101
|
Carney TJ, von der Hardt S, Sonntag C, Amsterdam A, Topczewski J, Hopkins N, Hammerschmidt M. Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development 2007; 134:3461-71. [PMID: 17728346 DOI: 10.1242/dev.004556] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial integrity requires the adhesion of cells to each other as well as to an underlying basement membrane. The modulation of adherence properties is crucial to morphogenesis and wound healing, and deregulated adhesion has been implicated in skin diseases and cancer metastasis. Here, we describe zebrafish that are mutant in the serine protease inhibitor Hai1a (Spint1la), which display disrupted epidermal integrity. These defects are further enhanced upon combined loss of hai1a and its paralog hai1b. By applying in vivo imaging, we demonstrate that Hai1-deficient keratinocytes acquire mesenchymal-like characteristics, lose contact with each other, and become mobile and more susceptible to apoptosis. In addition, inflammation of the mutant skin is evident, although not causative of the epidermal defects. Only later, the epidermis exhibits enhanced cell proliferation. The defects of hai1 mutants can be phenocopied by overexpression and can be fully rescued by simultaneous inactivation of the serine protease Matriptase1a (St14a), indicating that Hai1 promotes epithelial integrity by inhibiting Matriptase1a. By contrast, Hepatocyte growth factor (Hgf), a well-known promoter of epithelial-mesenchymal transitions and a prime target of Matriptase1 activity, plays no major role. Our work provides direct genetic evidence for antagonistic in vivo roles of Hai1 and Matriptase1a to regulate skin homeostasis and remodeling.
Collapse
Affiliation(s)
- Thomas J Carney
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Singh MK, Cowell L, Seo S, O’Neill GM, Golemis EA. Molecular basis for HEF1/NEDD9/Cas-L action as a multifunctional co-ordinator of invasion, apoptosis and cell cycle. Cell Biochem Biophys 2007; 48:54-72. [PMID: 17703068 PMCID: PMC1976382 DOI: 10.1007/s12013-007-0036-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/11/2007] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Upregulation of the scaffolding protein HEF1, also known as NEDD9 and Cas-L, has recently been identified as a pro-metastatic stimulus in a number of different solid tumors, and has also been strongly associated with pathogenesis of BCR-Abl-dependent tumors. As the evidence mounts for HEF1/NEDD9/Cas-L as a key player in metastatic cancer, it is timely to review the molecular regulation of HEF1/NEDD9/Cas-L. Most of the mortality associated with cancer arises from uncontrolled metastases, thus a better understanding of the properties of proteins specifically associated with promotion of this process may yield insights that improve cancer diagnosis and treatment. In this review, we summarize the extensive literature regarding HEF1/NEDD9/Cas-L expression and function in signaling relevant to cell attachment, migration, invasion, cell cycle, apoptosis, and oncogenic signal transduction. The complex function of HEF1/NEDD9/Cas-L revealed by this analysis leads us to propose a model in which alleviation of cell cycle checkpoints and acquired resistance to apoptosis is permissive for a HEF1/NEDD9/Cas-L-promoted pro-metastatic phenotype.
Collapse
Affiliation(s)
- Mahendra K. Singh
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lauren Cowell
- Oncology Research Unit, The Children’s Hospital at Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia
| | - Sachiko Seo
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Geraldine M. O’Neill
- Oncology Research Unit, The Children’s Hospital at Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia
| | - Erica A. Golemis
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA, USA
- corresponding author: Erica A. Golemis, Fox Chase Cancer Center, 333 Cottman Ave. Philadelphia, PA 19111 USA, Phone: 215-728-2860, FAX: 215-728-3616,
| |
Collapse
|
103
|
Leupold JH, Asangani I, Maurer GD, Lengyel E, Post S, Allgayer H. Src InducesUrokinase ReceptorGene Expression and Invasion/Intravasation via Activator Protein-1/p-c-Jun in Colorectal Cancer. Mol Cancer Res 2007; 5:485-96. [PMID: 17510314 DOI: 10.1158/1541-7786.mcr-06-0211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urokinase receptor [urokinase plasminogen activator receptor (u-PAR)] promotes invasion and metastasis and is associated with poor patient survival. Recently, it was shown that Src induces u-PAR gene expression via Sp1 bound to the u-PAR promoter region -152/-135. However, u-PAR is regulated by diverse promoter motifs, among them being an essential activator protein-1 (AP-1) motif at -190/-171. Moreover, an in vivo relevance of Src-induced transcriptional regulators of u-PAR-mediated invasion, in particular intravasation, and a relevance in resected patient tumors have not sufficiently been shown. The present study was conducted (a) to investigate if, in particular, AP-1-related transcriptional mediators are required for Src-induced u-PAR-gene expression, (b) to show in vivo relevance of AP-1-mediated Src-induced u-PAR gene expression for invasion/intravasation and for resected tissues from colorectal cancer patients. Src stimulation of the u-PAR promoter deleted for AP-1 region -190/-171 was reduced as compared with the wild-type promoter in cultured colon cancer cells. In gelshifts/chromatin immunoprecipitation, Src-transfected SW480 cells showed an increase of phospho-c-Jun, in addition to JunD and Fra-1, bound to region -190/-171. Src-transfected cells showed a significant increase in c-Jun phosphorylated at Ser(73) and also Ser(63), which was paralleled by increased phospho-c-jun-NH(2)-kinase. Significant decreases of invasion/in vivo intravasation (chorionallantoic membrane model) were observed in Src-overexpressing cells treated with Src inhibitors, u-PAR-small interfering RNA, and dominant negative c-Jun (TAM67). In resected tissues of 20 colorectal cancer patients, a significant correlation between Src activity, AP-1 complexes bound to u-PAR region -190/-171, and advanced pN stage were observed. These data suggest that Src-induced u-PAR gene expression and invasion/intravasation in vivo is also mediated via AP-1 region -190/-171, especially bound with c-Jun phosphorylated at Ser(73/63), and that this pathway is biologically relevant for colorectal cancer patients, suggesting therapeutic potential.
Collapse
Affiliation(s)
- Jörg H Leupold
- Department of Experimental Surgery Mannheim Faculty, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
104
|
Bhatt AS, Welm A, Farady CJ, Vásquez M, Wilson K, Craik CS. Coordinate expression and functional profiling identify an extracellular proteolytic signaling pathway. Proc Natl Acad Sci U S A 2007; 104:5771-6. [PMID: 17389401 PMCID: PMC1838401 DOI: 10.1073/pnas.0606514104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Indexed: 11/18/2022] Open
Abstract
A multidisciplinary method combining transcriptional data, specificity profiling, and biological characterization of an enzyme may be used to predict novel substrates. By integrating protease substrate profiling with microarray gene coexpression data from nearly 2,000 human normal and cancerous tissue samples, three fundamental components of a protease-activated signaling pathway were identified. We find that MT-SP1 mediates extracellular signaling by regulating the local activation of the prometastatic growth factor MSP-1. We demonstrate MT-SP1 expression in peritoneal macrophages, and biochemical methods confirm the ability of MT-SP1 to cleave and activate pro-MSP-1 in vitro and in a cellular context. MT-SP1 induced the ability of MSP-1 to inhibit nitric oxide production in bone marrow macrophages. Addition of HAI-1 or an MT-SP1-specific antibody inhibitor blocked the proteolytic activation of MSP-1 at the cell surface of peritoneal macrophages. Taken together, our work indicates that MT-SP1 is sufficient for MSP-1 activation and that MT-SP1, MSP-1, and the previously shown MSP-1 tyrosine kinase receptor RON are required for peritoneal macrophage activation. This work shows that this triad of growth factor, growth factor activator protease, and growth factor receptor is a protease-activated signaling pathway. Individually, MT-SP1 and RON overexpression have been implicated in cancer progression and metastasis. Transcriptional coexpression of these genes suggests that this signaling pathway may be involved in several human cancers.
Collapse
Affiliation(s)
- Ami S. Bhatt
- *Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94158
| | - Alana Welm
- The G. W. Hooper Foundation, University of California, 513 Parnassus Avenue, San Francisco, CA 94153; and
| | - Christopher J. Farady
- *Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94158
| | | | - Keith Wilson
- PDL Biopharma, Inc., 34801 Campus Drive, Fremont, CA 94555
| | - Charles S. Craik
- *Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94158
| |
Collapse
|
105
|
Perry SE, Robinson P, Melcher A, Quirke P, Bühring HJ, Cook GP, Blair GE. Expression of the CUB domain containing protein 1 (CDCP1) gene in colorectal tumour cells. FEBS Lett 2007; 581:1137-42. [PMID: 17335815 DOI: 10.1016/j.febslet.2007.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/12/2007] [Indexed: 11/27/2022]
Abstract
Expression of CUB domain containing protein 1 (CDCP1) is upregulated in carcinoma cells. We quantitated CDCP1 gene expression in matched normal colon and tumour tissue and compared the level of expression to other genes upregulated in colorectal tumourigenesis. Furthermore, we show that the CDCP1 gene generates two transcripts which are co-expressed in normal and matched tumour tissue as well as in the majority of cell lines analysed. However, intracellular localisation studies revealed that only one of these transcripts encodes a protein that is localised to the cell surface.
Collapse
Affiliation(s)
- Sara E Perry
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, Room 8.10a, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
106
|
Okumura Y, Hayama M, Takahashi E, Fujiuchi M, Shimabukuro A, Yano M, Kido H. Serase-1B, a new splice variant of polyserase-1/TMPRSS9, activates urokinase-type plasminogen activator and the proteolytic activation is negatively regulated by glycosaminoglycans. Biochem J 2006; 400:551-61. [PMID: 16872279 PMCID: PMC1698595 DOI: 10.1042/bj20060212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyserase-1 (polyserine protease-1)/TMPRSS9 (transmembrane serine protease 9) is a type II transmembrane serine protease (TTSP) that possesses unique three tandem serine protease domains. However, the physiological function of each protease domain remains poorly understood. We discovered a new splice variant of polyserase-1, termed Serase-1B, which contains 34 extra amino acids consisting a SEA module (a domain found in sea urchin sperm protein, enterokinase and agrin) adjacent to the transmembrane domain and the first protease domain with a mucin-like box at the C-terminus. The tissue distribution of this enzyme by RT (reverse transcription)-PCR analysis revealed high expression in the liver, small intestine, pancreas, testis and peripheral blood CD14+ and CD8+ cells. To investigate the role of Serase-1B, a full-length form recombinant protein was produced. Interestingly, recombinant Serase-1B was partly secreted as a soluble inactive precursor and it was also activated by trypsin. This activated enzyme selectively cleaved synthetic peptides for trypsin and activated protein C, and it was inhibited by several natural serine protease inhibitors, such as aprotinin, alpha2-antiplasmin and plasminogen activator inhibitor 1. In addition, Serase-1B efficiently converted pro-uPA (urokinase-type plasminogen activator) into active uPA and this activation was strongly inhibited by these natural inhibitors. Furthermore, this activation was also negatively regulated by glycosaminoglycans. Our results indicate that Serase-1B is a novel member of TTSPs that might be involved in uPA/plasmin-mediated proteolysis and possibly implicated in biological events such as fibrinolysis and tumour progression.
Collapse
Affiliation(s)
- Yuushi Okumura
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masaki Hayama
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- †Department of Otolaryngology and Sensory Organ Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- ‡Department of Otolaryngology, University of Tokushima, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Etsuhisa Takahashi
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mieko Fujiuchi
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Aki Shimabukuro
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mihiro Yano
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroshi Kido
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
107
|
List K, Bugge TH, Szabo R. Matriptase: potent proteolysis on the cell surface. Mol Med 2006; 12:1-7. [PMID: 16838070 PMCID: PMC1514551 DOI: 10.2119/2006-00022.list] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 04/04/2006] [Indexed: 11/06/2022] Open
Abstract
Matriptase is a type II transmembrane serine protease expressed in most human epithelia, where it is coexpressed with its cognate transmembrane inhibitor, hepatocyte growth factor activator inhibitor (HAI)-1. Activation of the matriptase zymogen requires sequential N-terminal cleavage, activation site autocleavage, and transient association with HAI-1. Matriptase has an essential physiological role in profilaggrin processing, corneocyte maturation, and lipid matrix formation associated with terminal differentiation of the oral epithelium and the epidermis, and is also critical for hair follicle growth. Matriptase and HAI expression are frequently dysregulated in human cancer, and matriptase expression that is unopposed by HAI-1 potently promotes carcinogenesis and metastatic dissemination in animal models.
Collapse
Affiliation(s)
- Karin List
- Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
108
|
Pugacheva EN, Roegiers F, Golemis EA. Interdependence of cell attachment and cell cycle signaling. Curr Opin Cell Biol 2006; 18:507-15. [PMID: 16919436 PMCID: PMC2531247 DOI: 10.1016/j.ceb.2006.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 08/03/2006] [Indexed: 01/01/2023]
Abstract
Adult metazoans represent the culmination of an intricate developmental process involving the temporally and spatially orchestrated division, migration, differentiation, attachment, polarization and death of individual cells. An elaborate infrastructure connecting the cell cycle and cell attachment machinery is essential for such exquisite integration of developmental processes. Integrin-, cadherin-, Merlin- and planar cell polarity (PCP)-dependent signaling cascades quantitatively and qualitatively program cell division during development. Proteins in this signaling infrastructure may represent an important source of cancer vulnerability in metazoans, as their dysfunction can pleiotropically promote the oncogenic process.
Collapse
Affiliation(s)
- Elena N Pugacheva
- Division of Basic Science, Fox Chase Cancer Center, 333 Cottman Ave. Philadelphia, PA 19111, USA
| | | | | |
Collapse
|