101
|
Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions. Nat Commun 2017; 8:15355. [PMID: 28513602 PMCID: PMC5442326 DOI: 10.1038/ncomms15355] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/23/2017] [Indexed: 12/13/2022] Open
Abstract
Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5′-AGCGA-3′ tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5′-AGCGA-3′ and 5′-GGG-3′ repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development. DNA tetrahelical structures such as G-quadruplexes are known to play important roles in DNA replication and repair. Here the authors present the structure of 5′-AGCGA-3′-quadruplexes enriched in genetic regulatory regions.
Collapse
|
102
|
Wang J, Fang R, Hou J, Zhang H, Tian Y, Wang H, Jiang L. Oscillatory Reaction Induced Periodic C-Quadruplex DNA Gating of Artificial Ion Channels. ACS NANO 2017; 11:3022-3029. [PMID: 28226213 DOI: 10.1021/acsnano.6b08727] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many biological ion channels controlled by biochemical reactions have autonomous and periodic gating functions, which play important roles in continuous mass transport and signal transmission in living systems. Inspired by these functional biological ion channel systems, here we report an artificial self-oscillating nanochannel system that can autonomously and periodically control its gating process under constant conditions. The system is constructed by integrating a chemical oscillator, consisting of BrO3-, Fe(CN)64-, H+, and SO32-, into a synthetic proton-sensitive nanochannel modified with C-quadruplex (C4) DNA motors. The chemical oscillator, containing H+-producing and H+-consuming reactions, can cyclically drive conformational changes of the C4-DNA motors on the channel wall between random coil and folded i-motif structures, thus leading to autonomous gating of the nanochannel between open and closed states. The autonomous gating processes are confirmed by periodic high-low ionic current oscillations of the channel monitored under constant reaction conditions. The utilization of a chemical oscillator integrated with DNA molecules represents a method to directly convert chemical energy of oscillating reactions to kinetic energy of conformational changes of the artificial nanochannels and even to achieve diverse autonomous gating functions in artificial nanofluidic devices.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Ruochen Fang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Jue Hou
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
103
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
104
|
Li Y, Syed J, Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem Biol 2016; 23:1325-1333. [DOI: 10.1016/j.chembiol.2016.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
|
105
|
Kim BG, Chalikian TV. Thermodynamic linkage analysis of pH-induced folding and unfolding transitions of i-motifs. Biophys Chem 2016; 216:19-22. [DOI: 10.1016/j.bpc.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
|
106
|
Li H, Hai J, Zhou J, Yuan G. The formation and characteristics of the i-motif structure within the promoter of the c-myb proto-oncogene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:625-632. [PMID: 27487467 DOI: 10.1016/j.jphotobiol.2016.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
C-myb proto-oncogene is a potential therapeutic target for some human solid tumors and leukemias. A long cytosine-rich sequence, which locates the downstream of the transcription initiation site, is demonstrated to fold into an intramolecular i-motif DNA using electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. Effects of factors, including the pH value, the number of C:C(+) dimers, the concentration of buffer, the molecular crowding condition, and the coexistence of the complementary DNA, on the formation and the structural stability of the i-motif DNA are systematically studied. We have demonstrated that the i-motif folding in the c-myb promoter could be accelerated upon synergistic physiological stimuli including intracellular molecular crowding and low pH values, as well as the large number of the i-motif C:C(+) dimers. Meanwhile, various inputs, such as acids/bases and metal ions, have exhibited their abilities in controlling the conformational switch of the c-myb GC-rich DNA. Acidic pH values and the presence of K(+) ions can induce the dissociation of the double helix. Our present strategy can greatly extend the potential usages of i-motif DNA molecules with specific sequences as conformational switch-controlled devices. Moreover, this work demonstrates the superiority of CD spectroscopy associated with ESI-MS as a rapid, more cost-effective and sensitive structural change responsive method in the research of DNA conformational switching.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada.
| | - Jinhui Hai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
107
|
Fujii T, Sugimoto N. Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Phys Chem Chem Phys 2016; 17:16719-22. [PMID: 26058487 DOI: 10.1039/c5cp02794b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stability of i-motif structures at neutral pH is of interest due to the potential of these structures to impact gene expression. A systematic investigation of loop sequence and length revealed that certain loop nucleobases stabilize i-motif quadruplexes.
Collapse
Affiliation(s)
- Taiga Fujii
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
108
|
Xu B, Devi G, Shao F. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org Biomol Chem 2016; 13:5646-51. [PMID: 25886653 DOI: 10.1039/c4ob02646b] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The two important epigenetic markers in the human genome, 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC), are involved in gene regulation processes. As a major epigenetic target, cytosines in a C-rich DNA sequence were substituted with mC and hmC to investigate the thermal stability and pH sensitivity of the corresponding i-motifs. Circular Dichroism (CD) studies indicate the formation of i-motifs at acidic pH (<6.5) for mC- and hmC-modified DNA sequences. Thermal denaturation results suggest that DNA i-motifs are stabilized when modified with one or two mCs. However, hypermethylation with mC and single modification with hmC cause destabilization of the structure. A biomimetic crowding agent does not alter the stability effect trends resulting from mC and hmC modifications, though the corresponding i-motifs show elevated melting temperatures without significant changes in pKa values.
Collapse
Affiliation(s)
- Baochang Xu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | | | | |
Collapse
|
109
|
Greco ML, Folini M, Sissi C. Double stranded promoter region of BRAF undergoes to structural rearrangement in nearly physiological conditions. FEBS Lett 2015; 589:2117-23. [DOI: 10.1016/j.febslet.2015.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
110
|
Lannes L, Halder S, Krishnan Y, Schwalbe H. Tuning the pH Response of i-Motif DNA Oligonucleotides. Chembiochem 2015; 16:1647-56. [PMID: 26032298 DOI: 10.1002/cbic.201500182] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Cytosine-rich single-stranded DNA oligonucleotides are able to adopt an i-motif conformation, a four-stranded structure, near a pH of 6. This unique pH-dependent conformational switch is reversible and hence can be controlled by changing the pH. Here, we show that the pH response range of the human telomeric i-motif can be shifted towards more basic pH values by introducing 5-methylcytidines (5-MeC) and towards more acidic pH values by introducing 5-bromocytidines (5-BrC). No thermal destabilisation was observed in these chemically modified i-motif sequences. The time required to attain the new conformation in response to sudden pH changes was slow for all investigated sequences but was found to be ten times faster in the 5-BrC derivative of the i-motif.
Collapse
Affiliation(s)
- Laurie Lannes
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main (Germany)
| | - Saheli Halder
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065 (India)
| | - Yamuna Krishnan
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065 (India).,Department of Chemistry, University of Chicago, E305, GCIS, 929 E, 57th Street, Chicago, IL 60637 (USA)
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main (Germany).
| |
Collapse
|
111
|
Reilly SM, Lyons DF, Wingate SE, Wright RT, Correia JJ, Jameson DM, Wadkins RM. Folding and hydrodynamics of a DNA i-motif from the c-MYC promoter determined by fluorescent cytidine analogs. Biophys J 2015; 107:1703-11. [PMID: 25296324 DOI: 10.1016/j.bpj.2014.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022] Open
Abstract
The four-stranded i-motif (iM) conformation of cytosine-rich DNA has importance to a wide variety of biochemical systems that range from their use in nanomaterials to potential roles in oncogene regulation. The iM structure is formed at slightly acidic pH, where hemiprotonation of cytosine results in a stable C-C(+) basepair. Here, we performed fundamental studies to examine iM formation from a C-rich strand from the promoter of the human c-MYC gene. We used a number of biophysical techniques to characterize both the hydrodynamic properties and folding kinetics of a folded iM. Our hydrodynamic studies using fluorescence anisotropy decay and analytical ultracentrifugation show that the iM structure has a compact size in solution and displays the rigidity of a double strand. By studying the rates of circular dichroism spectral changes and quenching of fluorescent cytidine analogs, we also established a mechanism for the folding of a random coil oligo into the iM. In the course of determining this folding pathway, we established that the fluorescent dC analogs tC° and PdC can be used to monitor individual residues of an iM structure and to determine the pKa of an iM. We established that the C-C(+) hydrogen bonding of certain bases initiates the folding of the iM structure. We also showed that substitutions in the loop regions of iMs give a distinctly different kinetic signature during folding compared with bases that are intercalated. Our data reveal that the iM passes through a distinct intermediate form between the unfolded and folded forms. Taken together, our results lay the foundation for using fluorescent dC analogs to follow structural changes during iM formation. Our technique may also be useful for examining folding and structural changes in more complex iMs.
Collapse
Affiliation(s)
- Samantha M Reilly
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
| | - Daniel F Lyons
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara E Wingate
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
| | - Robert T Wright
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - John J Correia
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Randy M Wadkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi.
| |
Collapse
|
112
|
Nesterova IV, Elsiddieg SO, Nesterov EE. A dual input DNA-based molecular switch. MOLECULAR BIOSYSTEMS 2015; 10:2810-4. [PMID: 25099914 DOI: 10.1039/c4mb00363b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have designed and characterized a DNA-based molecular switch which processes two physiologically relevant inputs: pH (i.e. alkalinisation) and enzymatic activity, and generates a chemical output (in situ synthesized oligonucleotide). The design, based on allosteric interactions between i-motif and hairpin stem within the DNA molecule, addresses such critical physiological system parameters as molecular simplicity, tunability, orthogonality of the two input sensing domains, and compatibility with intracellular operation/delivery.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
113
|
Kikuta K, Piao H, Brazier J, Taniguchi Y, Onizuka K, Nagatsugi F, Sasaki S. Stabilization of the i-motif structure by the intra-strand cross-link formation. Bioorg Med Chem Lett 2015; 25:3307-10. [PMID: 26105193 DOI: 10.1016/j.bmcl.2015.05.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 02/06/2023]
Abstract
The i-motif structures are formed by oligonucleotides containing cytosine tracts under acidic conditions. The folding of the i-motif under physiological conditions is of great interest because of its biological role. In this study, we investigated the effect of the intra-strand cross-link on the stability of the i-motif structure. The 4-vinyl-substituted analog of thymidine (T-vinyl) was incorporated into the 5'-end of the human telomere complementary strand, which formed the intra-strand cross-link with the internal adenine. The intra-strand cross-linked i-motif displayed CD spectra similar to that of the natural i-motif at acidic pH, which was transformed into a random coil with the increasing pH. The pH midpoint for the transition from the i-motif to random coil increased from pH 6.1 for the natural one to pH 6.8 for the cross-linked one. The thermodynamic parameters were obtained by measuring the thermal melting behaviors by CD and UV, and it was determined that the intra-strand cross-linked i-motif is stabilized due to a favorable entropy effect. Thus, this study has clearly indicated the validity of the intra-strand cross-linking for stabilization of the i-motif structure.
Collapse
Affiliation(s)
- Kenji Kikuta
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Haishun Piao
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - John Brazier
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
114
|
Školáková P, Foldynová-Trantírková S, Bednářová K, Fiala R, Vorlíčková M, Trantírek L. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA. Nucleic Acids Res 2015; 43:4733-45. [PMID: 25855805 PMCID: PMC4482068 DOI: 10.1093/nar/gkv296] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10–15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5′-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5′-C-rich and 3′-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model.
Collapse
Affiliation(s)
- Petra Školáková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska, 135, 612 65 Brno, Czech Republic
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic Institute of Parasitology, Academy of Sciences of the Czech Republic, Branisovska, 31, 375 05 Ceske Budejovice, Czech Republic
| | - Klára Bednářová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska, 135, 612 65 Brno, Czech Republic Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Michaela Vorlíčková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska, 135, 612 65 Brno, Czech Republic Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| |
Collapse
|
115
|
Tateishi-Karimata H, Nakano M, Pramanik S, Tanaka S, Sugimoto N. i-Motifs are more stable than G-quadruplexes in a hydrated ionic liquid. Chem Commun (Camb) 2015; 51:6909-12. [PMID: 25738708 DOI: 10.1039/c5cc00666j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thermodynamic analyses and molecular dynamics calculations demonstrated that i-motifs in a hydrated ionic liquid of choline dihydrogen phosphate (choline dhp) were more stable than G-quadruplexes due to choline ion binding to loop regions in the i-motifs. Interestingly, the i-motifs formed even at physiological pH in the choline dhp-containing solution.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamachi, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
116
|
Reilly SM, Morgan RK, Brooks TA, Wadkins RM. Effect of interior loop length on the thermal stability and pK(a) of i-motif DNA. Biochemistry 2015; 54:1364-70. [PMID: 25619229 DOI: 10.1021/bi5014722] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The four-stranded i-motif (iM) conformation of cytosine-rich DNA is important in a wide variety of biochemical systems ranging from its use in nanomaterials to a potential role in oncogene regulation. An iM is stabilized by acidic pH that allows hemiprotonated cytidines to form a C·C(+) base pair. Fundamental studies that aim to understand how the lengths of loops connecting the protonated C·C(+) pairs affect intramolecular iM physical properties are described here. We characterized both the thermal stability and the pK(a) of intramolecular iMs with differing loop lengths, in both dilute solutions and solutions containing molecular crowding agents. Our results showed that intramolecular iMs with longer central loops form at pHs and temperatures higher than those of iMs with longer outer loops. Our studies also showed that increases in thermal stability of iMs when molecular crowding agents are present are dependent on the loop that is lengthened. However, the increase in pK(a) for iMs when molecular crowding agents are present is insensitive to loop length. Importantly, we also determined the proton activity of solutions containing high concentrations of molecular crowding agents to ascertain whether the increase in pK(a) of an iM is caused by alteration of this activity in buffered solutions. We determined that crowding agents alone increase the apparent pK(a) of a number of small molecules as well as iMs but that increases to iM pK(a) were greater than that expected from a shift in proton activity.
Collapse
Affiliation(s)
- Samantha M Reilly
- Department of Chemistry and Biochemistry, University of Mississippi , University, Mississippi 38677, United States
| | | | | | | |
Collapse
|
117
|
Mata G, Luedtke NW. Fluorescent Probe for Proton-Coupled DNA Folding Revealing Slow Exchange of i-Motif and Duplex Structures. J Am Chem Soc 2015; 137:699-707. [DOI: 10.1021/ja508741u] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guillaume Mata
- Department of Chemistry, University of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| |
Collapse
|
118
|
Huang H, Hong X, Liu F, Li N. A simple approach to study the conformational switching of i-motif DNA by fluorescence anisotropy. Analyst 2015; 140:5987-91. [DOI: 10.1039/c5an01011j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fluorescence anisotropy is a simple, reliable and sensitive approach to study the conformational switching of the i-motif structure.
Collapse
Affiliation(s)
- Hongduan Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xinying Hong
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
119
|
Takahashi S, Sugimoto N. Pressure-dependent formation of i-motif and G-quadruplex DNA structures. Phys Chem Chem Phys 2015; 17:31004-10. [DOI: 10.1039/c5cp04727g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pressure is an important physical stimulus that can influence the fate of cells by causing structural changes in biomolecules such as DNA.
Collapse
Affiliation(s)
- S. Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
| | - N. Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
120
|
Perlíková P, Karlsen KK, Pedersen EB, Wengel J. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability. Chembiochem 2014; 15:146-56. [PMID: 24501777 DOI: 10.1002/cbic.201300567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of two new phosphoramidite building blocks for the incorporation of 5-(pyren-1-yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene-modified nucleobase component were found to destabilize an i-motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene-modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene-modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady-state fluorescence emission studies of oligonucleotides containing pyrene-modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.
Collapse
|
121
|
Amato J, Iaccarino N, Randazzo A, Novellino E, Pagano B. Noncanonical DNA Secondary Structures as Drug Targets: the Prospect of the i-Motif. ChemMedChem 2014; 9:2026-30. [DOI: 10.1002/cmdc.201402153] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 11/06/2022]
|
122
|
Abstract
CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this structure can serve as the stem of one-dimensional nanowires, and a four-strand stem can provide a new basis for three-dimensional DNA structures such as pillars. By sacrificing some accuracy in assembly, we used these properties to prepare the first fast-responding pure DNA supramolecular hydrogel. This hydrogel does not swell and cannot encapsulate small molecules. These unique properties could lead to new developments in smart materials based on DNA assembly and support important applications in fields such as tissue engineering. We expect that DNA nanotechnology will continue to develop rapidly. At a fundamental level, further studies should lead to greater understanding of the energy transformation and material transportation mechanisms at the nanometer scale. In terms of applications, we expect that many of these elegant molecular devices will soon be used in vivo. These further studies could demonstrate the power of DNA nanotechnology in biology, material science, chemistry, and physics.
Collapse
Affiliation(s)
- Yuanchen Dong
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
123
|
Nesterova IV, Nesterov EE. Rational Design of Highly Responsive pH Sensors Based on DNA i-Motif. J Am Chem Soc 2014; 136:8843-6. [DOI: 10.1021/ja501859w] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina V. Nesterova
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Evgueni E. Nesterov
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
124
|
Day HA, Pavlou P, Waller ZAE. i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 2014; 22:4407-18. [PMID: 24957878 DOI: 10.1016/j.bmc.2014.05.047] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine-cytosine(+) base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.
Collapse
Affiliation(s)
- Henry A Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Pavlos Pavlou
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
125
|
Kang HJ, Kendrick S, Hecht SM, Hurley LH. The transcriptional complex between the BCL2 i-motif and hnRNP LL is a molecular switch for control of gene expression that can be modulated by small molecules. J Am Chem Soc 2014; 136:4172-85. [PMID: 24559432 PMCID: PMC3985447 DOI: 10.1021/ja4109352] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
In a companion paper (DOI: 10.021/ja410934b) we demonstrate that the C-rich
strand of the cis-regulatory element in the BCL2 promoter element
is highly dynamic in nature and can form either an i-motif or a flexible
hairpin. Under physiological conditions these two secondary DNA structures
are found in an equilibrium mixture, which can be shifted by the addition
of small molecules that trap out either the i-motif (IMC-48) or the
flexible hairpin (IMC-76). In cellular experiments we demonstrate
that the addition of these molecules has opposite effects on BCL2 gene expression and furthermore that these effects
are antagonistic. In this contribution we have identified a transcriptional
factor that recognizes and binds to the BCL2 i-motif
to activate transcription. The molecular basis for the recognition
of the i-motif by hnRNP LL is determined, and we demonstrate that
the protein unfolds the i-motif structure to form a stable single-stranded
complex. In subsequent experiments we show that IMC-48 and IMC-76
have opposite, antagonistic effects on the formation of the hnRNP
LL–i-motif complex as well as on the transcription factor occupancy
at the BCL2 promoter. For the first time we propose
that the i-motif acts as a molecular switch that controls gene expression
and that small molecules that target the dynamic equilibrium of the
i-motif and the flexible hairpin can differentially modulate gene
expression.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- College of Pharmacy and §BIO5 Institute, University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | |
Collapse
|
126
|
Bhavsar-Jog YP, Van Dornshuld E, Brooks TA, Tschumper GS, Wadkins RM. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry 2014; 53:1586-94. [PMID: 24564458 PMCID: PMC3985701 DOI: 10.1021/bi401523b] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA
sequences with the potential to form secondary structures such
as i-motifs (iMs) and G-quadruplexes (G4s) are abundant in the promoters
of several oncogenes and, in some instances, are known to regulate
gene expression. Recently, iM-forming DNA strands have also been employed
as functional units in nanodevices, ranging from drug delivery systems
to nanocircuitry. To understand both the mechanism of gene regulation
by iMs and how to use them more efficiently in nanotechnological applications,
it is essential to have a thorough knowledge of factors that govern
their conformational states and stabilities. Most of the prior work
to characterize the conformational dynamics of iMs have been done
with iM-forming synthetic constructs like tandem (CCT)n repeats and in standard dilute buffer systems. Here,
we present a systematic study on the consequences of epigenetic modifications,
molecular crowding, and degree of hydration on the stabilities of
an iM-forming sequence from the promoter of the c-myc gene. Our results indicate that 5-hydroxymethylation of cytosines
destabilized the iMs against thermal and pH-dependent melting; contrarily,
5-methylcytosine modification stabilized the iMs. Under molecular
crowding conditions (PEG-300, 40% w/v), the thermal stability of iMs
increased by ∼10 °C, and the pKa was raised from 6.1 ± 0.1 to 7.0 ± 0.1. Lastly, the iM’s
stability at varying degrees of hydration in 1,2-dimethoxyethane,
2-methoxyethanol, ethylene glycol, 1,3-propanediol, and glycerol cosolvents
indicated that the iMs are stabilized by dehydration because of the
release of water molecules when folded. Our results highlight the
importance of considering the effects of epigenetic modifications,
molecular crowding, and the degree of hydration on iM structural dynamics.
For example, the incorporation of 5-methylycytosines and 5-hydroxymethlycytosines
in iMs could be useful for fine-tuning the pH- or temperature-dependent
folding/unfolding of an iM. Variations in the degree of hydration
of iMs may also provide an additional control of the folded/unfolded
state of iMs without having to change the pH of the surrounding matrix.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Mississippi , University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
127
|
Sugimoto N. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:205-73. [PMID: 24380597 DOI: 10.1016/b978-0-12-800046-5.00008-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
128
|
Benabou S, Aviñó A, Eritja R, González C, Gargallo R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 2014. [DOI: 10.1039/c4ra02129k] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest research on fundamental aspects of i-motif structures is reviewed with special attention to their hypothetical rolein vivo.
Collapse
Affiliation(s)
- S. Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| | - A. Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - R. Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - C. González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid, Spain
| | - R. Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| |
Collapse
|
129
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
130
|
Tateishi-Karimta H, Sugimoto N. Control of stability and structure of nucleic acids using cosolutes. Methods 2013; 67:151-8. [PMID: 24270066 DOI: 10.1016/j.ymeth.2013.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022] Open
Abstract
The stabilities, structures, and functions of nucleic acids are responsive to surrounding conditions. Living cells contain biomolecules, including nucleic acids, proteins, polysaccharides, and other soluble and insoluble low-molecular weight components, that occupy a significant fraction of the cellular volume (up to 40%), resulting in a highly crowded intracellular environment. We have proven that conditions that mimic features of this intra-cellular environment alter the physical properties affect the stability, structure, and function of nucleic acids. The ability to control structure of nucleic acids by mimicking intra-cellular conditions will be useful in nanotechnology applications of nucleic acids. This paper describes methods that can be used to analyze quantitatively the intra-cellular environment effects caused by cosolutes on nucleic acid structures and to regulate properties of nucleic acids using cosolutes.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimta
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
131
|
Rajendran A, Endo M, Sugiyama H. State-of-the-Art High-Speed Atomic Force Microscopy for Investigation of Single-Molecular Dynamics of Proteins. Chem Rev 2013; 114:1493-520. [DOI: 10.1021/cr300253x] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Arivazhagan Rajendran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
132
|
Takahashi S, Sugimoto N. Effect of pressure on thermal stability of g-quadruplex DNA and double-stranded DNA structures. Molecules 2013; 18:13297-319. [PMID: 24172240 PMCID: PMC6270079 DOI: 10.3390/molecules181113297] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/05/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022] Open
Abstract
Pressure is a thermodynamic parameter that can induce structural changes in biomolecules due to a volumetric decrease. Although most proteins are denatured by pressure over 100 MPa because they have the large cavities inside their structures, the double-stranded structure of DNA is stabilized or destabilized only marginally depending on the sequence and salt conditions. The thermal stability of the G-quadruplex DNA structure, an important non-canonical structure that likely impacts gene expression in cells, remarkably decreases with increasing pressure. Volumetric analysis revealed that human telomeric DNA changed by more than 50 cm3 mol-1 during the transition from a random coil to a quadruplex form. This value is approximately ten times larger than that for duplex DNA under similar conditions. The volumetric analysis also suggested that the formation of G-quadruplex DNA involves significant hydration changes. The presence of a cosolute such as poly(ethylene glycol) largely repressed the pressure effect on the stability of G-quadruplex due to alteration in stabilities of the interactions with hydrating water. This review discusses the importance of local perturbations of pressure on DNA structures involved in regulation of gene expression and highlights the potential for application of high-pressure chemistry in nucleic acid-based nanotechnology.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; E-Mail:
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; E-Mail:
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-774-98-2580; Fax: +81-774-98-2585
| |
Collapse
|
133
|
Cui J, Waltman P, Le VH, Lewis EA. The effect of molecular crowding on the stability of human c-MYC promoter sequence I-motif at neutral pH. Molecules 2013; 18:12751-67. [PMID: 24132198 PMCID: PMC6270392 DOI: 10.3390/molecules181012751] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that c-MYC promoter sequences can form stable i-motifs in acidic solution (pH 4.5-5.5). In terms of drug targeting, the question is whether c-MYC promoter sequence i-motifs will exist in the nucleus at neutral pH. In this work, we have investigated the stability of a mutant c-MYC i-motif in solutions containing a molecular crowding agent. The crowded nuclear environment was modeled by the addition of up to 40% w/w polyethylene glycols having molecular weights up to 12,000 g/mol. CD and DSC were used to establish the presence and stability of c-MYC i-motifs in buffer solutions over the pH range 4 to 7. We have shown that the c-MYC i-motif can exist as a stable structure at pH values as high as 6.7 in crowded solutions. Generic dielectric constant effects, e.g., a shift in the pKa of cytosine by more than 2 units (e.g., 4.8 to 7.0), or the formation of non-specific PEG/DNA complexes appear to contribute insignificantly to i-motif stabilization. Molecular crowding, largely an excluded volume effect of added PEG, having a molecular weight in excess of 1,000 g/mol, appears to be responsible for stabilizing the more compact i-motif over the random coil at higher pH values.
Collapse
Affiliation(s)
- Jingjing Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
134
|
Rajendran A, Endo M, Hidaka K, Tran PLT, Mergny JL, Sugiyama H. Controlling the stoichiometry and strand polarity of a tetramolecular G-quadruplex structure by using a DNA origami frame. Nucleic Acids Res 2013; 41:8738-47. [PMID: 23863846 PMCID: PMC3794576 DOI: 10.1093/nar/gkt592] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Guanine-rich oligonucleotides often show a strong tendency to form supramolecular architecture, the so-called G-quadruplex structure. Because of the biological significance, it is now considered to be one of the most important conformations of DNA. Here, we describe the direct visualization and single-molecule analysis of the formation of a tetramolecular G-quadruplex in KCl solution. The conformational changes were carried out by incorporating two duplex DNAs, with G-G mismatch repeats in the middle, inside a DNA origami frame and monitoring the topology change of the strands. In the absence of KCl, incorporated duplexes had no interaction and laid parallel to each other. Addition of KCl induced the formation of a G-quadruplex structure by stably binding the duplexes to each other in the middle. Such a quadruplex formation allowed the DNA synapsis without disturbing the duplex regions of the participating sequences, and resulted in an X-shaped structure that was monitored by atomic force microscopy. Further, the G-quadruplex formation in KCl solution and its disruption in KCl-free buffer were analyzed in real-time. The orientation of the G-quadruplex is often difficult to control and investigate using traditional biochemical methods. However, our method using DNA origami could successfully control the strand orientations, topology and stoichiometry of the G-quadruplex.
Collapse
Affiliation(s)
- Arivazhagan Rajendran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan, CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan and University of Bordeaux, INSERM, U869, ARNA Laboratory, 2 rue Robert Escarpit, Pessac, F-33607, France
| | | | | | | | | | | |
Collapse
|
135
|
Affiliation(s)
- Yuhao Du
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| |
Collapse
|
136
|
Vummidi BR, Alzeer J, Luedtke NW. Fluorescent Probes for G-Quadruplex Structures. Chembiochem 2013; 14:540-58. [DOI: 10.1002/cbic.201200612] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 12/19/2022]
|
137
|
Choi J, Majima T. Reversible conformational switching of i-motif DNA studied by fluorescence spectroscopy. Photochem Photobiol 2013; 89:513-22. [PMID: 23311444 DOI: 10.1111/php.12042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/04/2013] [Indexed: 12/19/2022]
Abstract
Non-B DNAs, which can form unique structures other than double helix of B-DNA, have attracted considerable attention from scientists in various fields including biology, chemistry and physics etc. Among them, i-motif DNA, which is formed from cytosine (C)-rich sequences found in telomeric DNA and the promoter region of oncogenes, has been extensively investigated as a signpost and controller for the oncogene expression at the transcription level and as a promising material in nanotechnology. Fluorescence techniques such as fluorescence resonance energy transfer (FRET) and the fluorescence quenching are important for studying DNA and in particular for the visualization of reversible conformational switching of i-motif DNA that is triggered by the protonation. Here, we review the latest studies on the conformational dynamics of i-motif DNA as well as the application of FRET and fluorescence quenching techniques to the visualization of reversible conformational switching of i-motif DNA in nano-biotechnology.
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| | | |
Collapse
|
138
|
Tan ZJ, Chen SJ. Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 2013; 103:827-36. [PMID: 22947944 DOI: 10.1016/j.bpj.2012.06.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 12/28/2022] Open
Abstract
RNAs are negatively charged molecules that reside in cellular environments with macromolecular crowding. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the effect of confinement on ion-mediated RNA structural collapse for a simple model system. We find that for both Na(+) and Mg(2+), the ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. This enhancement of ion efficiency is attributed to the decreased electrostatic free-energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.
Collapse
Affiliation(s)
- Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People's Republic of China.
| | | |
Collapse
|
139
|
Kumar V, Kesavan V. Acyclic butyl nucleic acid (BuNA): a novel scaffold for A-switch. RSC Adv 2013. [DOI: 10.1039/c3ra41255e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
140
|
Escaja N, Viladoms J, Garavís M, Villasante A, Pedroso E, González C. A minimal i-motif stabilized by minor groove G:T:G:T tetrads. Nucleic Acids Res 2012; 40:11737-47. [PMID: 23042679 PMCID: PMC3526289 DOI: 10.1093/nar/gks911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The repetitive DNA sequences found at telomeres and centromeres play a crucial role in the structure and function of eukaryotic chromosomes. This role may be related to the tendency observed in many repetitive DNAs to adopt non-canonical structures. Although there is an increasing recognition of the importance of DNA quadruplexes in chromosome biology, the co-existence of different quadruplex-forming elements in the same DNA structure is still a matter of debate. Here we report the structural study of the oligonucleotide d(TCGTTTCGT) and its cyclic analog d<pTCGTTTCGTT>. Both sequences form dimeric quadruplex structures consisting of a minimal i-motif capped, at both ends, by a slipped minor groove-aligned G:T:G:T tetrad. These mini i-motifs, which do not exhibit the characteristic CD spectra of other i-motif structures, can be observed at neutral pH, although they are more stable under acidic conditions. This finding is particularly relevant since these oligonucleotide sequences do not contain contiguous cytosines. Importantly, these structures resemble the loop moiety adopted by an 11-nucleotide fragment of the conserved centromeric protein B (CENP-B) box motif, which is the binding site for the CENP-B.
Collapse
Affiliation(s)
- Núria Escaja
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
141
|
Intramolecular folding in human ILPR fragment with three C-rich repeats. PLoS One 2012; 7:e39271. [PMID: 22761750 PMCID: PMC3382603 DOI: 10.1371/journal.pone.0039271] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br(2) footprinting experiments on a mixture of the ILPR-I3 and a 5'-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures.
Collapse
|
142
|
Beckford SJ, Dixon DW. Molecular Dynamics of Anthraquinone DNA Intercalators with Polyethylene Glycol Side Chains. J Biomol Struct Dyn 2012; 29:1065-80. [DOI: 10.1080/073911012010525031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
143
|
Pramanik S, Nagatoishi S, Sugimoto N. DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chem Commun (Camb) 2012; 48:4815-7. [PMID: 22456442 DOI: 10.1039/c2cc30622k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In an equimolar ratio the human telomeric oligonucleotides d[AGGG(TTAGGG)(3)] and d[(CCCTAA)(3)CCCT] formed mixed structures of duplex and tetraplex in bis(2-ethylhexyl)sulfosuccinate reverse micelles; only the duplex was observed in aqueous buffer. This finding suggests that heterogeneous confined media in the cell nucleus might induce a significant fraction of the telomeric region of genomic DNA to adopt non-canonical tetraplex structure.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | |
Collapse
|
144
|
Bonnet R, Murat P, Spinelli N, Defrancq E. Click–click chemistry on a peptidic scaffold for easy access to tetrameric DNA structures. Chem Commun (Camb) 2012; 48:5992-4. [DOI: 10.1039/c2cc32010j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
145
|
Wilcox JL, Ahluwalia AK, Bevilacqua PC. Charged nucleobases and their potential for RNA catalysis. Acc Chem Res 2011; 44:1270-9. [PMID: 21732619 DOI: 10.1021/ar2000452] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catalysis in living cells is carried out by both proteins and RNA. Protein enzymes have been known for over 200 years, but RNA enzymes, or "ribozymes", were discovered only 30 years ago. Developing insight into RNA enzyme mechanisms is invaluable for better understanding both extant biological catalysis as well as the primitive catalysis envisioned in an early RNA-catalyzed life. Natural ribozymes include large RNAs such as the group I and II introns; small RNAs such as the hepatitis delta virus and the hairpin, hammerhead, VS, and glmS ribozymes; and the RNA portion of the ribosome and spliceosome. RNA enzymes use many of the same catalytic strategies as protein enzymes, but do so with much simpler side chains. Among these strategies are metal ion, general acid-base, and electrostatic catalysis. In this Account, we examine evidence for participation of charged nucleobases in RNA catalysis. Our overall approach is to integrate direct measurements on catalytic RNAs with thermodynamic studies on oligonucleotide model systems. The charged amino acids make critical contributions to the mechanisms of nearly all protein enzymes. Ionized nucleobases should be critical for RNA catalysis as well. Indeed, charged nucleobases have been implicated in RNA catalysis as general acid-bases and oxyanion holes. We provide an overview of ribozyme studies involving nucleobase catalysis and the complications involved in developing these mechanisms. We also consider driving forces for perturbation of the pK(a) values of the bases. Mechanisms for pK(a) values shifting toward neutrality involve electrostatic stabilization and the addition of hydrogen bonding. Both mechanisms couple protonation with RNA folding, which we treat with a thermodynamic formalism and conceptual models. Furthermore, ribozyme reaction mechanisms can be multichannel, which demonstrates the versatility of ribozymes but makes analysis of experimental data challenging. We examine advances in measuring and analyzing perturbed pK(a) values in RNA. Raman crystallography and fluorescence spectroscopy have been especially important for pK(a) measurement. These methods reveal pK(a) values for the nucleobases A or C equal to or greater than neutrality, conferring potential histidine- and lysine/arginine-like behavior on them. Structural support for ionization of the nucleobases also exists: an analysis of RNA structures in the databases conducted herein suggests that charging of the bases is neither especially uncommon nor difficult to achieve under cellular conditions. Our major conclusions are that cationic and anionic charge states of the nucleobases occur in RNA enzymes and that these states make important catalytic contributions to ribozyme activity. We conclude by considering outstanding questions and possible experimental and theoretical approaches for further advances.
Collapse
Affiliation(s)
- Jennifer L. Wilcox
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amarpreet K. Ahluwalia
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
146
|
Rajendran A, Endo M, Sugiyama H. Single-molecule analysis using DNA origami. Angew Chem Int Ed Engl 2011; 51:874-90. [PMID: 22121063 DOI: 10.1002/anie.201102113] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Indexed: 11/11/2022]
Abstract
During the last two decades, scientists have developed various methods that allow the detection and manipulation of single molecules, which have also been called "in singulo" approaches. Fundamental understanding of biochemical reactions, folding of biomolecules, and the screening of drugs were achieved by using these methods. Single-molecule analysis was also performed in the field of DNA nanotechnology, mainly by using atomic force microscopy. However, until recently, the approaches used commonly in nanotechnology adopted structures with a dimension of 10-20 nm, which is not suitable for many applications. The recent development of scaffolded DNA origami by Rothemund made it possible for the construction of larger defined assemblies. One of the most salient features of the origami method is the precise addressability of the structures formed: Each staple can serve as an attachment point for different kinds of nanoobjects. Thus, the method is suitable for the precise positioning of various functionalities and for the single-molecule analysis of many chemical and biochemical processes. Here we summarize recent progress in the area of single-molecule analysis using DNA origami and discuss the future directions of this research.
Collapse
Affiliation(s)
- Arivazhagan Rajendran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
147
|
Rajendran A, Endo M, Sugiyama H. Einzelmolekülanalysen mithilfe von DNA-Origami. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
148
|
Fujimoto T, Nakano SI, Miyoshi D, Sugimoto N. The effects of molecular crowding on the structure and stability of g-quadruplexes with an abasic site. J Nucleic Acids 2011; 2011:857149. [PMID: 21949901 PMCID: PMC3178115 DOI: 10.4061/2011/857149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 12/17/2022] Open
Abstract
Both cellular environmental factors and chemical modifications critically affect the properties of nucleic acids. However, the structure and stability of DNA containing abasic sites under cell-mimicking molecular crowding conditions remain unclear. Here, we investigated the molecular crowding effects on the structure and stability of the G-quadruplexes including a single abasic site. Structural analysis by circular dichroism showed that molecular crowding by PEG200 did not affect the topology of the G-quadruplex structure with or without an abasic site. Thermodynamic analysis further demonstrated that the degree of stabilization of the G-quadruplex by molecular crowding decreased with substitution of an abasic site for a single guanine. Notably, we found that the molecular crowding effects on the enthalpy change for G-quadruplex formation had a linear relationship with the abasic site effects depending on its position. These results are useful for predicting the structure and stability of G-quadruplexes with abasic sites in the cell-mimicking conditions.
Collapse
Affiliation(s)
- Takeshi Fujimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
149
|
Choi J, Kim S, Tachikawa T, Fujitsuka M, Majima T. pH-Induced Intramolecular Folding Dynamics of i-Motif DNA. J Am Chem Soc 2011; 133:16146-53. [DOI: 10.1021/ja2061984] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 Japan
| | - Sooyeon Kim
- The Institute of Scientific and Industrial (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 Japan
| | - Takashi Tachikawa
- The Institute of Scientific and Industrial (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
150
|
Abstract
In contrast to B-DNA that has a right-handed double helical structure with Watson-Crick base pairing under the ordinary physiological conditions, repetitive DNA sequences under certain conditions have the potential to fold into non-B DNA structures such as hairpin, triplex, cruciform, left-handed Z-form, tetraplex, A-motif, etc. Since the non-B DNA-forming sequences induce the genetic instability and consequently can cause human diseases, the molecular mechanism for their genetic instability has been extensively investigated. On the contrary, non-B DNA can be widely used for application in biotechnology because many DNA breakage hotspots are mapped in or near the sequences that have the potential to adopt non-B DNA structures. In addition, they are regarded as a fascinating material for the nanotechnology using non-B DNAs because they do not produce any toxic byproducts and are robust enough for the repetitive working cycle. This being the case, an understanding on the mechanism and dynamics of their structural changes is important. In this critical review, we describe the latest studies on the conformational dynamics of non-B DNAs, with a focus on G-quadruplex, i-motif, Z-DNA, A-motif, hairpin and triplex (189 references).
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|