101
|
Ishikawa C, Nakachi S, Senba M, Sugai M, Mori N. Activation of AID by human T-cell leukemia virus Tax oncoprotein and the possible role of its constitutive expression in ATL genesis. Carcinogenesis 2011; 32:110-119. [DOI: 10.1093/carcin/bgq222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
102
|
Marusawa H, Takai A, Chiba T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv Immunol 2011; 111:109-41. [PMID: 21970953 DOI: 10.1016/b978-0-12-385991-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human cancer is a genetic disease resulting from the stepwise accumulation of genetic alterations in various tumor-related genes. Normal mutation rates, however, cannot account for the abundant genetic changes accumulated in tumor cells, suggesting that certain molecular mechanisms underlie such a large number of genetic alterations. Activation-induced cytidine deaminase (AID), a nucleotide-editing enzyme that triggers DNA alterations and double-strand DNA breaks in the immunoglobulin gene, has been identified in activated B lymphocytes. Recent studies revealed that AID-mediated genotoxic effects target not only immunoglobulin genes but also a variety of other genes in both B lymphocytes and non-lymphoid cells. Consistent with the finding that several transcription factors including nuclear factor-κB (NF-κB) mediate AID expression in B cells, proinflammatory cytokine stimulation of several types of gastrointestinal epithelial cells, such as gastric, colonic, hepatic, and biliary epithelium, induces aberrant AID expression through the NF-κB signaling pathway. In vivo studies revealed that constitutive AID expression promotes the tumorigenic pathway by enhancing the susceptibility to mutagenesis in a variety of epithelial organs. The activity of AID as a genome mutator provides a new avenue for studies aimed at understanding mutagenesis mechanisms during carcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
103
|
Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J Gastroenterol 2011; 46 Suppl 1:6-10. [PMID: 20878190 DOI: 10.1007/s00535-010-0326-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/06/2010] [Indexed: 02/04/2023]
Abstract
Chronic inflammatory bowel disease (IBD) is an important etiologic factor in the development of colorectal cancer. However, the mechanism underlying the development of colorectal cancers through chronic inflammation is not known. Activation-induced cytidine deaminase (AID) was originally identified as an inducer of somatic hypermutation in the immunoglobulin gene. We recently found that the mutagenic activity of AID expression links inflammation to the development of cancer. Aberrant AID expression is triggered by hepatitis C virus infection in human hepatocytes or Helicobacter pylori infection in human gastric epithelial cells, and leads to the generation of somatic mutations in various tumor-related genes. Here, we review our findings relating to how AID contributes to the development of colitis-associated colorectal cancers (CACs). Immunohistochemistry revealed the enhanced expression of endogenous AID protein in not only in the inflamed colonic mucosa of ulcerative colitis patients but also CAC tumor lesions. Pro-inflammatory cytokine TNF-α induced strong aberrant expression of AID via IκB kinase-dependent NF-κB-signaling pathways in human colonic epithelial cells. Furthermore, AID expression was also elicited in response to the T helper cell-2-driven cytokines IL-4 and IL-13, which are activated in human IBD. Aberrant activation of AID in colonic cells preferentially evoked genetic mutations in the TP53 gene, whereas there were no nucleotide alterations of the APC gene. These findings suggested that pro-inflammatory cytokine-mediated aberrant expression of AID in colonic epithelial cells plays a role as a genotoxic factor that enhances genetic instability during chronic colonic inflammation, leading to CAC development.
Collapse
|
104
|
Hancer VS, Kose M, Diz-Kucukkaya R, Yavuz AS, Aktan M. Activation-induced cytidine deaminase mRNA levels in chronic lymphocytic leukemia. Leuk Lymphoma 2010; 52:79-84. [PMID: 21133730 DOI: 10.3109/10428194.2010.531410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Rai and Binet staging systems, which are used as standard methods for evaluating the prognosis of chronic lymphocytic leukemia (CLL), have some restrictions in identifying patients with early-stage CLL who will progress rapidly. To solve this defect, other prognostic parameters have become important in recent years. Intracellular up-regulation of the AID gene in the leukemic lymphocytes of patients with CLL may be an important parameter for predicting the progression of CLL. In this study, AID mRNA expression levels were evaluated in 50 patients with CLL and 50 healthy controls. AID mRNA expression was significantly higher in patients than in controls. We then evaluated AID mRNA levels according to the stages of CLL. Regarding AID mRNA levels, patients with Rai stages 0, I, and II were compared with patients with stages III and IV, whereas patients with Binet stage A were compared with patients with Binet stages B and C. In patients with higher-risk Rai stages III and IV and Binet stages B and C, activation-induced cytidine deaminase (AID) mRNA levels were also significantly higher. Additionally, we found that the mRNA levels of patients with AID in CLL were eight-fold higher than those in control patients, suggesting that AID overexpression promotes chromosomal abnormalities and is associated with CLL progression and survival. For this reason, and because of the simplicity of quantitative real-time PCR analysis, AID might be a useful clinical parameter after its importance is confirmed in larger and multivariate studies.
Collapse
Affiliation(s)
- Veysel Sabri Hancer
- Department of Medical Biology and Genetics, Istanbul Bilim University, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
105
|
Matsumoto Y, Marusawa H, Kinoshita K, Niwa Y, Sakai Y, Chiba T. Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology 2010; 139:1984-94. [PMID: 20637757 DOI: 10.1053/j.gastro.2010.07.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The DNA/RNA editing enzyme activation-induced cytidine deaminase (AID) is mutagenic and has been implicated in human tumorigenesis. Helicobacter pylori infection of gastric epithelial cells leads to aberrant expression of AID and somatic gene mutations. We investigated whether AID induces genetic aberrations at specific chromosomal loci that encode tumor-related proteins in gastric epithelial cells. METHODS Human gastric epithelial cell lines that express activated AID and gastric cells from AID transgenic mice were examined for DNA copy number changes and nucleotide alterations. Copy number aberrations in stomach cells of H pylori-infected mice and gastric tissues (normal and tumor) from H pylori-positive patients were also analyzed. RESULTS In human gastric cells, aberrant AID activity induced copy number changes at various chromosomal loci. In AID-expressing cells and gastric mucosa of AID transgenic mice, point mutations and reductions in copy number were observed frequently in the tumor suppressor genes CDKN2A and CDKN2B. Oral infection of wild-type mice with H pylori reduced the copy number of the Cdkn2b-Cdkn2a locus, whereas no such changes were observed in the gastric mucosa of H pylori-infected AID-deficient mice. In human samples, the relative copy numbers of CDKN2A and CDKN2B were reduced in a subset of gastric cancer tissues compared with the surrounding noncancerous region. CONCLUSIONS H pylori infection leads to aberrant expression of AID and might be a mechanism of the accumulation of submicroscopic deletions and somatic mutations in gastric epithelial cells. AID-mediated genotoxic effects appear to occur frequently at the CDKN2b-CDKN2a locus and contribute to malignant transformation of the gastric mucosa.
Collapse
Affiliation(s)
- Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
106
|
Lee H, Trott JS, Haque S, McCormick S, Chiorazzi N, Mongini PKA. A Cyclooxygenase-2/Prostaglandin E2Pathway Augments Activation-Induced Cytosine Deaminase Expression within Replicating Human B Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5300-14. [DOI: 10.4049/jimmunol.1000574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
107
|
Chahwan R, Wontakal SN, Roa S. Crosstalk between genetic and epigenetic information through cytosine deamination. Trends Genet 2010; 26:443-8. [DOI: 10.1016/j.tig.2010.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 01/25/2023]
|
108
|
Niller HH, Wolf H, Minarovits J. Viral hit and run-oncogenesis: genetic and epigenetic scenarios. Cancer Lett 2010; 305:200-17. [PMID: 20813452 DOI: 10.1016/j.canlet.2010.08.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022]
Abstract
It is well documented that viral genomes either inserted into the cellular DNA or co-replicating with it in episomal form can be lost from neoplastic cells. Therefore, "hit and run"-mechanisms have been a topic of longstanding interest in tumor virology. The basic idea is that the transient acquisition of a complete or incomplete viral genome may be sufficient to induce malignant conversion of host cells in vivo, resulting in neoplastic development. After eliciting a heritable change in the gene expression pattern of the host cell (initiation), the genomes of tumor viruses may be completely lost, i.e. in a hit and run-scenario they are not necessary for the maintenance of the malignant state. The expression of viral oncoproteins and RNAs may interfere not only with regulators of cell proliferation, but also with DNA repair mechanisms. DNA recombinogenic activities induced by tumor viruses or activated by other mechanisms may contribute to the secondary loss of viral genomes from neoplastic cells. Viral oncoproteins can also cause epigenetic dysregulation, thereby reprogramming cellular gene expression in a heritable manner. Thus, we expect that epigenetic scenarios of viral hit and run-tumorigenesis may facilitate new, innovative experiments and clinical studies in spite of the fact that the regular presence of a suspected human tumor virus in an early phase of neoplastic development and its subsequent regular loss have not been demonstrated yet. We propose that virus-specific "epigenetic signatures", i.e. alterations of the host cell epigenome, especially altered DNA methylation patterns, may help to identify viral hit and run-oncogenic events, even after the complete loss of tumor viruses from neoplastic cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | |
Collapse
|
109
|
Uracil in DNA--its biological significance. Mutat Res 2010; 705:239-45. [PMID: 20709185 DOI: 10.1016/j.mrrev.2010.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 12/29/2022]
Abstract
Uracil may arise in DNA as a result of spontaneous cytosine deamination and/or misincorporation of dUMP during DNA replication. In this paper we will review: (i) sources of the origin of uracil in DNA; (ii) some properties of the enzymes responsible for the excision of uracil and their role in the Ig diversification process, which comprises somatic hypermutation and class switch recombination; and (iii) consequences of cytosine deamination in other than the Ig loci, in cell types different than B lymphocytes. Furthermore, the issue concerning the basal level of uracil in DNA and consequences of the presence of U:A pairs for DNA stability and cell functions will be discussed. Finally, we will discuss the clinical significance of aberrant uracil incorporation into DNA and possible involvement of aberrantly expressed AID and the enzyme-induced presence of uracil, in carcinogenesis. Based on the literature data we conclude/hypothesize that the non-canonical base uracil may be present and well tolerated in DNA mostly as U:A pairs, likely in quantities of 10(4) per genome. Although a role of uracil in DNA is not fully defined, it is possible that an ancestral system which once used uracil in primordial genetic material (uracil-DNA), may have evolved to use this molecule in regulatory processes such as: (i) meiotic cell division to facilitate chromatid exchange during crossing-over (in spermatocytes); (ii) it is possible that uracil present in DNA may be a signaling molecule during metamorphosis of Drosophila melanogaster; and (iii) during transcription since some regulatory proteins (Escherichia coli lac repressor) and GCN4 can recognize uracil versus thymine in specific DNA regulatory sequences. Moreover, recent data suggest that in transcriptionally active chromatin the dUTP/dTTP pool may be significantly increased, which in turn may lead to massive uracil incorporation into DNA.
Collapse
|
110
|
Helicobacter pylori-induced activation-induced cytidine deaminase expression and carcinogenesis. Curr Opin Immunol 2010; 22:442-7. [PMID: 20667704 DOI: 10.1016/j.coi.2010.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/01/2010] [Indexed: 11/23/2022]
Abstract
Tumorigenesis is a multistep process in which the accumulation of genetic alterations drives the transformation of normal cells into malignant derivatives. Activation-induced cytidine deaminase (AID) contributes to immune system diversity by inducing somatic hypermutations and class-switch recombinations of human immunoglobulin genes. The mutagenic activity of AID, however, can also induce genetic changes in various genes and may lead to the development of cancer. Helicobacter pylori, a class 1 carcinogen for human gastric cancer, affects AID expression by two different mechanisms, introduction of bacterial virulence factors into host cells and induction of inflammatory responses, thereby contributing to the accumulation of mutations in tumor-related genes. Aberrant AID activity may therefore be a novel link between infection and carcinogenesis.
Collapse
|
111
|
Li ZH, Tang QB, Wang J, Zhou L, Huang WL, Liu RY, Chen RF. Hepatitis C virus core protein induces malignant transformation of biliary epithelial cells by activating nuclear factor-kappaB pathway. J Gastroenterol Hepatol 2010; 25:1315-20. [PMID: 20594262 DOI: 10.1111/j.1440-1746.2009.06201.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED In an earlier study, we found that hepatitis C virus core protein, HCV-C, participated in the malignant transformation of HCV-C transfected normal human biliary epithelial (hBE) cells by activating telomerase. Here we further investigated the signaling of the malignant transformation. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), western blotting and immunoprecipitation were used to analyze the expression of HCV-C, human telomerase reverse transcriptase (hTERT), nuclear factor-kappaB (NF-kappaB) and NF-kappaB inhibitor alpha (IkappaBalpha) genes and the phosphorylation level of IkappaBalpha protein. Electrophoretic mobility shift assays (EMSA) and NF-kappaB-linked luciferase reporter assays were carried out to measure NF-kappaB activity. RESULTS The expression of HCV-C and hTERT was detected only in HCV-C-transfected hBE (hBE-HCV-C) cells but not in vector-transfected or parental hBE cells. More NF-kappaB protein accumulated in nuclear extracts of hBE-HCV-C cells rather than in those of control cells, though total NF-kappaB protein level showed no difference among these cells. DNA binding activity of NF-kappaB and the NF-kappaB-linked luciferase activity were much higher in HCV-C-transfected hBE cells than those in vector- or non-transfected hBE cells. In addition, the IkappaBalpha phosphorylation level, but not the IkappaBalpha mRNA or protein levels, was increased after HCV-C transfection. CONCLUSIONS Hepatitis C virus core protein activates NF-kappaB pathway in hBE cells by increasing the phosphorylation of IkappaBalpha. The pathway may be responsible for HCV-C-induced malignant transformation of hBE cells.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Department of Oncology, Affiliated Second Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
112
|
Vartanian JP, Henry M, Marchio A, Suspène R, Aynaud MM, Guétard D, Cervantes-Gonzalez M, Battiston C, Mazzaferro V, Pineau P, Dejean A, Wain-Hobson S. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog 2010; 6:e1000928. [PMID: 20523896 PMCID: PMC2877740 DOI: 10.1371/journal.ppat.1000928] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/27/2010] [Indexed: 12/13/2022] Open
Abstract
DNA viruses, retroviruses and hepadnaviruses, such as hepatitis B virus (HBV), are vulnerable to genetic editing of single stranded DNA by host cell APOBEC3 (A3) cytidine deaminases. At least three A3 genes are up regulated by interferon-α in human hepatocytes while ectopic expression of activation induced deaminase (AICDA), an A3 paralog, has been noted in a variety of chronic inflammatory syndromes including hepatitis C virus infection. Yet virtually all studies of HBV editing have confined themselves to analyses of virions from culture supernatants or serum where the frequency of edited genomes is generally low (≤10−2). We decided to look at the nature and frequency of HBV editing in cirrhotic samples taken during removal of a primary hepatocellular carcinoma. Forty-one cirrhotic tissue samples (10 alcoholic, 10 HBV+, 11 HBV+HCV+ and 10 HCV+) as well as 4 normal livers were studied. Compared to normal liver, 5/7 APOBEC3 genes were significantly up regulated in the order: HCV±HBV>HBV>alcoholic cirrhosis. A3C and A3D were up regulated for all groups while the interferon inducible A3G was over expressed in virus associated cirrhosis, as was AICDA in ∼50% of these HBV/HCV samples. While AICDA can indeed edit HBV DNA ex vivo, A3G is the dominant deaminase in vivo with up to 35% of HBV genomes being edited. Despite these highly deleterious mutant spectra, a small fraction of genomes survive and contribute to loss of HBeAg antigenemia and possibly HBsAg immune escape. In conclusion, the cytokine storm associated with chronic inflammatory responses to HBV and HCV clearly up regulates a number of A3 genes with A3G clearly being a major restriction factor for HBV. Although the mutant spectrum resulting from A3 editing is highly deleterious, a very small part, notably the lightly edited genomes, might help the virus evolve and even escape immune responses. Retroviruses and hepadnaviruses such as hepatitis B virus (HBV) are vulnerable to mutation by host cell single stranded DNA cytidine deaminases. The result is hypermutated viral peppered with uracil residues. While there are potentially 11 such human enzymes, the major players belong to the 7 gene APOBEC3 cluster on chromosome 22, some of which can be activated by anti-viral interferons. We investigated the nature and frequency of HBV editing in 41 cirrhotic samples following surgical removal of primary hepatocellular carcinoma. Numerous APOBEC3 genes were activated in the decreasing order HCV±HBV>HBV>alcoholic cirrhosis. We observed that APOBEC3G was the dominant restricting factor in vivo with up to 35% of HBV edited genomes. Among the HBV mutants generated by APOBEC3 editing, we found a small fraction of lightly APOBEC3G edited genomes that can impact HBV replication in vivo and possibly immune escape.
Collapse
|
113
|
Igarashi H, Hashimoto J, Tomita T, Yoshikawa H, Ishihara K. TP53 mutations coincide with the ectopic expression of activation-induced cytidine deaminase in the fibroblast-like synoviocytes derived from a fraction of patients with rheumatoid arthritis. Clin Exp Immunol 2010; 161:71-80. [PMID: 20491788 DOI: 10.1111/j.1365-2249.2010.04163.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Main features of rheumatoid arthritis (RA), hyperplasia of fibroblast-like synoviocytes (FLS) and joint destruction are caused by inflammatory cytokines produced in chronic autoimmune inflammation. Cell-intrinsic acquisition of tumour-like phenotypes of RA-FLS could also be responsible for the aggressive proliferation and invasion, which are supported by the fact that in some cases RA-FLS has mutations of a tumour suppressor gene TP53. However, the underlying molecular mechanism for TP53 mutations in RA-FLS has not yet been clarified. Recently it has been reported that the non-lymphoid cells in the inflammatory tissues express ectopically the activation-induced cytidine deaminase (AID) gene that induces somatic hypermutations, not only at the immunoglobulin (Ig) gene variable regions in germinal centre B lymphocytes but also at coding regions in TP53. Real-time polymerase chain reaction (PCR) analyses revealed more than half (five of nine) of the RA-FLS lines we established showed the markedly increased expression of AID. AID transcription in RA-FLS was augmented by tumour necrosis factor (TNF)-alpha and even by physiological concentration of beta-oestradiol that could not induce AID transcription in osteoarthritis-FLS. Furthermore, AID-positive RA-FLS presented a higher frequency of somatic mutations in TP53. Cytological and immunohistochemical analyses demonstrated clearly the ectopic expression of AID in the FLS at the RA synovium. These data suggested strongly a novel consequence of RA; the ectopic expression of AID in RA-FLS causes the somatic mutations and dysfunction of TP53, leading to acquisition of tumour-like properties by RA-FLS.
Collapse
Affiliation(s)
- H Igarashi
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | | | | | | | | |
Collapse
|
114
|
Nagaoka H, Tran TH, Kobayashi M, Aida M, Honjo T. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int Immunol 2010; 22:227-35. [DOI: 10.1093/intimm/dxq023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
115
|
Metzner M, Schuh W, Roth E, Jäck HM, Wabl M. Two forms of activation-induced cytidine deaminase differing in their ability to bind agarose. PLoS One 2010; 5:e8883. [PMID: 20111710 PMCID: PMC2811734 DOI: 10.1371/journal.pone.0008883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/17/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Activation-induced cytidine deaminase (AID) is a B-cell-specific DNA mutator that plays a key role in the formation of the secondary antibody repertoire in germinal center B cells. In the search for binding partners, protein coimmunoprecipitation assays are often performed, generally with agarose beads. METHODOLOGY/PRINCIPAL FINDINGS We found that, regardless of whether cell lysates containing exogenous or endogenous AID were examined, one of two mouse AID forms bound to agarose alone. CONCLUSIONS/SIGNIFICANCE These binding characteristics may be due to the known post-translational modifications of AID; they may also need to be considered in coimmunoprecipitation experiments to avoid false-positive results.
Collapse
Affiliation(s)
- Mirjam Metzner
- Nikolaus-Fiebiger Center, Department of Internal Medicine III, Division of Molecular Immunology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
116
|
Masumi A, Ito M, Mochida K, Hamaguchi I, Mizukami T, Momose H, Kuramitsu M, Tsuruhara M, Takizawa K, Kato A, Yamaguchi K. Enhanced RIG-I expression is mediated by interferon regulatory factor-2 in peripheral blood B cells from hepatitis C virus-infected patients. Biochem Biophys Res Commun 2010; 391:1623-8. [PMID: 20034464 DOI: 10.1016/j.bbrc.2009.12.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C patients carry the risk of developing into B-cell non-Hodgkin's lymphoma (B-NHL). To clarify the mechanisms underlying this association, we first investigated the molecular markers of B cells from hepatitis C virus (HCV)-infected patients. CD19-positive cells were isolated as B cells from the peripheral blood mononuclear cells of patients infected with the hepatitis C virus and IFN-related gene expression was analyzed. We found that RIG-I and IRF-2 expression were up-regulated in CD19-positive cells from the infected patients. In vitro luciferase reporter analysis using human cell lines indicated that IRF-2 activates the human RIG-I promoter. IRF-2 expression levels were enhanced by HCV cDNA transfection in Huh7 cells. In addition, we observed much less induction in the interferon stimulated gene 15 (ISG15) after Sendai virus (SenV) stimulation of CD19-positive cells from infected patients versus healthy controls, thereby suggesting an impairment of RIG-I downstream signaling in HCV-infected patients. Hence, we found that the failure of the anti-viral response with enhanced IRF-2 oncogenic protein expression in blood B cells from HCV-infected patients. Our results provide important information to better understand the role of IRFs in the cause of HCV chronic infection.
Collapse
Affiliation(s)
- Atsuko Masumi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1, Gakuen Musashimurayama-shi, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Tran TH, Nakata M, Suzuki K, Begum NA, Shinkura R, Fagarasan S, Honjo T, Nagaoka H. B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat Immunol 2009; 11:148-54. [PMID: 19966806 DOI: 10.1038/ni.1829] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/28/2009] [Indexed: 01/17/2023]
Abstract
Activation-induced cytidine deaminase (AID) is essential for the generation of antibody memory but also targets oncogenes, among other genes. We investigated the transcriptional regulation of Aicda (which encodes AID) in class switch-inducible CH12F3-2 cells and found that Aicda regulation involved derepression by several layers of positive regulatory elements in addition to the 5' promoter region. The 5' upstream region contained functional motifs for the response to signaling by cytokines, the ligand for the costimulatory molecule CD40 or stimuli that activated the transcription factor NF-kappaB. The first intron contained functional binding elements for the ubiquitous silencers c-Myb and E2f and for the B cell-specific activator Pax5 and E-box-binding proteins. Our results show that Aicda is regulated by the balance between B cell-specific and stimulation-responsive elements and ubiquitous silencers.
Collapse
Affiliation(s)
- Thinh Huy Tran
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
A novel mechanism for inflammation-associated carcinogenesis; an important role of activation-induced cytidine deaminase (AID) in mutation induction. J Mol Med (Berl) 2009; 87:1023-7. [PMID: 19756448 DOI: 10.1007/s00109-009-0527-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/25/2009] [Indexed: 02/06/2023]
Abstract
Inflammation is a risk for cancer development; however, its mechanism is unknown. Recent studies have revealed that activation-induced cytidine deaminase (AID), which plays essential roles in both class-switch recombination and somatic hypermutation of immunoglobulin gene in B lymphocytes, is aberrantly expressed in non-lymphoid cells not only by H.pylori and HCV infection but also by various proinflammatory cytokines, leading to the generation of gene mutations. These findings not only suggested a new mechanism of inflammation-associated carcinogenesis but has also opened up a new field of tumor biology.
Collapse
|
119
|
Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, Iwai A, Sakai Y, Takahashi R, Chiba T. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers. Int J Cancer 2009; 125:2029-35. [PMID: 19585504 DOI: 10.1002/ijc.24565] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkin has a critical role in the ubiquitin-proteasome system as an E3-ligase targeting several substrates. Our recent finding that Parkin-deficient mice are susceptible to tumorigenesis provided evidence that Parkin is a tumor suppressor gene. Dysfunction of the Parkin gene is frequently observed in various human cancers, but the mechanism underlying the cell cycle disruption induced by Parkin dysfunction that leads to carcinogenesis is not known. Here, we demonstrated that Parkin expression in colonic epithelial cells is regulated in a cell cycle-associated manner. Epidermal growth factor (EGF) stimulation upregulated Parkin gene expression in human colon cells. Inhibition of the phosphoinositide 3-kinase [PI(3)K]-Akt-dependent pathways suppressed growth factor-induced Parkin expression. The expression of alternatively spliced Parkin isoforms with various deletions spanning exons 3-6 was detected in 18 of 43 (42%) human colorectal cancer tissues. Wild-type Parkin induced the degradation of cyclin E protein, but the alternatively spliced Parkin identified in colon cancers showed defective proteolysis of cyclin E. These findings indicate that Parkin expression is induced by growth factor stimulation and is involved in the cell cycle regulation of colon cells. Tumor-specific expression of alternatively spliced Parkin isoforms might contribute to enhanced cell proliferation through the attenuation of proteolysis-mediated cyclin E regulation in human colorectal cancers.
Collapse
Affiliation(s)
- Kyoko Ikeuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Petersen-Mahrt SK, Coker HA, Pauklin S. DNA deaminases: AIDing hormones in immunity and cancer. J Mol Med (Berl) 2009; 87:893-7. [PMID: 19554301 PMCID: PMC2727621 DOI: 10.1007/s00109-009-0496-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/03/2009] [Accepted: 06/08/2009] [Indexed: 12/18/2022]
Abstract
It is well established that hormones can cause cancer, much less known is how they induce this change in our somatic cells. This review highlights the recent finding that estrogen can exert its DNA-damaging potential by directly activating DNA deaminases. This recently discovered class of proteins deaminate cytosine to uracil in DNA, and are essential enzymes in the immune system. The enhanced production of a given DNA deaminase, induced by estrogen, can lead not only to a more active immune response, but also to an increase in mutations and oncogenic translocations. Identifying the direct molecular link between estrogen and a mutation event provides us with new targets for studying and possibly inhibiting the pathological side-effects of estrogen.
Collapse
Affiliation(s)
- Svend K Petersen-Mahrt
- DNA Editing Laboratory, Clare Hall Laboratories, London Research Institute, South Mimms, EN6 3LD, UK.
| | | | | |
Collapse
|
121
|
Pauklin S, Petersen-Mahrt SK. Progesterone inhibits activation-induced deaminase by binding to the promoter. THE JOURNAL OF IMMUNOLOGY 2009; 183:1238-44. [PMID: 19553525 DOI: 10.4049/jimmunol.0803915] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regulation of activation-induced deaminase (AID), an essential factor in Ig diversification, can alter not only somatic hypermutation and class switch recombination (CSR), but may also influence oncogenesis. AID deaminates cytosine to uracil in the Ig locus, thereby initiating Ig diversification. Unregulated AID can induce oncogenic DNA alterations in Ig and non-Ig loci, leading to mutations, recombination, and translocations. In this study, we demonstrate that AID mRNA production in activated mouse splenic B cells can be reduced by treatment with the sex hormone progesterone. This down-regulation is independent of translation or splicing and is predominantly achieved by inhibiting transcription. During cell treatment we could detect progesterone receptor bound to the AID promoter in proximity to NF-kappaB binding. Importantly, the progesterone-induced repression was also extended to the protein level of AID and its activity on somatic hypermutation and class switch recombination.
Collapse
Affiliation(s)
- Siim Pauklin
- DNA Editing Lab, Clare Hall Laboratories, Cancer Research U.K., South Mimms, United Kingdom
| | | |
Collapse
|
122
|
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30:1073-81. [PMID: 19468060 DOI: 10.1093/carcin/bgp127] [Citation(s) in RCA: 2000] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory conditions in selected organs increase the risk of cancer. An inflammatory component is present also in the microenvironment of tumors that are not epidemiologically related to inflammation. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. In the tumor microenvironment, smoldering inflammation contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduced response to hormones and chemotherapeutic agents. Recent data suggest that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells. In a seminal contribution, Hanahan and Weinberg [(2000) Cell, 100, 57-70] identified the six hallmarks of cancer. We surmise that CRI represents the seventh hallmark.
Collapse
|
123
|
Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol 2009; 30:173-81. [PMID: 19303358 DOI: 10.1016/j.it.2009.01.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 11/25/2022]
Abstract
Somatic hypermutation (SHM) of Ig genes in B cells is crucial for antibody affinity maturation. The reaction is initiated by cytosine deamination of Ig loci by activation induced deaminase (AID) and is completed by error-prone DNA repair enzyme processing of AID-generated uracils. The mechanisms that target SHM specifically to Ig loci are poorly understood. Recently, it has been demonstrated that although AID preferentially targets Ig loci, it acts surprisingly widely on non-Ig loci, many of which are protected from mutation accumulation by high-fidelity DNA repair. We propose that breakdown of this high fidelity repair process helps explain oncogene mutations observed in B-cell tumors, and further, that many oncogenes are vulnerable to AID-mediated DNA breaks and translocations in normal activated B cells.
Collapse
Affiliation(s)
- Man Liu
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
124
|
MacDuff DA, Demorest ZL, Harris RS. AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Res 2009; 37:1854-67. [PMID: 19188259 PMCID: PMC2665220 DOI: 10.1093/nar/gkp030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrotransposons make up over 40% of the mammalian genome. Some copies are still capable of mobilizing and new insertions promote genetic variation. Several members of the APOBEC3 family of DNA cytosine deaminases function to limit the replication of a variety of retroelements, such as the long-terminal repeat (LTR)-containing MusD and Ty1 elements, and that of the non-LTR retrotransposons, L1 and Alu. However, the APOBEC3 genes are limited to mammalian lineages, whereas retrotransposons are far more widespread. This raises the question of what cellular factors control retroelement transposition in species that lack APOBEC3 genes. A strong phylogenetic case can be made that an ancestral activation-induced deaminase (AID)-like gene duplicated and diverged to root the APOBEC3 lineage in mammals. Therefore, we tested the hypothesis that present-day AID proteins possess anti-retroelement activity. We found that AID can inhibit the retrotransposition of L1 through a DNA deamination-independent mechanism. This mechanism may manifest in the cytoplasmic compartment co- or posttranslationally. Together with evidence for AID expression in the ovary, our data combined to suggest that AID has innate immune functions in addition to its integral roles in creating antibody diversity.
Collapse
Affiliation(s)
- Donna A MacDuff
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
125
|
Henry M, Guétard D, Suspène R, Rusniok C, Wain-Hobson S, Vartanian JP. Genetic editing of HBV DNA by monodomain human APOBEC3 cytidine deaminases and the recombinant nature of APOBEC3G. PLoS One 2009; 4:e4277. [PMID: 19169351 PMCID: PMC2625395 DOI: 10.1371/journal.pone.0004277] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/04/2008] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) DNA is vulnerable to editing by human cytidine deaminases of the APOBEC3 (A3A-H) family albeit to much lower levels than HIV cDNA. We have analyzed and compared HBV editing by all seven enzymes in a quail cell line that does not produce any endogenous DNA cytidine deaminase activity. Using 3DPCR it was possible to show that all but A3DE were able to deaminate HBV DNA at levels from 10−2 to 10−5in vitro, with A3A proving to be the most efficient editor. The amino terminal domain of A3G alone was completely devoid of deaminase activity to within the sensitivity of 3DPCR (∼10−4 to 10−5). Detailed analysis of the dinucleotide editing context showed that only A3G and A3H have strong preferences, notably CpC and TpC. A phylogenic analysis of A3 exons revealed that A3G is in fact a chimera with the first two exons being derived from the A3F gene. This might allow co-expression of the two genes that are able to restrict HIV-1Δvif efficiently.
Collapse
Affiliation(s)
- Michel Henry
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | - Denise Guétard
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | | | - Simon Wain-Hobson
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
126
|
Morisawa T, Marusawa H, Ueda Y, Iwai A, Okazaki IM, Honjo T, Chiba T. Organ-specific profiles of genetic changes in cancers caused by activation-induced cytidine deaminase expression. Int J Cancer 2009; 123:2735-40. [PMID: 18781563 DOI: 10.1002/ijc.23853] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various molecular changes characterizing organ-specific carcinogenesis have been identified in human tumors; however, the molecular mechanisms of the genomic changes specific for each cancer are not well defined. A transgenic (Tg) mouse model with constitutive expression of the nucleotide-editing enzyme, activation-induced cytidine deaminase (AID), develops tumors in various organs as a result of the mutagenic activities of AID. This phenotypic character of AID Tg mice allowed us to analyze the organ-specific genetic changes in tumor-related genes commonly triggered by AID-mediated mutagenesis. Among the 80 AID Tg mice analyzed, 11 mice developed hepatocellular carcinomas, and 7 developed lung cancers. In addition, 1 developed the gastric cancer and 3 developed gastric adenomas. Organ-specific preferences for nucleotide changes were observed in some of the tumor-related genes in each epithelial tissue of the AID Tg mice. Of note, the c-myc and K-ras genes were the preferential targets of the mutagenic activity of AID in lung and stomach cancers, respectively, whereas mutations in the p53 and beta-catenin genes were commonly observed in all 3 organs. Quantitative RT-PCR analyses revealed that alpha-fetoprotein, insulin-like growth factor-2 and cyclin D1 genes were specifically upregulated in HCC, whereas upregulation of the matrix metalloproteinase-7 gene was more marked in lung cancer. Our findings suggest that AID, a DNA mutator that plays a critical role linking inflammation to human cancers, might be involved in the generation of organ-specific genetic diversity in oncogenic pathways during cancer development.
Collapse
Affiliation(s)
- Toshiyuki Morisawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
127
|
Pauklin S, Sernández IV, Bachmann G, Ramiro AR, Petersen-Mahrt SK. Estrogen directly activates AID transcription and function. J Exp Med 2009; 206:99-111. [PMID: 19139166 PMCID: PMC2626679 DOI: 10.1084/jem.20080521] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 12/11/2008] [Indexed: 12/21/2022] Open
Abstract
The immunological targets of estrogen at the molecular, humoral, and cellular level have been well documented, as has estrogen's role in establishing a gender bias in autoimmunity and cancer. During a healthy immune response, activation-induced deaminase (AID) deaminates cytosines at immunoglobulin (Ig) loci, initiating somatic hypermutation (SHM) and class switch recombination (CSR). Protein levels of nuclear AID are tightly controlled, as unregulated expression can lead to alterations in the immune response. Furthermore, hyperactivation of AID outside the immune system leads to oncogenesis. Here, we demonstrate that the estrogen-estrogen receptor complex binds to the AID promoter, enhancing AID messenger RNA expression, leading to a direct increase in AID protein production and alterations in SHM and CSR at the Ig locus. Enhanced translocations of the c-myc oncogene showed that the genotoxicity of estrogen via AID production was not limited to the Ig locus. Outside of the immune system (e.g., breast and ovaries), estrogen induced AID expression by >20-fold. The estrogen response was also partially conserved within the DNA deaminase family (APOBEC3B, -3F, and -3G), and could be inhibited by tamoxifen, an estrogen antagonist. We therefore suggest that estrogen-induced autoimmunity and oncogenesis may be derived through AID-dependent DNA instability.
Collapse
Affiliation(s)
- Siim Pauklin
- DNA Editing Laboratory, Cancer Research UK, Clare Hall Laboratories, South Mimms, EN6 3LD, England, UK
| | | | | | | | | |
Collapse
|
128
|
A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene 2008; 28:469-78. [PMID: 18997814 DOI: 10.1038/onc.2008.415] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation-induced cytidine deaminase (AID), the only enzyme that is known to be able to induce mutations in the human genome, is required for somatic hypermutation and class-switch recombination in B lymphocytes. Recently, we showed that AID is implicated in the pathogenesis of human cancers including hepatitis C virus (HCV)-induced human hepatocellular carcinoma (HCC). In this study, we established a new AID transgenic mouse model (TNAP-AID) in which AID is expressed in cells producing tissue-nonspecific alkaline phosphatase (TNAP), which is a marker of primordial germ cells and immature stem cells, including ES cells. High expression of TNAP was found in the liver of the embryos and adults of TNAP-AID mice. HCC developed in 27% of these mice at the age of approximately 90 weeks. The HCC that developed in TNAP-AID mice expressed alpha-fetoprotein and had deleterious mutations in the tumour suppressor gene Trp53, some of which corresponded to those found in human cancer. In conclusion, TNAP-AID is a mouse model that spontaneously develops HCC, sharing genetic and phenotypic features with human HCC, which develops in the inflamed liver as a result of the accumulation of genetic changes.
Collapse
|
129
|
Abstract
Helicobacter pylori infection causes chronic gastritis, peptic ulcer, and gastric cancer. Colonization of H. pylori in the stomach activates Toll-like and Nod-like receptors to induce not only innate immunity but also adaptive Th1 responses against this organism. Adaptive Th1 response is not sufficient to clear this organism and, as a result, the infection persists. Insufficient adaptive immunity can be explained by poor activation of Toll-like receptors, suppressive effects of bacterial factors, and induction of regulatory T-cell responses. Significant progress in the understanding of innate and adaptive immunity against H. pylori was made during the past year. Recent findings in the fields of vaccines for H. pylori are also reviewed.
Collapse
Affiliation(s)
- Tamara Vorobjova
- Department of Immunology, Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
130
|
Affiliation(s)
- S. Perwez Hussain
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892
| |
Collapse
|
131
|
Endo Y, Marusawa H, Kou T, Nakase H, Fujii S, Fujimori T, Kinoshita K, Honjo T, Chiba T. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology 2008; 135:889-98, 898.e1-3. [PMID: 18691581 DOI: 10.1053/j.gastro.2008.06.091] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/06/2008] [Accepted: 06/05/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activation-induced cytidine deaminase (AID) was originally identified as an inducer of somatic hypermutations in the immunoglobulin gene. We recently revealed that ectopic AID expression serves as a link between the cellular editing machinery and high mutation frequencies, leading to human cancer development. In the current study, we investigated whether AID might contribute to the development of colitis-associated colorectal cancers. METHODS The expression and regulation of AID in association with proinflammatory cytokine stimulation were investigated in cultured colonic cells. Genotoxic activity of AID in colonic cells was analyzed using retroviral system. Immunohistochemistry for AID was carried out on various human colonic tissues specimens. RESULTS Tumor necrosis factor-alpha induced aberrant AID expression via IkappaB kinase-dependent nuclear factor (NF)-kappaB-signaling pathways in human colonic epithelial cells. Moreover, AID expression was also induced in response to the T helper cell 2-driven cytokines interleukin-4 and interleukin-13, which are activated in human inflammatory bowel disease. Aberrant activation of AID in colonic cells preferentially induced genetic mutations in the TP53 gene, whereas there were no nucleotide alterations of the APC gene. Immunohistochemistry revealed enhanced expression of endogenous AID protein not only in the inflamed colonic mucosa of ulcerative colitis patients but also in tumor lesions of colitis-associated colorectal cancers. CONCLUSIONS Our findings indicate that proinflammatory cytokine-mediated aberrant expression of AID in colonic epithelial cells is a genotoxic factor linking inflammation, somatic mutations, and colorectal cancer development.
Collapse
Affiliation(s)
- Yoko Endo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
|
133
|
Aoufouchi S, Faili A, Zober C, D'Orlando O, Weller S, Weill JC, Reynaud CA. Proteasomal degradation restricts the nuclear lifespan of AID. ACTA ACUST UNITED AC 2008; 205:1357-68. [PMID: 18474627 PMCID: PMC2413033 DOI: 10.1084/jem.20070950] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates all postrearrangement processes that diversify the immunoglobulin repertoire by specific deamination of cytidines at the immunoglobulin (Ig) locus. As uncontrolled expression of AID is potentially mutagenic, different types of regulation, particularly nucleocytoplasmic shuttling, restrict the likelihood of AID–deoxyribonucleic acid encounters. We studied additional mechanisms of regulation affecting the stability of the AID protein. No modulation of protein accumulation according to the cell cycle was observed in a Burkitt's lymphoma cell line. In contrast, the half-life of AID was markedly reduced in the nucleus, and this destabilization was accompanied by a polyubiquitination that was revealed in the presence of proteasome inhibitors. The same compartment-specific degradation was observed in activated mouse B cells, and also in a non–B cell line. No specific lysine residues could be linked to this degradation, so it remains unclear whether polyubiquitination proceeds through several alternatives sites or through the protein N terminus. The nuclear-restricted form of AID displayed enhanced mutagenicity at both Ig and non-Ig loci, most notably at TP53, suggesting that modulation of nuclear AID content through proteasomal degradation may represent another level of control of AID activity.
Collapse
Affiliation(s)
- Said Aoufouchi
- Institut National de la Santé et de la Recherche Médicale U783, Développement du Système Immunitaire, and Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
134
|
Kim CJ, Song JH, Cho YG, Cao Z, Kim SY, Nam SW, Lee JY, Park WS. Activation-induced cytidine deaminase expression in gastric cancer. Tumour Biol 2008; 28:333-9. [PMID: 18391550 DOI: 10.1159/000124239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/16/2007] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori increases the risk of gastric cancer development and triggers aberrant expression of activation-induced cytidine deaminase (AID). The goal of the present study was to investigate whether AID expression is involved in the development or progression of gastric cancer and the nuclear expression of p53 protein in cancer cells. We examined the expression pattern of the AID and p53 proteins in 186 gastric adenocarcinomas by immunohistochemistry. In order to investigate the molecular mechanism of AID expression, we also searched for mutations in the AID gene by single-strand conformational polymorphism and sequencing methods. In 186 sporadic gastric cancers, AID expression was detected in the 73 corresponding normal gastric mucosa and in 50 gastric cancers. Statistically, the expression of AID protein was not associated with clinicopathological parameters, including tumor size, location, differentiation and lymph node metastasis (p > 0.05). Interestingly, a significant association was observed between AID and the nuclear expression of p53 (p = 0.0094). Mutational analysis revealed no mutation in the AID gene in the gastric cancers. These results suggest that aberrant expression of the AID protein may contribute to the development of gastric cancers and induce p53 nuclear expression.
Collapse
Affiliation(s)
- Chang Jae Kim
- Department of Pathology, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
135
|
|
136
|
Komori J, Marusawa H, Machimoto T, Endo Y, Kinoshita K, Kou T, Haga H, Ikai I, Uemoto S, Chiba T. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 2008; 47:888-96. [PMID: 18306229 DOI: 10.1002/hep.22125] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Chronic inflammation plays a critical role in oncogenesis in various human organs. Epidemiological studies have demonstrated that patients with primary sclerosing cholangitis have a predisposition to develop cholangiocarcinoma (CC). However, the molecular mechanisms that account for the development of bile duct carcinomas are not well defined. We recently provided evidence that activation-induced cytidine deaminase (AID), a member of the DNA/RNA editing enzyme family, is implicated in human tumorigenesis via its mutagenic activity. We found here that ectopic AID production is induced in response to tumor necrosis factor-alpha (TNF-alpha) stimulation via the IkappaB kinase-dependent nuclear factor-kappaB (NF-kappaB) activation pathway in human cholangiocarcinoma-derived cells. Aberrant expression of AID in biliary cells resulted in the generation of somatic mutations in tumor-related genes, including p53, c-myc, and the promoter region of the INK4A/p16 sequences. In human tissue specimens, real-time reverse transcription polymerase chain reaction (RT-PCR) analyses revealed that AID was increased significantly in 28 of 30 CC tissues (93%), whereas only trace amounts of AID were detected in the normal liver. Immunohistochemistry showed that all of the CC tissue samples examined showed overproduction of endogenous AID protein in cancer cells. Moreover, immunostaining for AID was detectable in 16 of 20 bile epithelia in the tissues underlying primary sclerosing cholangitis. CONCLUSION The proinflammatory cytokine-induced aberrant production of AID might link bile duct inflammation to an enhanced genetic susceptibility to mutagenesis, leading to cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Junji Komori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Dorsett Y, Robbiani DF, Jankovic M, Reina-San-Martin B, Eisenreich TR, Nussenzweig MC. A role for AID in chromosome translocations between c-myc and the IgH variable region. ACTA ACUST UNITED AC 2007; 204:2225-32. [PMID: 17724134 PMCID: PMC2118712 DOI: 10.1084/jem.20070884] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Chromosome translocations between oncogenes and the region spanning the immunoglobulin (Ig) heavy chain (IgH) variable (V), diversity (D), and joining (J) gene segments (Ig V-J(H) region) are found in several mature B cell lymphomas in humans and mice. The breakpoints are frequently adjacent to the recombination signal sequences targeted by recombination activating genes 1 and 2 during antigen receptor assembly in pre-B cells, suggesting that these translocations might be the result of aberrant V(D)J recombination. However, in mature B cells undergoing activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM), duplications or deletions that would necessitate a double-strand break make up 6% of all the Ig V-J(H) region-associated somatic mutations. Furthermore, DNA breaks can be detected at this locus in B cells undergoing SHM. To determine whether SHM might induce c-myc to Ig V-J(H) translocations, we searched for such events in both interleukin (IL) 6 transgenic (IL-6 tg) and AID(-/-) IL-6 tg mice. Here, we report that AID is required for c-myc to Ig V-J(H) translocations induced by IL-6.
Collapse
Affiliation(s)
- Yair Dorsett
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|