101
|
Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 2008; 14:429-36. [PMID: 18376405 DOI: 10.1038/nm1745] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/29/2008] [Indexed: 11/09/2022]
Abstract
Cell-free human T-lymphotropic virus type 1 (HTLV-1) virions are poorly infectious in vitro for their primary target cells, CD4(+) T cells. Here, we show that HTLV-1 can efficiently infect myeloid and plasmacytoid dendritic cells (DCs). Moreover, DCs exposed to HTLV-1, both before and after being productively infected, can rapidly, efficiently and reproducibly transfer virus to autologous primary CD4(+) T cells. This DC-mediated transfer of HTLV-1 involves heparan sulfate proteoglycans and neuropilin-1 and results in long-term productive infection and interleukin-2-independent transformation of the CD4(+) T cells. These studies, along with observations of HTLV-1-infected DCs in the peripheral blood of infected individuals, indicate that DCs have a central role in HTLV-1 transmission, dissemination and persistence in vivo. In addition to altering the current paradigm concerning how HTLV-1 transmission occurs, these studies suggest that impairment of DC function after HTLV-1 infection plays a part in pathogenesis.
Collapse
Affiliation(s)
- Kathryn S Jones
- Basic Research Program, Science Applications International Corporation-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | |
Collapse
|
102
|
Hakim ST, Alsayari M, McLean DC, Saleem S, Addanki KC, Aggarwal M, Mahalingam K, Bagasra O. A large number of the human microRNAs target lentiviruses, retroviruses, and endogenous retroviruses. Biochem Biophys Res Commun 2008; 369:357-62. [PMID: 18282469 DOI: 10.1016/j.bbrc.2008.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 12/26/2022]
Abstract
Retroelements (including transposons, retrotransposons, retroviruses, and lentiviruses) make up a significant portion of eukaryotic genomes. Given their ability to mutate genes these mobile elements always present a threat to the integrity of the host genomes. Recent studies have revealed complex molecular mechanisms that silence the mutagenic ability of these RE as well strategically express the pieces of the incorporated RE that are utilized to silence human endogenous retroviruses (HERVs) or invading exogenous retroviruses (IERV). We have hypothesized that small endogenous RNA originally evolved to quell "foreign" IERV-genes and subsequently emerged into elaborate silencing systems that include RNA interference, miRNA-based gene regulation and other gene silencing mechanisms. Here, we present evidence that the replication of complex RE are most likely silenced or regulated by homologous miRNA that are found as a part of the cellular repertoire. We analyzed Homo sapiens miRNAs for possible target genetic sequences in selected HERVs and IERV found in humans and other large primates. We identified several miRNAs that have >80% sequence homology with human HERVs; -L, -W, and -K, and IERV like SIVcpz, HTLV-1, and HTLV-2. We found an inverse correlation between the numbers and relative degree of homology of miRNAs to the relative replication capacity of a specific RE. Therefore, larger numbers of miRNAs with greater degree of homology are found against the least active RE and the least numbers of miRNAs with smaller degree of homology are found against the most active RE (i.e. HERV-K). Implications of these observations in RE disease and therapy are discussed.
Collapse
Affiliation(s)
- Shazia T Hakim
- Department of Microbiology, Jinnah University for Women, Karachi 74600, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Peloponese JM, Kinjo T, Jeang KT. Human T-cell leukemia virus type 1 Tax and cellular transformation. Int J Hematol 2007; 86:101-6. [PMID: 17875521 DOI: 10.1532/ijh97.07087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection of T-cells by human T-cell leukemia virus type 1 (HTLV-1) causes a lymphoproliferative malignancy known as adult T-cell leukemia (ATL). ATL is characterized by abnormal lymphocytes, called flower cells, which have cleaved and convoluted nuclei. Tax, encoded by the HTLV-1 pX region, is a critical nonstructural protein that plays a central role in leukemogenesis; however, the mechanisms of HTLV-1 oncogenesis have not been clarified fully. In this review, we summarize current thinking on how Tax may affect ATL leukemogenesis.
Collapse
Affiliation(s)
- Jean-Marie Peloponese
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
104
|
Zendri E, Pilotti E, Perez M, Turci M, Pinelli S, Ronzi P, Frontani M, Faraggiana T, De Panfilis G, Casoli C. The HTLV tax-like sequences in cutaneous T-cell lymphoma patients. J Invest Dermatol 2007; 128:489-92. [PMID: 17762859 DOI: 10.1038/sj.jid.5701034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
105
|
Higuchi M, Tsubata C, Kondo R, Yoshida S, Takahashi M, Oie M, Tanaka Y, Mahieux R, Matsuoka M, Fujii M. Cooperation of NF-kappaB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J Virol 2007; 81:11900-7. [PMID: 17715223 PMCID: PMC2168800 DOI: 10.1128/jvi.00532-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) but not HTLV-2 is associated with adult T-cell leukemia, and the distinct pathogenicity of these two closely related viruses is thought to stem from the distinct biological functions of the respective transforming proteins, HTLV-1 Tax1 and HTLV-2 Tax2. In this study, we demonstrate that Tax1 but not Tax2 interacts with NF-kappaB2/p100 and activates it by inducing the cleavage of p100 into the active transcription factor p52. Using RNA interference methods, we further show that NF-kappaB2/p100 is required for the transformation induced by Tax1, as determined by the ability to convert a T-cell line (CTLL-2) from interleukin-2 (IL-2)-dependent to -independent growth. While Tax2 shows a reduced transforming activity relative to Tax1, Tax2 fused with a PDZ domain binding motif (PBM) present only in Tax1 shows transforming activity equivalent to that of Tax1 in CTLL-2 cells expressing an inducer of p52 processing. These results reveal that the activation of NF-kappaB2/p100 plays a crucial role in the Tax1-mediated transformation of T cells and that NF-kappaB2/p100 activation and PBM function are both responsible for the augmented transforming activity of Tax1 relative to Tax2, thus suggesting that these Tax1-specific functions play crucial roles in HTLV-1 leukemogenesis.
Collapse
Affiliation(s)
- Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Bolinger C, Yilmaz A, Hartman TR, Kovacic MB, Fernandez S, Ye J, Forget M, Green PL, Boris-Lawrie K. RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res 2007; 35:2629-42. [PMID: 17426138 PMCID: PMC1885656 DOI: 10.1093/nar/gkm124] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The 5′ untranslated region (UTR) of retroviruses contain structured replication motifs that impose barriers to efficient ribosome scanning. Two RNA structural motifs that facilitate efficient translation initiation despite a complex 5′ UTR are internal ribosome entry site (IRES) and 5′ proximal post-transcriptional control element (PCE). Here, stringent RNA and protein analyses determined the 5′ UTR of spleen necrosis virus (SNV), reticuloendotheliosis virus A (REV-A) and human T-cell leukemia virus type 1 (HTLV-1) exhibit PCE activity, but not IRES activity. Assessment of SNV translation initiation in the natural context of the provirus determined that SNV is reliant on a cap-dependent initiation mechanism. Experiments with siRNAs identified that REV-A and HTLV-1 PCE modulate post-transcriptional gene expression through interaction with host RNA helicase A (RHA). Analysis of hybrid SNV/HTLV-1 proviruses determined SNV PCE facilitates Rex/Rex responsive element-independent Gag production and interaction with RHA is necessary. Ribosomal profile analyses determined that RHA is necessary for polysome association of HTLV-1 gag and provide direct evidence that RHA is necessary for efficient HTLV-1 replication. We conclude that PCE/RHA is an important translation regulatory axis of multiple lymphotropic retroviruses. We speculate divergent retroviruses have evolved a convergent RNA–protein interaction to modulate translation of their highly structured mRNA.
Collapse
Affiliation(s)
- Cheryl Bolinger
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Alper Yilmaz
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Tiffiney Roberts Hartman
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Melinda Butsch Kovacic
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Soledad Fernandez
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Jianxin Ye
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Mary Forget
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Patrick L. Green
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
- *To whom correspondence should be addressed +1-614-292-1392+1-614-292-6473
| |
Collapse
|
107
|
Li M, Green PL. Detection and quantitation of HTLV-1 and HTLV-2 mRNA species by real-time RT-PCR. J Virol Methods 2007; 142:159-68. [PMID: 17337070 PMCID: PMC2048902 DOI: 10.1016/j.jviromet.2007.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/18/2007] [Accepted: 01/26/2007] [Indexed: 11/17/2022]
Abstract
HTLV-1 and HTLV-2 are highly related delta-retroviruses that infect and transform T-lymphocytes, but have distinct pathogenic properties. HTLV replication and survival requires the expression of multiple gene products from an unspliced and a series of highly related alternatively spliced mRNA species. To date, the comparative levels of all known HTLV-1 and HTLV-2 viral mRNAs in different transformed cell lines and at different stages of virus infection have not been assessed. In this study, we compiled a series of oligonucleotide primer pairs and probes to quantify both HTLV-1 and HTLV-2 mRNA species using real-time RT-PCR. The optimized reaction for detection of each mRNA had amplification efficiency greater than 90% with a linear range spanning 25-2.5 x 10(7) copies. The R(2)'s of all standard curves were greater than 0.97. Quantitation of HTLV mRNAs between different cell lines showed variability (gag/pol>or=tax/rex>env>or=accessory proteins), but the overall levels of each mRNA relative to each other within a cell line were similar. These results provide a method to quantify all specific mRNAs from both HTLV-1 and HTLV-2, which can be used to evaluate further viral gene expression and correlate transcript levels to key stages of the virus life cycle and ultimately, pathogenesis.
Collapse
Affiliation(s)
- Min Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210
- * Corresponding Author: Patrick L. Green, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, Tel: (614)-688-4899, Fax: (614)-292-6473,
| |
Collapse
|
108
|
Banerjee P, Rochford R, Antel J, Canute G, Wrzesinski S, Sieburg M, Feuer G. Proinflammatory cytokine gene induction by human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 Tax in primary human glial cells. J Virol 2007; 81:1690-700. [PMID: 17121800 PMCID: PMC1797548 DOI: 10.1128/jvi.01513-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 11/14/2006] [Indexed: 01/04/2023] Open
Abstract
Infection with human T-cell leukemia virus type 1 (HTLV-1) can result in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic inflammatory disease of the central nervous system (CNS). HTLV-2 is highly related to HTLV-1 at the genetic level and shares a high degree of sequence homology, but infection with HTLV-2 is relatively nonpathogenic compared to HTLV-1. Although the pathogenesis of HAM/TSP remains to be fully elucidated, previous evidence suggests that elevated levels of the proinflammatory cytokines in the CNS are associated with neuropathogenesis. We demonstrate that HTLV-1 infection in astrogliomas results in a robust induction of interleukin-1beta (IL-1beta), IL-1alpha, tumor necrosis factor alpha (TNF-alpha), TNF-beta, and IL-6 expression. HTLV encodes for a viral transcriptional transactivator protein named Tax that also induces the transcription of cellular genes. To investigate and compare the effects of Tax1 and Tax2 expression on the dysregulation of proinflammatory cytokines, lentivirus vectors were used to transduce primary human astrocytomas and oligodendrogliomas. The expression of Tax1 in primary human astrocytomas and oligodendrogliomas resulted in significantly higher levels of proinflammatory cytokine gene expression compared to Tax2. Notably, Tax1 expression uniquely sensitized primary human astrocytomas to apoptosis. A Tax2/Tax1 chimera encoding the C-terminal 53 amino acids of the Tax1 fused to the Tax2 gene (Tax(221)) demonstrated a phenotype that resembled Tax1, with respect to proinflammatory cytokine gene expression and sensitization to apoptosis. The patterns of differential cytokine induction and sensitization to apoptosis displayed by Tax1 and Tax2 may reflect differences relating to the heightened neuropathogenicity associated with HTLV-1 infection and the development of HAM/TSP.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Rosenberg BR, Papavasiliou FN. Beyond SHM and CSR: AID and Related Cytidine Deaminases in the Host Response to Viral Infection. Adv Immunol 2007; 94:215-44. [PMID: 17560276 DOI: 10.1016/s0065-2776(06)94007-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As the primary effector of immunoglobulin somatic hypermutation (SHM) and class switch recombination (CSR), activation-induced cytidine deaminase (AID) serves an important function in the adaptive immune response. Recent advances have demonstrated that AID and a group of closely related cytidine deaminases, the APOBEC3 proteins, also act in the innate host response to viral infection. Antiviral activity was first attributed to APOBEC3G as a potent inhibitor of HIV. It is now apparent that the targets of the APOBEC3 proteins extend beyond HIV, with family members acting against a wide variety of viruses as well as host-encoded retrotransposable genetic elements. Although it appears to function through a different mechanism, AID also possesses antiviral properties. Independent of its antibody diversification functions, AID protects against transformation by Abelson murine leukemia virus (Ab-MLV), an oncogenic retrovirus. Additionally, AID has been implicated in the host response to other pathogenic viruses. These emerging roles for the AID/APOBEC cytidine deaminases in viral infection suggest an intriguing evolutionary connection of innate and adaptive immune mechanisms.
Collapse
Affiliation(s)
- Brad R Rosenberg
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
110
|
Kondo R, Higuchi M, Takahashi M, Oie M, Tanaka Y, Gejyo F, Fujii M. Human T-cell leukemia virus type 2 Tax protein induces interleukin 2-independent growth in a T-cell line. Retrovirology 2006; 3:88. [PMID: 17140451 PMCID: PMC1697825 DOI: 10.1186/1742-4690-3-88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 12/02/2006] [Indexed: 12/31/2022] Open
Abstract
Background: While human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia, HTLV type 2 (HTLV-2) is not associated with this malignancy. Accumulating evidence suggests that Tax, a transforming protein of HTLV-1 or HTLV-2, plays a crucial role in the distinctive pathogenesis of these two infections. We herein examined whether Tax2 by itself has a growth promoting activity in a mouse T-cell line CTLL-2, and compared the activity with that of Tax1. Results: We found that Tax2 converts the cell growth of CTLL-2 from an interleukin(IL)-2-dependent growth into an independent one. Cyclosporine A, an inhibitor of transcription factor NFAT, inhibited the growth of two out of four Tax2-transformed CTLL-2 cells, but it had little effect on two Tax1-transformed cells. While the HTLV-2-transformed human T-cell lines produce a significant amount of IL-2, Tax2-transformed CTLL-2 cells only produced a minimal amount of IL-2. These results thus suggest that NFAT-inducible gene(s) other than IL-2 play a role in the cell growth of Tax2-transformed CTLL-2 cells. Conclusion: These results show that HTLV-2 Tax2 by itself has a growth promoting activity toward a T-cell line CTLL-2, and the CTLL-2 assay used in this study may therefore be a useful tool for comparing the activity of Tax2 with that of Tax1 in T-cells, thereby elucidating the mechanism of HTLV-1 specific leukemogenesis.
Collapse
Affiliation(s)
- Rie Kondo
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
| | - Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
| | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
| | - Masayasu Oie
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Uehara 207, Nishihara-cho, Nakagami-gun, Okinawa 903-0215, Japan
| | - Fumitake Gejyo
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
| |
Collapse
|
111
|
Abstract
Hairy cell leukemia (HCL) is a unique chronic lymphoproliferative disorder that can mimic or coexist with other clonal hematologic disorders and has been associated with autoimmune disorders. It should be entertained as an alternative diagnosis in patients with cytopenias being assigned the diagnosis of aplastic anemia, hypoplastic myelodysplastic syndrome, atypical chronic lymphocytic leukemia, B-prolymphocytic leukemia, or idiopathic myelofibrosis. Causative etiology or molecular defects remain unclear, although nonspecific chromosomal and molecular changes have been described. The typical presentation is that of a middle-aged man with an incidental finding of pancytopenia, splenomegaly, and inaspirable bone marrow. Treatment with a purine analogue, cladribine or pentostatin, results in extremely high, durable, overall, and complete response rates, although resistance and relapses do occur. A variant subtype exists and is frequently associated with a poor response. Because of its simplified dosing schedule, cladribine is commonly used as the initial therapy. Treatment of relapsed HCL is dictated by the duration of the preceding remission. Relapsed disease after a prolonged remission can often be successfully retreated with the same initial agent. Resistance in typical HCL is treated with the alternate purine analogue. New agents, such as rituximab and BL22, are actively being evaluated and show promising results in both HCL subtypes. This article uses two patients diagnosed with aplastic anemia and recently seen in consultation at our institution as a springboard to discuss the biology, pathogenesis, clinical presentation, diagnostic evaluation, and treatment options of HCL.
Collapse
Affiliation(s)
- Sam O Wanko
- Duke University Medical Center, Division of Hematology/Oncology & Bone Marrow Transplant, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
112
|
Abstract
Viral zoonoses have represented a significant public health problem throughout history, affecting all continents. Furthermore, many viral zoonoses have emerged or reemerged in recent years, highlighting the importance of such diseases. Emerging viral zoonoses encompass a vast number of different viruses and many different transmission modes. There are many factors influencing the epidemiology of the various zoonoses, such as ecological changes, changes in agriculture and food production, the movement of pathogens, including via travel and trade, human behavior and demographical factors, and microbial changes and adaptation. Cost-effective prevention and control of emerging viral zoonoses necessitates an interdisciplinary and holistic approach and international cooperation. Surveillance, laboratory capability, research, training and education, and last but not least, information and communication are key elements.
Collapse
Affiliation(s)
- Birgitta Åsjö
- Center for Research in Virology, The Gade Institute, University of Bergen, The Bio-Building 5th floor, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Hilde Kruse
- National Veterinary Institute, Department for Health Surveillance, Oslo, Norway
| |
Collapse
|
113
|
Ishioka K, Higuchi M, Takahashi M, Yoshida S, Oie M, Tanaka Y, Takahashi S, Xie L, Green PL, Fujii M. Inactivation of tumor suppressor Dlg1 augments transformation of a T-cell line induced by human T-cell leukemia virus type 1 Tax protein. Retrovirology 2006; 3:71. [PMID: 17042961 PMCID: PMC1622753 DOI: 10.1186/1742-4690-3-71] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 10/17/2006] [Indexed: 12/24/2022] Open
Abstract
Background The interaction of human T-cell leukemia virus type 1 (HTLV-1) Tax1 protein with the tumor suppressor Dlg1 is correlated with cellular transformation. Results Here, we show that Dlg1 knockdown by RNA interference increases the ability of Tax1 to transform a mouse T-cell line (CTLL-2), as measured interleukin (IL)-2-independent growth. A Tax1 mutant defective for the Dlg1 interaction showed reduced transformation of CTLL-2 compared to wild type Tax1, but the transformation was minimally affected by Dlg1 reduction. The few Tax1ΔC-transduced CTLL-2 cells that became transformed expressed less Dlg1 than parental cells, suggesting that Dlg1-low cells were selectively transformed by Tax1ΔC. Moreover, all human T-cell lines immortalized by HTLV-1, including the recombinant HTLV-1-containing Tax1ΔC, expressed less Dlg1 than control T-cell lines. Conclusion These results suggest that inactivation of Dlg1 augments Tax1-mediated transformation of CTLL-2, and PDZ protein(s) other than Dlg1 are critically involved in the transformation.
Collapse
Affiliation(s)
- Kojiro Ishioka
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
- Division of Otolaryngology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
| | - Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
| | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
| | - Sakiko Yoshida
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
- Division of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
| | - Masayasu Oie
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Sugata Takahashi
- Division of Otolaryngology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
| | - Li Xie
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, USA
| | - Patrick L Green
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, USA
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, Japan
| |
Collapse
|
114
|
Jones KS, Fugo K, Petrow-Sadowski C, Huang Y, Bertolette DC, Lisinski I, Cushman SW, Jacobson S, Ruscetti FW. Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 use different receptor complexes to enter T cells. J Virol 2006; 80:8291-302. [PMID: 16912281 PMCID: PMC1563841 DOI: 10.1128/jvi.00389-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies using adherent cell lines have shown that glucose transporter-1 (GLUT-1) can function as a receptor for human T-cell leukemia virus type 1 (HTLV). In primary CD4(+) T cells, heparan sulfate proteoglycans (HSPGs) are required for efficient entry of HTLV-1. Here, the roles of HSPGs and GLUT-1 in HTLV-1 and HTLV-2 Env-mediated binding and entry into primary T cells were studied. Examination of the cell surface of activated primary T cells revealed that CD4(+) T cells, the primary target of HTLV-1, expressed significantly higher levels of HSPGs than CD8(+) T cells. Conversely, CD8(+) T cells, the primary target of HTLV-2, expressed GLUT-1 at dramatically higher levels than CD4(+) T cells. Under these conditions, the HTLV-2 surface glycoprotein (SU) binding and viral entry were markedly higher on CD8(+) T cells while HTLV-1 SU binding and viral entry were higher on CD4(+) T cells. Binding studies with HTLV-1/HTLV-2 SU recombinants showed that preferential binding to CD4(+) T cells expressing high levels of HSPGs mapped to the C-terminal portion of SU. Transfection studies revealed that overexpression of GLUT-1 in CD4(+) T cells increased HTLV-2 entry, while expression of HSPGs on CD8(+) T cells increased entry of HTLV-1. These studies demonstrate that HTLV-1 and HTLV-2 differ in their T-cell entry requirements and suggest that the differences in the in vitro cellular tropism for transformation and in vivo pathobiology of these viruses reflect different interactions between their Env proteins and molecules on CD4(+) and CD8(+) T cells involved in entry.
Collapse
Affiliation(s)
- Kathryn S Jones
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Tosi G, Pilotti E, Mortara L, Barbaro ADL, Casoli C, Accolla RS. Inhibition of human T cell leukemia virus type 2 replication by the suppressive action of class II transactivator and nuclear factor Y. Proc Natl Acad Sci U S A 2006; 103:12861-6. [PMID: 16908858 PMCID: PMC1568938 DOI: 10.1073/pnas.0601589103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Indexed: 11/18/2022] Open
Abstract
The master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64-144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300/CBP-associated factor, to enhance transcription from the viral promoter. This finding represents a unique difference with respect to Tax-1, which uses all three coactivators to transactivate the human T cell leukemia virus type 1 LTR. Direct sequestering of CBP or p300 is not the primary mechanism by which CIITA causes suppression of Tax-2. Interestingly, we found that the transcription factor nuclear factor Y, which interacts with CIITA to increase transcription of MHC-II genes, exerts a negative regulatory action on the Tax-2-mediated HTLV-2 LTR transactivation. Thus, CIITA may inhibit Tax-2 function, at least in part, through nuclear factor Y. These findings demonstrate the dual defensive role of CIITA against pathogens: it increases the antigen-presenting function for viral determinants and suppresses HTLV-2 replication in infected cells.
Collapse
Affiliation(s)
- Giovanna Tosi
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Elisabetta Pilotti
- Department of Clinical Medicine, Nephrology, and Health Sciences, University of Parma, 43100 Parma, Italy
| | - Lorenzo Mortara
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Andrea De Lerma Barbaro
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Claudio Casoli
- Department of Clinical Medicine, Nephrology, and Health Sciences, University of Parma, 43100 Parma, Italy
| | - Roberto S. Accolla
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| |
Collapse
|
116
|
Switzer WM, Qari SH, Wolfe ND, Burke DS, Folks TM, Heneine W. Ancient origin and molecular features of the novel human T-lymphotropic virus type 3 revealed by complete genome analysis. J Virol 2006; 80:7427-38. [PMID: 16840323 PMCID: PMC1563715 DOI: 10.1128/jvi.00690-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-lymphotropic virus type 3 (HTLV-3) is a new virus recently identified in two primate hunters in Central Africa. Limited sequence analysis shows that HTLV-3 is distinct from HTLV-1 and HTLV-2 but is genetically similar to simian T-lymphotropic virus type 3 (STLV-3). We report here the first complete HTLV-3 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocytes from an HTLV-3-infected person. The HTLV-3(2026ND) genome is 8,917 bp long and is genetically equidistant from HTLV-1 and HTLV-2, sharing about 62% identity. Phylogenetic analysis of all gene regions confirms this relationship and shows that HTLV-3 falls within the diversity of STLV-3, suggesting a primate origin. However, HTLV-3(2026ND) is unique, sharing only 87% to 92% sequence identity with STLV-3. SimPlot and phylogenetic analysis did not reveal any evidence of genetic recombination with either HTLV-1, HTLV-2, or STLV-3. Molecular dating estimates that the ancestor of HTLV-3 is as old as HTLV-1 and HTLV-2, with an inferred divergence time of 36,087 to 54,067 years ago. HTLV-3 has a prototypic genomic structure, with all enzymatic, regulatory, and structural proteins preserved. Like STLV-3, HTLV-3 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains a unique activator protein-1 transcription factor upstream of the 21-bp repeat elements. A PDZ motif, like that in HTLV-1, which is important for cellular signal transduction and transformation, is present in the C terminus of the HTLV-3 Tax protein. A basic leucine zipper region located in the antisense strand of HTLV-1, believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-3. The ancient origin of HTLV-3, the broad distribution of STLV-3 in Africa, and the propensity of STLVs to cross species into humans all suggest that HTLV-3 may be prevalent and support the need for expanded surveillance for this virus.
Collapse
Affiliation(s)
- William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-45, Atlanta, GA 30333, USA.
| | | | | | | | | | | |
Collapse
|
117
|
Jin Q, Agrawal L, Vanhorn-Ali Z, Alkhatib G. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1. Virology 2006; 353:99-110. [PMID: 16781755 DOI: 10.1016/j.virol.2006.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 03/28/2006] [Accepted: 05/03/2006] [Indexed: 11/24/2022]
Abstract
The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Delta5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Delta5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Delta5 produces a trans-inhibition by GLUT-1Delta5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Delta5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism of HTLV-1 infection of U87 cells. The results may have important implications for HTLV-1 neurotropism and pathogenesis.
Collapse
Affiliation(s)
- Qingwen Jin
- Department of Neurology, Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | | | | | | |
Collapse
|
118
|
Jin Q, Agrawal L, VanHorn-Ali Z, Alkhatib G. Infection of CD4+ T lymphocytes by the human T cell leukemia virus type 1 is mediated by the glucose transporter GLUT-1: Evidence using antibodies specific to the receptor's large extracellular domain. Virology 2006; 349:184-96. [PMID: 16519917 DOI: 10.1016/j.virol.2006.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/05/2005] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
To analyze HTLV-1 cytotropism, we developed a highly sensitive vaccinia virus-based assay measuring activation of a reporter gene upon fusion of two distinct cell populations. We used this system in a functional cDNA screening to isolate and confirm that the glucose transporter protein 1 (GLUT-1) is a receptor for HTLV-1. GLUT-1 is a ubiquitously expressed plasma membrane glycoprotein with 12 transmembrane domains and 6 extracellular loops (ECL). We demonstrate for the first time that peptide antibodies (GLUT-IgY) raised in chicken to the large extracellular loop (ECL1) detect GLUT-1 at the cell surface and inhibit envelope (Env)-mediated fusion and infection. Efficient GLUT-IgY staining was detected with peripheral blood CD4(+) lymphocytes purified by positive selection. Further, GLUT-IgY caused efficient inhibition of Env-mediated fusion and infection of CD4(+) T and significantly lower inhibition of CD8(+) T lymphocytes. The specificity of GLUT-IgY antibodies to GLUT-1 was demonstrated by ECL1 peptide competition studies. Grafting ECL1 of GLUT-1 onto the receptor-negative GLUT-3 conferred significant receptor activity. In contrast, grafting ECL1 of GLUT-3 onto GLUT-1 resulted in a significant loss of the receptor activity. The ECL1-mediated receptor activity was efficiently blocked with four different human monoclonal antibody (HMab) to HTLV-1 Env. The ECL1-derived peptide blocked HTLV-1 Env-mediated fusion with several nonhuman mammalian cell lines. The results demonstrate the utilization of cell surface GLUT-1 in HTLV-1 infection of CD4(+) T lymphocytes and implicate a critical role for the ECL1 region in viral tropism.
Collapse
Affiliation(s)
- Qingwen Jin
- Department of Microbiology and Immunology, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202-5114, USA
| | | | | | | |
Collapse
|
119
|
Sheehy N, Lillis L, Watters K, Lewis M, Gautier V, Hall W. Functional analysis of human T lymphotropic virus type 2 Tax proteins. Retrovirology 2006; 3:20. [PMID: 16551350 PMCID: PMC1462996 DOI: 10.1186/1742-4690-3-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 03/21/2006] [Indexed: 12/03/2022] Open
Abstract
Background The Tax proteins encoded by human T lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) are transcriptional activators of both the viral long terminal repeat (LTR) and cellular promoters via the CREB and NFkB pathways. In contrast to HTLV-1, HTLV-2 has been classified into four distinct genetic subtypes A, B, C and D defined by phylogenetic analysis of their nucleotide sequences and the size and amino acid sequence of their Tax proteins. In the present study we have analysed and compared the transactivating activities of three Tax 2A and one Tax 2B proteins using LTR and NFkB reporter assays. Results We found that with the exception of the prototype Tax 2A Mo protein, the other two Tax 2A proteins failed to transactivate either the viral LTR or NFkB promoter in Jurkat and 293T cells. Loss of activity was not associated with either expression levels or an alteration in subcellular distribution as all Tax 2 proteins were predominantly located in the cytoplasm of transfected cells. Analysis of the sequence of the two inactive Tax 2A proteins relative to Mo indicated that one had six amino acid changes and the other had one change in the central region of the protein. Mutations present at the amino and the extreme carboxy termini of Mo resulted in the loss of LTR but not NFkB activation whereas those occurring in the central region of the protein appeared to abolish transactivation of both promoters. Analysis of the transactivation phenotypes of Tax 1, Tax 2A Mo and Tax 2B containing mutations identified in the present study or previously characterised Tax mutations showed that domains required for LTR and NFkB activation are very similar but not identical in all three Tax proteins. Conclusion Our results suggest that loss of activity of two Tax 2A proteins derived from different isolates is associated with multiple amino acid changes relative to Mo in domains required for the activation of the CREB or CREB and NFkB pathways and that these domains are very similar but not identical in Tax 2B and Tax 1. The loss of Tax function in 2A viruses may have implications for their biological and pathogenic properties.
Collapse
Affiliation(s)
- Noreen Sheehy
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Lillis
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karen Watters
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martha Lewis
- University of California, Department of Medicine, UCLA Centre for Health Sciences, Los Angeles, California, USA
| | - Virginie Gautier
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William Hall
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
120
|
Xie L, Yamamoto B, Haoudi A, Semmes OJ, Green PL. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo. Blood 2006; 107:1980-8. [PMID: 16263794 PMCID: PMC1895710 DOI: 10.1182/blood-2005-03-1333] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 10/13/2005] [Indexed: 12/12/2022] Open
Abstract
HTLV-1 cellular transformation and disease induction is dependent on expression of the viral Tax oncoprotein. PDZ is a modular protein interaction domain used in organizing signaling complexes in eukaryotic cells through recognition of a specific binding motif in partner proteins. Tax-1, but not Tax-2, contains a PDZ-binding domain motif (PBM) that promotes the interaction with several cellular PDZ proteins. Herein, we investigate the contribution of the Tax-1 PBM in HTLV-induced proliferation and immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. We generated several HTLV-1 and HTLV-2 Tax viral mutants, including HTLV-1deltaPBM, HTLV-2+C22(+PBM), and HTLV-2+ C18(deltaPBM). All Tax mutants maintained the ability to significantly activate the CREB/ATF or NFkappaB signaling pathways. Microtiter proliferation assays revealed that the Tax-1 PBM significantly increases both HTLV-1- and HTLV-2-induced primary T-cell proliferation. In addition, Tax-1 PBM was responsible for the micronuclei induction activity of Tax-1 relative to that of Tax-2. Viral infection and persistence were severely attenuated in rabbits inoculated with HTLV-1deltaPBM. Our results provide the first direct evidence suggesting that PBM-mediated associations between Tax-1 and cellular proteins play a key role in HTLV-induced cell proliferation and genetic instability in vitro and facilitate viral persistence in vivo.
Collapse
Affiliation(s)
- Li Xie
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
121
|
Xie L, Green PL. Envelope is a major viral determinant of the distinct in vitro cellular transformation tropism of human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2. J Virol 2006; 79:14536-45. [PMID: 16282453 PMCID: PMC1287554 DOI: 10.1128/jvi.79.23.14536-14545.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ T cells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.
Collapse
Affiliation(s)
- Li Xie
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
122
|
Chevalier SA, Meertens L, Calattini S, Gessain A, Kiemer L, Mahieux R. Presence of a functional but dispensable nuclear export signal in the HTLV-2 Tax protein. Retrovirology 2005; 2:70. [PMID: 16285885 PMCID: PMC1308865 DOI: 10.1186/1742-4690-2-70] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 11/14/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 and type 2 are related human retroviruses. HTLV-1 is the etiological agent of the Adult T-cell Leukemia/Lymphoma and of the Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy, whereas, HTLV-2 infection has not been formally associated with any T-cell malignancy. HTLV-1 and 2 genomes encode, respectively, the Tax1 and Tax2 proteins whose role is to transactivate the viral promoter. HTLV-1 and HTLV-2 Tax sequences display 28% divergence at the amino acid level. Tax1 is a shuttling protein that possesses both a non canonical nuclear import (NLS) and a nuclear export (NES) signal. We have recently demonstrated that Tax1 and Tax2 display different subcellular localization and that residues 90-100 are critical for this process. We investigate in the present report, whether Tax2 also possesses a functional NES. RESULTS We first used a NES prediction method to determine whether the Tax2 protein might contain a NES and the results do suggest the presence of a NES sequence in Tax2. Using Green Fluorescent Protein-NES (GFP-NES) fusion proteins, we demonstrate that the Tax2 sequence encompasses a functional NES (NES2). As shown by microscope imaging, NES2 is able to mediate translocation of GFP from the nucleus, without the context of a full length Tax protein. Furthermore, point mutations or leptomycin B treatment abrogate NES2 function. However, within the context of full length Tax2, similar point mutations in the NES2 leucine rich stretch do not modify Tax2 localization. Finally, we also show that Tax1 NES function is dependent upon the positioning of the nuclear export signal "vis-à-vis" GFP. CONCLUSION HTLV-2 Tax NES is functional but dispensable for the protein localization in vitro.
Collapse
Affiliation(s)
- Sébastien A Chevalier
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| | - Laurent Meertens
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| | - Sara Calattini
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| | - Lars Kiemer
- Center for Biological Sequence Analysis, BioCentrum-DTU, The Technical University of Denmark, Building 208 DK-2800, Lyngby, Denmark
| | - Renaud Mahieux
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| |
Collapse
|