency of archaeal exosomes. The results presented show the presence of novel complexes and demonstrate the added value of including blue native gel electrophoresis followed by SDS-PAGE in discovering protein complexes that are involved in catabolic, anabolic, and general cell processes.
Collapse
Affiliation(s)
- Murtada H Farhoud
- Nijmegen Center for Mitochondrial and Metabolic Disorders, Radboud University Nijmegen Medical Center, Geert Grooteplein 10, 6500 HB Nijmegen
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Iyer LM, Koonin EV, Leipe DD, Aravind L. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res 2005; 33:3875-96. [PMID: 16027112 PMCID: PMC1176014 DOI: 10.1093/nar/gki702] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report an in-depth computational study of the protein sequences and structures of the superfamily of archaeo-eukaryotic primases (AEPs). This analysis greatly expands the range of diversity of the AEPs and reveals the unique active site shared by all members of this superfamily. In particular, it is shown that eukaryotic nucleo-cytoplasmic large DNA viruses, including poxviruses, asfarviruses, iridoviruses, phycodnaviruses and the mimivirus, encode AEPs of a distinct family, which also includes the herpesvirus primases whose relationship to AEPs has not been recognized previously. Many eukaryotic genomes, including chordates and plants, encode previously uncharacterized homologs of these predicted viral primases, which might be involved in novel DNA repair pathways. At a deeper level of evolutionary connections, structural comparisons indicate that AEPs, the nucleases involved in the initiation of rolling circle replication in plasmids and viruses, and origin-binding domains of papilloma and polyoma viruses evolved from a common ancestral protein that might have been involved in a protein-priming mechanism of initiation of DNA replication. Contextual analysis of multidomain protein architectures and gene neighborhoods in prokaryotes and viruses reveals remarkable parallels between AEPs and the unrelated DnaG-type primases, in particular, tight associations with the same repertoire of helicases. These observations point to a functional equivalence of the two classes of primases, which seem to have repeatedly displaced each other in various extrachromosomal replicons.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- To whom correspondence should be addressed. Tel: +1 301 594 2445; Fax: +1 301 480 9241;
| |
Collapse
|
110
|
Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 2005; 12:575-81. [PMID: 15951817 DOI: 10.1038/nsmb952] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/18/2005] [Indexed: 11/08/2022]
Abstract
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.
Collapse
|
111
|
Purusharth RI, Klein F, Sulthana S, Jäger S, Jagannadham MV, Evguenieva-Hackenberg E, Ray MK, Klug G. Exoribonuclease R interacts with endoribonuclease E and an RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J Biol Chem 2005; 280:14572-8. [PMID: 15705581 DOI: 10.1074/jbc.m413507200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoribonuclease E, a key enzyme involved in RNA decay and processing in bacteria, organizes a protein complex called degradosome. In Escherichia coli, Rhodobacter capsulatus, and Streptomyces coelicolor, RNase E interacts with the phosphate-dependent exoribonuclease polynucleotide phosphorylase, DEAD-box helicase(s), and additional factors in an RNA-degrading complex. To characterize the degradosome of the psychrotrophic bacterium Pseudomonas syringae Lz4W, RNase E was enriched by cation exchange chromatography and fractionation in a glycerol density gradient. Most surprisingly, the hydrolytic exoribonuclease RNase R was found to co-purify with RNase E. Co-immunoprecipitation and Ni(2+)-affinity pull-down experiments confirmed the specific interaction between RNase R and RNase E. Additionally, the DEAD-box helicase RhlE was identified as part of this protein complex. Fractions comprising the three proteins showed RNase E and RNase R activity and efficiently degraded a synthetic stem-loop containing RNA in the presence of ATP. The unexpected association of RNase R with RNase E and RhlE in an RNA-degrading complex indicates that the cold-adapted P. syringae has a degradosome of novel structure. The identification of RNase R instead of polynucleotide phosphorylase in this complex underlines the importance of the interaction between endo- and exoribonucleases for the bacterial RNA metabolism. The physical association of RNase E with an exoribonuclease and an RNA helicase apparently is a common theme in the composition of bacterial RNA-degrading complexes.
Collapse
|
112
|
Ng CL, Waterman D, Koonin EV, Antson AA, Ortiz-Lombardía M. Crystal structure of Mil (Mth680): internal duplication and similarity between the Imp4/Brix domain and the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases. EMBO Rep 2005; 6:140-6. [PMID: 15654320 PMCID: PMC1299238 DOI: 10.1038/sj.embor.7400328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/08/2004] [Accepted: 12/03/2004] [Indexed: 11/08/2022] Open
Abstract
Proteins of the Imp4/Brix superfamily are involved in ribosomal RNA processing, an essential function in all cells. We report the first structure of an Imp4/Brix superfamily protein, the Mil (for Methanothermobacter thermautotrophicus Imp4-like) protein (gene product Mth680), from the archaeon M. thermautotrophicus. The amino- and carboxy-terminal halves of Mil show significant structural similarity to one another, suggesting an origin by means of an ancestral duplication. Both halves show the same fold as the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases, with greater conservation seen in the N-terminal half. This structural similarity, together with the charge distribution in Mil, suggests that Imp4/Brix superfamily proteins could bind single-stranded segments of RNA along a concave surface formed by the N-terminal half of their beta-sheet and a central alpha-helix. The crystal structure of Mil is incompatible with the presence, in the Imp4/Brix domain, of a helix-turn-helix motif that was proposed to comprise the RNA-binding moiety of the Imp4/Brix proteins.
Collapse
Affiliation(s)
- Chyan Leong Ng
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| | - David Waterman
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| | - Miguel Ortiz-Lombardía
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| |
Collapse
|
113
|
Raijmakers R, Schilders G, Pruijn GJM. The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur J Cell Biol 2005; 83:175-83. [PMID: 15346807 DOI: 10.1078/0171-9335-00385] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most important protein complexes involved in maintaining correct RNA levels in eukaryotic cells is the exosome, a complex consisting almost exclusively of exoribonucleolytic proteins. Since the identification of the exosome complex, seven years ago, much progress has been made in the characterization of its composition, structure and function in a variety of organisms. Although the exosome seems to accumulate in the nucleolus, it has been clearly established that it is also localized in cytoplasm and nucleoplasm. In accordance with its widespread intracellular distribution, the exosome has been implicated in a variety of RNA processing and degradation processes. Nevertheless, many questions still remain unanswered. What are the factors that regulate the activity of the exosome? How and where is the complex assembled? What are the differences in the composition of the nuclear and cytoplasmic exosome? What is the detailed structure of exosome subunits? What are the mechanisms by which the exosome is recruited to substrate RNAs? Here, we summarize the current knowledge on the composition and architecture of this complex, explain its role in both the production and degradation of various types of RNA molecules and discuss the implications of recent research developments that shed some light on the questions above and the mechanisms that are controlling the exosome.
Collapse
Affiliation(s)
- Reinout Raijmakers
- Department of Biochemistry, University of Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
114
|
Bollenbach TJ, Schuster G, Stern DB. Cooperation of Endo- and Exoribonucleases in Chloroplast mRNA Turnover. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:305-37. [PMID: 15210334 DOI: 10.1016/s0079-6603(04)78008-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chloroplasts were acquired by eukaryotic cells through endosymbiosis and have retained their own gene expression machinery. One hallmark of chloroplast gene regulation is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on how chloroplast mRNA stability is regulated, through an examination of poly(A)-dependent and independent pathways. The poly(A)-dependent pathway is catalyzed by polynucleotide phosphorylase (PNPase), which both adds and degrades destabilizing poly(A) tails, whereas RNase II and PNPase may both participate in the poly(A)-independent pathway. Each system is initiated through endonucleolytic cleavages that remove 3' stem-loop structures, which are catalyzed by the related proteins CSP41a and CSP41b and possibly an RNase E-like enzyme. Overall, chloroplasts have retained the prokaryotic endonuclease-exonuclease RNA degradation system despite evolution in the number and character of the enzymes involved. This reflects the presence of the chloroplast within a eukaryotic host and the complex responses that occur to environmental and developmental cues.
Collapse
MESH Headings
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Cyanobacteria/genetics
- Cyanobacteria/metabolism
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Evolution, Molecular
- Exoribonucleases/chemistry
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Models, Biological
- Models, Molecular
- Plants/genetics
- Plants/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Chloroplast/genetics
- RNA, Chloroplast/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
Collapse
Affiliation(s)
- Thomas J Bollenbach
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, New York 14853, USA
| | | | | |
Collapse
|