101
|
Szafranski P, Goode S. Basolateral junctions are sufficient to suppress epithelial invasion duringDrosophilaoogenesis. Dev Dyn 2007; 236:364-73. [PMID: 17103414 DOI: 10.1002/dvdy.21020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epithelial junctions play crucial roles during metazoan evolution and development by facilitating tissue formation, maintenance, and function. Little is known about the role of distinct types of junctions in controlling epithelial transformations leading to invasion of neighboring tissues. Discovering the key junction complexes that control these processes and how they function may also provide mechanistic insight into carcinoma cell invasion. Here, using the Drosophila ovary as a model, we show that four proteins of the basolateral junction (BLJ), Fasciclin-2, Neuroglian, Discs-large, and Lethal-giant-larvae, but not proteins of other epithelial junctions, directly suppress epithelial tumorigenesis and invasion. Remarkably, the expression pattern of Fasciclin-2 predicts which cells will invade. We compared the apicobasal polarity of BLJ tumor cells to border cells (BCs), an epithelium-derived cluster that normally migrates during mid-oogenesis. Both tumor cells and BCs differentiate a lateralized membrane pattern that is necessary but not sufficient for invasion. Independent of lateralization, derepression of motility pathways is also necessary, as indicated by a strong linear correlation between faster BC migration and an increased incidence of tumor invasion. However, without membrane lateralization, derepression of motility pathways is also not sufficient for invasion. Our results demonstrate that spatiotemporal patterns of basolateral junction activity directly suppress epithelial invasion by organizing the cooperative activity of distinct polarity and motility pathways.
Collapse
|
102
|
Dingli D, Traulsen A, Michor F, Michor F. (A)symmetric stem cell replication and cancer. PLoS Comput Biol 2007; 3:e53. [PMID: 17367205 PMCID: PMC1828703 DOI: 10.1371/journal.pcbi.0030053] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 01/31/2007] [Indexed: 11/18/2022] Open
Abstract
Most tissues in metazoans undergo continuous turnover due to cell death or epithelial shedding. Since cellular replication is associated with an inherent risk of mutagenesis, tissues are maintained by a small group of stem cells (SCs) that replicate slowly to maintain their own population and that give rise to differentiated cells. There is increasing evidence that many tumors are also maintained by a small population of cancer stem cells that may arise by mutations from normal SCs. SC replication can be either symmetric or asymmetric. The former can lead to expansion of the SC pool. We describe a simple model to evaluate the impact of (a)symmetric SC replication on the expansion of mutant SCs and to show that mutations that increase the probability of asymmetric replication can lead to rapid mutant SC expansion in the absence of a selective fitness advantage. Mutations in several genes can lead to this process and may be at the root of the carcinogenic process.
Collapse
Affiliation(s)
- David Dingli
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
103
|
Dow LE, Humbert PO. Polarity Regulators and the Control of Epithelial Architecture, Cell Migration, and Tumorigenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:253-302. [PMID: 17631191 DOI: 10.1016/s0074-7696(07)62006-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A large body of work on Drosophila melanogaster has identified and characterized a number of key polarity regulators, many of which are required for the regulation of multiple other processes including proliferation, migration, invasion, and tumorigenesis. Humans possess either single or multiple homologues of each of the Drosophila polarity proteins, and in most cases, these are highly conserved between species, implying an important and conserved function for each of the polarity complexes. Recent studies in cultured mammalian epithelial cells have shed some light on the requirement for the polarity complexes in the regulation of epithelial cell function, including an unexpected link to the regulation of directed cell migration. However, many questions still remain regarding the molecular mechanisms of polarity regulation and whether disruption of polarity protein function is an important step in the development of human cancers. Here we will review what is currently understood about the regulation of cell polarity, migration, and invasion and the level of functional conservation between Drosophila and mammalian tissues. Particular reference will be made as to how the Scribble and Par polarity complexes may be involved in the regulation of apical-basal polarity, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Lukas E Dow
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, Melbourne, Australia
| | | |
Collapse
|
104
|
Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U, Werner M. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med (Berl) 2006; 85:293-304. [PMID: 17143621 DOI: 10.1007/s00109-006-0126-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/21/2006] [Accepted: 10/25/2006] [Indexed: 12/16/2022]
Abstract
DNA copy number changes represent molecular fingerprints of solid tumors and are as such relevant for better understanding of tumor development and progression. In this study, we applied genome-wide array comparative genomic hybridization (aCGH) to identify gene-specific DNA copy number changes in chromosomal (CIN)- and microsatellite (MIN)-unstable sporadic colorectal cancers (sCRC). Genomic DNA was extracted from microdissected, matching normal colorectal epithelium and invasive tumor cells of formalin-fixed and paraffin-embedded tissues of 22 cases with colorectal cancer (CIN = 11, MIN = 11). DNA copy number changes were determined by aCGH for 287 target sequences in tumor cell DNAs, using pooled normal DNAs as reference. aCGH data of tumor cell DNAs was confirmed by fluorescence in situ hybridization (FISH) for three genes on serial tissues as those used for aCGH. aCGH revealed DNA copy number changes previously described by metaphase CGH (gains 7, 8q, 13q, and 20q; losses 8p, 15q, 18q, and 17p). However, chromosomal regions 20q, 13q, 7, and 17p were preferentially altered in CIN-type tumors and included DNA amplifications of eight genes on chromosome 20q (TOP1, AIB1, MYBL2, CAS, PTPN1, STK15, ZNF217, and CYP24), two genes on chromosome 13q (BRCA2 and D13S25), and three genes on chromosome 7 (IL6, CYLN2, and MET) as well as DNA deletions of two genes on chromosome 17p (HIC1 and LLGL1). Finally, additional CIN-tumor-associated DNA amplifications were identified for EXT1 (8q24.11) and MYC (8q24.12) as well as DNA deletions for MAP2K5 (15q23) and LAMA3 (18q11.2). In contrast, distinct MIN-tumor-associated DNA amplifications were detected for E2F5 (8p22-q21.3), GARP (11q13.5-q14), ATM (11q22.3), KAL (Xp22.3), and XIST (Xq13.2) as well as DNA deletions for RAF1 (3p25), DCC (18q21.3), and KEN (21q tel). aCGH revealed distinct DNA copy number changes of oncogenes and tumor suppressor genes in CIN- and MIN-type sporadic colorectal carcinomas. The identified candidate genes are likely to have distinct functional roles in the carcinogenesis and progression of CIN- and MIN-type sporadic CRCs and may be involved in the differential response of CIN- and MIN-type tumor cells to (adjuvant) therapy, such as 5-fluorouracil.
Collapse
Affiliation(s)
- Silke Lassmann
- Institut für Pathologie, Universitätsklinikum Freiburg, Breisacherstr. 115a, 79110, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
105
|
Osmani N, Vitale N, Borg JP, Etienne-Manneville S. Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol 2006; 16:2395-405. [PMID: 17081755 DOI: 10.1016/j.cub.2006.10.026] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/26/2006] [Accepted: 10/12/2006] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mammalian Scribble (Scrib) plays a conserved role in polarization of epithelial and neuronal cells. Polarization is essential for migration of a variety of cell types; however, the function of Scrib in this context remains unclear. Scrib has been shown to interact with betaPIX, a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42. Cdc42 controls cell polarity from yeast to mammals during asymmetric cell division and epithelial cell polarization, as well as during cell migration. Cdc42 is, in particular, required for polarization and orientation of astrocytes in a scratch-induced polarized migration assay. Using this assay, we characterized Scrib function during polarized cell migration. RESULTS Depletion of Scrib by siRNA or expression of dominant-negative constructs inhibits astrocyte polarization. Like Cdc42, Scrib controls protrusion formation, cytoskeleton polarization, and centrosome and Golgi reorientation. Scrib interacts and colocalizes with betaPIX at the front edge of polarizing astrocytes. Perturbation of Scrib localization or of Scrib-betaPIX interaction inhibits betaPIX polarized recruitment. We further show that betaPIX is required for astrocyte polarization and that both the Scrib-binding motif and the GEF activity of betaPIX are essential for its function. Scrib and betaPIX control Cdc42 activation and localization during astrocyte polarization. Thereby, Scrib regulates Cdc42-dependent APC and Dlg1 recruitment to the leading edge to promote cell orientation. CONCLUSION We conclude that Scrib plays a key role in the establishment of cell polarity during migration. By interacting with betaPIX, Scrib controls localization and activation of the small GTPase Cdc42 and regulates Cdc42-dependent polarization pathways.
Collapse
Affiliation(s)
- Naël Osmani
- Cell Polarity and Migration Group, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
106
|
Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L. Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 2006; 119:1285-90. [PMID: 16619250 DOI: 10.1002/ijc.21982] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of cell polarity is one of the hallmarks of malignant carcinomas. Most of the understanding about the link between cell polarity and proliferation control comes from studies on the Drosophila tumor suppressors discs large (Dlg), scribble (Scrib) and lethal giant larvae (lgl). Mammalian homologues of these proteins have been described and are conserved in sequence and function. Human Dlg (hDlg) and Scrib were independently shown to be down-regulated during malignant progression. This, and other lines of evidence, points toward the participation of both hDlg and hScrib in a common pathway involved in polarity control and tumor suppression. We investigated the correlation between the expression of both proteins in tissues and their relative contributions to the maintenance of tissue architecture during colon cancer development. We analyzed the levels and distribution of hDlg and hScrib by immunohistochemistry, using serial sections of the same sample. We used normal and neoplastic colon mucosa, since it offers a good model for analyzing these features in progressive dysplastic stages. The results demonstrate that both proteins localize at the same regions in polarized colon epithelia, and that in normal samples the proteins' distribution varies as cells differentiate at the surface mucosa. In neoplasia, alterations in the expression pattern of hDlg and of hScrib increase during tumor progression; down-regulation of both proteins being associated with lack of epithelial cell polarity and disorganized tissue architecture. The results, therefore, demonstrate that there is an inverse relationship between the levels of hDlg and hScrib expression and the loss of cell polarity and tissue architecture in the colon.
Collapse
Affiliation(s)
- Daniela Gardiol
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | |
Collapse
|
107
|
Abstract
Most human cancers derive from a single cell targeted by genetic and epigenetic alterations that initiate malignant transformation. Progressively, these early cancer cells give rise to different generations of daughter cells that accumulate additional mutations, acting in concert to drive the full neoplastic phenotype. As we have currently deciphered many of the gene pathways disrupted in cancer, our knowledge about the nature of the normal cells susceptible to transformation upon mutation has remained more elusive. Adult stem cells are those that show long-term replicative potential, together with the capacities of self-renewal and multi-lineage differentiation. These stem cell properties are tightly regulated in normal development, yet their alteration may be a critical issue for tumorigenesis. This concept has arisen from the striking degree of similarity noted between somatic stem cells and cancer cells, including the fundamental abilities to self-renew and differentiate. Given these shared attributes, it has been proposed that cancers are caused by transforming mutations occurring in tissue-specific stem cells. This hypothesis has been functionally supported by the observation that among all cancer cells within a particular tumor, only a minute cell fraction has the exclusive potential to regenerate the entire tumor cell population; these cells with stem-like properties have been termed cancer stem cells. Cancer stem cells can originate from mutation in normal somatic stem cells that deregulate their physiological programs. Alternatively, mutations may target more committed progenitor cells or even mature cells, which become reprogrammed to acquire stem-like functions. In any case, mutated genes should promote expansion of stem/progenitor cells, thus increasing their predisposition to cancer development by expanding self-renewal and pluripotency over their normal tendency towards relative quiescency and proper differentiation.
Collapse
Affiliation(s)
- José A Martínez-Climent
- Division of Oncology, Center for Applied Medical Research University of Navarra, Pamplona, Spain.
| | | | | |
Collapse
|
108
|
Abstract
Much has been made of the idea that asymmetric cell division is a defining characteristic of stem cells that enables them to simultaneously perpetuate themselves (self-renew) and generate differentiated progeny. Yet many stem cells can divide symmetrically, particularly when they are expanding in number during development or after injury. Thus, asymmetric division is not necessary for stem-cell identity but rather is a tool that stem cells can use to maintain appropriate numbers of progeny. The facultative use of symmetric or asymmetric divisions by stem cells may be a key adaptation that is crucial for adult regenerative capacity.
Collapse
Affiliation(s)
- Sean J Morrison
- Howard Hughes Medical Institute and Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA.
| | | |
Collapse
|
109
|
Abstract
Cell polarity is one of the most basic properties of all normal cells and loss of polarity is a hallmark of cancer. While multiple proteins have been implicated in the maintenance of cell polarity, the functionally related neoplastic tumor suppressors Lethal giant larvae (Lgl), Scribble and Disks large comprise a unique group of molecules that are not only involved in the maintenance of cell polarity, but also in the regulation of cell proliferation and cancer. Lgl is the first identified member of this group. Loss of Lgl leads to massive tissue disorganization, tumor-like growth and lethal phenotypes in both Drosophila and mice. Lgl mutant cells display disruption of cell polarity, failure of asymmetric cell division, deregulation of Notch signaling and loss of proper cell fate determination. Lgl is a critical downstream target of the Par6/aPKC cell polarity complex; however, the functional role of Lgl itself and, specifically, the mechanisms of Lgl function in cell polarity and regulation of cell proliferation remain enigmatic. This minireview summarizes available information and discusses potential mechanisms of Lgl function.
Collapse
Affiliation(s)
- Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
110
|
Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 2006; 124:1241-53. [PMID: 16564014 DOI: 10.1016/j.cell.2006.01.038] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 12/01/2005] [Accepted: 01/03/2006] [Indexed: 12/22/2022]
Abstract
How stem cells generate both differentiating and self-renewing daughter cells is unclear. Here, we show that Drosophila larval neuroblasts-stem cell-like precursors of the adult brain-regulate proliferation by segregating the growth inhibitor Brat and the transcription factor Prospero into only one daughter cell. Like Prospero, Brat binds and cosegregates with the adaptor protein Miranda. In larval neuroblasts, both Brat and Prospero are required to inhibit self-renewal in one of the two daughter cells. While Prospero regulates cell-cycle gene transcription, Brat acts as a posttranscriptional inhibitor of dMyc. In brat or prospero mutants, both daughter cells grow and behave like neuroblasts leading to the formation of larval brain tumors. Similar defects are seen in lethal giant larvae (lgl) mutants where Brat and Prospero are not asymmetric. We have identified a molecular mechanism that may control self-renewal and prevent tumor formation in other stem cells as well.
Collapse
Affiliation(s)
- Joerg Betschinger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr Gasse 3-5, 1030 Vienna, Austria
| | | | | |
Collapse
|
111
|
Kuphal S, Wallner S, Schimanski CC, Bataille F, Hofer P, Strand S, Strand D, Bosserhoff AK. Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 2006; 25:103-10. [PMID: 16170365 DOI: 10.1038/sj.onc.1209008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human gene Hugl-1 (Llgl/Lgl1) has significant homology to the Drosophila tumor suppressor gene lethal(2)giant larvae (lgl). The lgl gene codes for a cortical cytoskeleton protein, Lgl, that is involved in maintaining cell polarity and epithelial integrity. We speculate that Hugl-1 might play a role in epithelial-mesenchymal transition (EMT) and that loss of Hugl-1 expression plays a role in the development or progression of malignant melanoma. Thus, we evaluated melanoma cell lines and tissue samples of malignant melanoma for loss of Hugl-1 transcription. We found that Hugl-1 was downregulated or lost in all cell lines and in most of the tumor samples analysed, and that these losses were associated with advanced stage of the disease. Reduced Hugl-1 expression occurred as early as in primary tumors detected by both immunohistochemical and reverse transcription-polymerase chain reaction (RT-PCR) analysis. Functional assays with stable Hugl-1-transfected cell lines revealed that Hugl-1 expression increased cell adhesion and decreased cell migration. Further, downregulation of MMP2 and MMP14 (MT1-MMP) and re-expression of E-cadherin was found in the Hugl-1-expressing cell clones supporting a role of Hugl-1 in EMT. Our studies thus indicate that loss of Hugl-1 expression contributes to melanoma progression.
Collapse
Affiliation(s)
- S Kuphal
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Thompson BJ, Mathieu J, Sung HH, Loeser E, Rørth P, Cohen SM. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 2006; 9:711-20. [PMID: 16256745 DOI: 10.1016/j.devcel.2005.09.020] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 08/26/2005] [Accepted: 09/29/2005] [Indexed: 01/22/2023]
Abstract
We have found that the Drosophila gene vps25 possesses several properties of a tumor suppressor. First, vps25 mutant cells activate Notch and Dpp receptor signaling, inducing ectopic organizers in developing eyes and limbs and consequent overproliferation of both mutant and nearby wild-type cells. Second, as the mutant cells proliferate, they lose their epithelial organization and undergo apoptosis. Strikingly, when apoptosis of mutant cells is blocked, tumor-like overgrowths are formed that are capable of metastasis. vps25 encodes a component of the ESCRT-II complex, which sorts membrane proteins into multivesicular bodies during endocytic trafficking to the lysosome. Activation of Notch and Dpp receptor signaling in mutant cells results from an endocytic blockage that causes accumulation of these receptors and other signaling components in endosomes. These results highlight the importance of endocytic trafficking in regulating signaling and epithelial organization and suggest a possible role for ESCRT components in human cancer.
Collapse
Affiliation(s)
- Barry J Thompson
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
113
|
Weisman NJ, Plus N, Golubovsky MD. Stress and haploadaptability of the lgl tumor suppressor: population and genetic studies on Drosophila. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2006; 406:84-7. [PMID: 16572822 DOI: 10.1134/s0012496606010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- N J Weisman
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 10, Novosibirsk, 630090 Russia
| | | | | |
Collapse
|
114
|
Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17:548-58. [PMID: 16098727 DOI: 10.1016/j.ceb.2005.08.001] [Citation(s) in RCA: 1423] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 08/02/2005] [Indexed: 12/26/2022]
Abstract
Epithelial-mesenchymal transitions (EMTs) occur as key steps during embryonic morphogenesis, and are now implicated in the progression of primary tumors towards metastases. Recent advances have fostered a more detailed understanding of molecular mechanisms and networks governing EMT in tumor progression. Besides TGFbeta and RTK/Ras signaling, autocrine factors and Wnt-, Notch-, Hedgehog- and NF-kappaB-dependent pathways were found to contribute to EMT. Repression of E-cadherin by transcriptional regulators such as Snail or Twist emerges as one critical step driving EMT, and this stage is currently being molecularly linked with many of the new players. Increasing evidence suggests that EMT plays a specific role in the migration of cells from a primary tumor into the circulation and may provide a rationale for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Margit A Huber
- Department of Dermatology, Vienna Medical University, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | | | | |
Collapse
|