101
|
Abstract
The extent to which active matter might be described by effective equilibrium concepts like temperature and pressure is currently being discussed intensely. Here, we study the simplest model, an ideal gas of noninteracting active Brownian particles. While the mechanical pressure exerted onto confining walls has been linked to correlations between particles' positions and their orientations, we show that these correlations are entirely controlled by boundary effects. We also consider a definition of local pressure, which describes interparticle forces in terms of momentum exchange between different regions of the system. We present three pieces of analytical evidence which indicate that such a local pressure exists, and we show that its bulk value differs from the mechanical pressure exerted on the walls of the system. We attribute this difference to the fact that the local pressure in the bulk does not depend on boundary effects, contrary to the mechanical pressure. We carefully examine these boundary effects using a channel geometry, and we show a virial formula for the pressure correctly predicts the mechanical pressure even in finite channels. However, this result no longer holds in more complex geometries, as exemplified for a channel that includes circular obstacles.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Robert L Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
102
|
Slowman AB, Evans MR, Blythe RA. Jamming and Attraction of Interacting Run-and-Tumble Random Walkers. PHYSICAL REVIEW LETTERS 2016; 116:218101. [PMID: 27284675 DOI: 10.1103/physrevlett.116.218101] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 06/06/2023]
Abstract
We study a model of bacterial dynamics where two interacting random walkers perform run-and-tumble motion on a one-dimensional lattice under mutual exclusion and find an exact expression for the probability distribution in the steady state. This stationary distribution has a rich structure comprising three components: a jammed component, where the particles are adjacent and block each other; an attractive component, where the probability distribution for the distance between particles decays exponentially; and an extended component in which the distance between particles is uniformly distributed. The attraction between the particles is sufficiently strong that even in the limit where continuous space is recovered for a finite system, the two walkers spend a finite fraction of time in a jammed configuration. Our results potentially provide a route to understanding the motility-induced phase separation characteristic of active matter from a microscopic perspective.
Collapse
Affiliation(s)
- A B Slowman
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - M R Evans
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - R A Blythe
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
103
|
Prymidis V, Samin S, Filion L. State behaviour and dynamics of self-propelled Brownian squares: a simulation study. SOFT MATTER 2016; 12:4309-4317. [PMID: 27079655 DOI: 10.1039/c6sm00347h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We study the state behaviour of self-propelled and Brownian squares as a function of the magnitude of self-propulsion and density using Brownian dynamics simulations. We find that the system undergoes a transition from a fluid state to phase coexistence with increased self-propulsion and density. Close to the transition we find oscillations of the system between a fluid state and phase coexistence that are caused by the accumulation of forces in the dense phase. Finally, we study the coarsening regime of the system and find super-diffusive behaviour.
Collapse
Affiliation(s)
- Vasileios Prymidis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Sela Samin
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Laura Filion
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
104
|
Winkler RG. Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow. SOFT MATTER 2016; 12:3737-3749. [PMID: 26980630 DOI: 10.1039/c5sm02965a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The dynamical properties of a flexible dumbbell composed of active Brownian particles are analytically analyzed. The dumbbell is considered as a simplified description of a linear active polymer. The two beads are independently propelled in directions which change in a diffusive manner. The relaxation behavior of the internal degree of freedom is tightly coupled to the dumbbell activity. The latter dominates the dynamics for strong propulsion. As is shown, limitations in bond stretching strongly influence the relaxation behavior. Similarly, under shear flow, activity determines the relaxation and tumbling behavior at strong propulsion. Moreover, shear leads to a preferred alignment and consequently to shear thinning. Thereby, a different power-law dependence on the shear rate compared to passive dumbbells under flow is found.
Collapse
Affiliation(s)
- Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
105
|
Abstract
We derive an analytic expression for the distribution of velocities of multiple interacting active particles which we test by numerical simulations. In clear contrast with equilibrium we find that the velocities are coupled to positions. Our model shows that, even for two particles only, the individual velocities display a variance depending on the interparticle separation and the emergence of correlations between the velocities of the particles. When considering systems composed of many particles we find an analytic expression connecting the overall velocity variance to density, at the mean-field level, and to the pair distribution function valid in the limit of small noise correlation times. Finally we discuss the intriguing analogies and main differences between our effective free energy functional and the theoretical scenario proposed so far for phase-separating active particles.
Collapse
|
106
|
Affiliation(s)
| | - Matteo Paoluzzi
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Claudio Maggi
- Dipartimento di Fisica, Universita Sapienza, Rome, Italy
| |
Collapse
|
107
|
Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
108
|
Ai BQ. Ratchet transport powered by chiral active particles. Sci Rep 2016; 6:18740. [PMID: 26795952 PMCID: PMC4726254 DOI: 10.1038/srep18740] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.
Collapse
Affiliation(s)
- Bao-quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
109
|
Szamel G. Theory for the dynamics of dense systems of athermal self-propelled particles. Phys Rev E 2016; 93:012603. [PMID: 26871118 DOI: 10.1103/physreve.93.012603] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 06/05/2023]
Abstract
We present a derivation of a recently proposed theory for the time dependence of density fluctuations in stationary states of strongly interacting, athermal, self-propelled particles. The derivation consists of two steps. First, we start from the equation of motion for the joint distribution of particles' positions and self-propulsions and we integrate out the self-propulsions. In this way we derive an approximate, many-particle evolution equation for the probability distribution of the particles' positions. Second, we use this evolution equation to describe the time dependence of steady-state density correlations. We derive a memory function representation of the density correlation function and then we use a factorization approximation to obtain an approximate expression for the memory function. In the final equation of motion for the density correlation function the nonequilibrium character of the active system manifests itself through the presence of a new steady-state correlation function that quantifies spatial correlations of the velocities of the particles. This correlation function enters into the frequency term, and thus it describes the dependence of the short-time dynamics on the properties of the self-propulsions. More importantly, the correlation function of particles' velocities enters into the vertex of the memory function and through the vertex it modifies the long-time glassy dynamics.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80525, USA and Laboratoire Charles Coulomb, UMR 5221 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
110
|
Marini Bettolo Marconi U, Maggi C. Towards a statistical mechanical theory of active fluids. SOFT MATTER 2015; 11:8768-8781. [PMID: 26387914 DOI: 10.1039/c5sm01718a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a stochastic description of a model of N mutually interacting active particles in the presence of external fields and characterize its steady state behavior in the absence of currents. To reproduce the effects of the experimentally observed persistence of the trajectories of the active particles we consider a Gaussian force having a non-vanishing correlation time τ, whose finiteness is a measure of the activity of the system. With these ingredients we show that it is possible to develop a statistical mechanical approach similar to the one employed in the study of equilibrium liquids and to obtain the explicit form of the many-particle distribution function by means of the multidimensional unified colored noise approximation. Such a distribution plays a role analogous to the Gibbs distribution in equilibrium statistical mechanics and provides complete information about the microscopic state of the system. From here we develop a method to determine the one- and two-particle distribution functions in the spirit of the Born-Green-Yvon (BGY) equations of equilibrium statistical mechanics. The resulting equations which contain extra-correlations induced by the activity allow us to determine the stationary density profiles in the presence of external fields, the pair correlations and the pressure of active fluids. In the low density regime we obtained the effective pair potential ϕ(r) acting between two isolated particles separated by a distance, r, showing the existence of an effective attraction between them induced by activity. Based on these results, in the second half of the paper we propose a mean field theory as an approach simpler than the BGY hierarchy and use it to derive a van der Waals expression of the equation of state.
Collapse
Affiliation(s)
- Umberto Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, 62032, Camerino, INFN Perugia, Italy.
| | - Claudio Maggi
- Dipartimento di Fisica, Università di Roma Sapienza, I-00185, Rome, Italy
| |
Collapse
|