101
|
Abstract
DNAzymes are catalytically active DNA molecules that are obtained via in vitro selection. RNA-cleaving DNAzymes have attracted significant attention for both therapeutic and diagnostic applications due to their excellent programmability, stability, and activity. They can be designed to cleave a specific mRNA to down-regulate gene expression. At the same time, DNAzymes can sense a broad range of analytes. By combining these two functions, theranostic DNAzymes are obtained. This review summarizes the progress of DNAzyme for theranostic applications. First, in vitro selection of DNAzymes is briefly introduced, and some representative DNAzymes related to biological applications are summarized. Then, the applications of DNAzyme for RNA cleaving are reviewed. DNAzymes have been used to cleave RNA for treating various diseases, such as viral infection, cancer, inflammation and atherosclerosis. Several formulations have entered clinical trials. Next, the use of DNAzymes for detecting metal ions, small molecules and nucleic acids related to disease diagnosis is summarized. Finally, the theranostic applications of DNAzyme are reviewed. The challenges to be addressed include poor DNAzyme activity under biological conditions, mRNA accessibility, delivery, and quantification of gene expression. Possible solutions to overcome these challenges are discussed, and future directions of the field are speculated.
Collapse
|
102
|
Alizadeh N, Salimi A, Hallaj R. Hemin/G-Quadruplex Horseradish Peroxidase-Mimicking DNAzyme: Principle and Biosensing Application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 170:85-106. [DOI: 10.1007/10_2017_37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
103
|
Wen Y, Wang L, Li L, Xu L, Liu G. A Sensitive and Label-Free Pb(II) Fluorescence Sensor Based on a DNAzyme Controlled G-Quadruplex/Thioflavin T Conformation. SENSORS 2016; 16:s16122155. [PMID: 27999248 PMCID: PMC5191135 DOI: 10.3390/s16122155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023]
Abstract
Pb(II) can cause serious damaging effects to human health, and thus, the study of Pb2+ detection methods to sensitively and selectively monitor Pb(II) pollution has significant importance. In this work, we have developed a label-free fluorescence sensing strategy based on a Pb(II) DNAzyme cleavage and the ThT/G-quadruplex complex. In the presence of Pb(II), a G-rich tail was cut and released from the substrate strand, which then would form a G-quadruplex structure by combination with ThT dye. The fluorescence signal increase was then measured for sensitive Pb(II) quantification with a limit of detection of 0.06 nM. Our sensor also demonstrated high selectivity against six different metal ions, which is very important for the analysis of complex samples.
Collapse
Affiliation(s)
- Yanli Wen
- Biometrology Laboratory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China.
| | - Lele Wang
- Biometrology Laboratory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China.
| | - Lanying Li
- Biometrology Laboratory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China.
| | - Li Xu
- Biometrology Laboratory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China.
| | - Gang Liu
- Biometrology Laboratory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China.
| |
Collapse
|
104
|
Zhang FT, Cai LY, Zhou YL, Zhang XX. Immobilization-free DNA-based homogeneous electrochemical biosensors. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
105
|
Dual-color encoded DNAzyme nanostructures for multiplexed detection of intracellular metal ions in living cells. Biosens Bioelectron 2016; 85:573-579. [DOI: 10.1016/j.bios.2016.05.058] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
|
106
|
Liang H, Xie S, Cui L, Wu C, Zhang X. Designing a Biostable L-DNAzyme for Lead(II) Ion Detection in Practical Samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:7260-7264. [PMID: 29062390 PMCID: PMC5650247 DOI: 10.1039/c6ay01791f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A promising biosensor for effectively lead (II) ion detection in practical applications was developed by constructing a Pb2+-specific L-DNAzyme, the enantiomer of the natural nucleic acid-constructed D-DNAzyme. This fluorescent sensor contains the L-enzyme strand with a quencher at the 3' end, and the L-substrate strand with a fluorophore at the 5' and a quencher at the 3' ends that formed a complex. In the presence of Pb2+, the L-substrate is cut into two fragments, leading to the recovery of fluorescence. The sensor shows high sensitivity and selectivity for Pb2+ detection with a linear response in the range of 5-100 nM and a detection limit of 3 nM in aqueous solution. Importantly, based on that L-DNAzyme consists of non-natural nucleic acids, which is insensitive to nuclease digestion, protein adsorption and D-DNA hybridization, our sensor shows specific response to Pb2+ in practical water and serum samples. Therefore, it is expected that our L-DNAzyme-based strategy may offer a new method for developing simple, rapid and sensitive sensors in complex systems.
Collapse
Affiliation(s)
- Hao Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Liang Cui
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Cuichen Wu
- Attribute Sciences, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| |
Collapse
|
107
|
Liu S, Wei W, Sun X, Wang L. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification. Biosens Bioelectron 2016; 83:33-8. [DOI: 10.1016/j.bios.2016.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/28/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
|
108
|
Zhang J, Cheng F, Li J, Zhu JJ, Lu Y. Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. NANO TODAY 2016; 11:309-329. [PMID: 27818705 PMCID: PMC5089816 DOI: 10.1016/j.nantod.2016.05.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in nanoscale science and technology have generated nanomaterials with unique optical properties. Over the past decade, numerous fluorescent nanoprobes have been developed for highly sensitive and selective sensing and imaging of metal ions, both in vitro and in vivo. In this review, we provide an overview of the recent development of the design and optical properties of the different classes of fluorescent nanoprobes based on noble metal nanomaterials, upconversion nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials. We further detail their application in the detection and quantification of metal ions for environmental monitoring, food safety, medical diagnostics, as well as their use in biomedical imaging in living cells and animals.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - FangFang Cheng
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - JingJing Li
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Jun-Jie Zhu
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
109
|
Han S, Zhou X, Tang Y, He M, Zhang X, Shi H, Xiang Y. Practical, highly sensitive, and regenerable evanescent-wave biosensor for detection of Hg2+ and Pb2+ in water. Biosens Bioelectron 2016; 80:265-272. [DOI: 10.1016/j.bios.2016.01.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
110
|
Yun W, Cai D, Jiang J, Zhao P, Huang Y, Sang G. Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy. Biosens Bioelectron 2016; 80:187-193. [DOI: 10.1016/j.bios.2016.01.053] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 01/12/2023]
|
111
|
Zhao W, Wang B, Wang W. Biochemical sensing by nanofluidic crystal in a confined space. LAB ON A CHIP 2016; 16:2050-2058. [PMID: 27098158 DOI: 10.1039/c6lc00416d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrokinetics at nanoscale has attracted broad attention as a promising conductivity based biochemical sensing principle with a good selectivity. The nanoparticle crystal, formed by self-assembling nanoparticles inside a microstructure, has been utilized to fulfill a nanoscale electrokinetics based biochemical sensing platform, named nanofluidic crystal in our previous works. This paper introduces a novel nanofluidic crystal scheme by packing nanoparticles inside a well-designed confined space to improve the device-to-device readout consistency. A pair of electrodes was patterned at the bottom of this tunnel-shaped confined space for ionic current recording. The readout from different chips (n = 16) varied within 8.4% under the same conditions, which guaranteed a self-calibration-free biochemical sensing. Biotin and Pb(2+) were successfully detected by using nanofluidic crystal devices packed with streptavidin and DNAzyme modified nanoparticles, respectively. The limits of detection (LODs) were both 1 nM. This electrically readable nanofluidic crystal sensing approach may find applications in low cost and fast disease screening in limited resource environments.
Collapse
Affiliation(s)
- Wenda Zhao
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Baojun Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China. and National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, China and Innovation Center for Micro-Nano-electronics and Integrated System, Beijing, 100871, China
| |
Collapse
|
112
|
Hwang K, Hosseinzadeh P, Lu Y. Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes. Inorganica Chim Acta 2016; 452:12-24. [PMID: 27695134 DOI: 10.1016/j.ica.2016.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review summarizes research into the metal-binding properties of catalytic DNAzymes, towards the goal of understanding the structural properties leading to metal ion specificity. Progress made and insight gained from a range of biochemical and biophysical techniques are covered, and promising directions for future investigations are discussed.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
113
|
Cui H, Xiong X, Gao B, Chen Z, Luo Y, He F, Deng S, Chen L. A Novel Impedimetric Biosensor for Detection of Lead (II) with Low-cost Interdigitated Electrodes Made on PCB. ELECTROANAL 2016. [DOI: 10.1002/elan.201501153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Haixia Cui
- School of Medical Information; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| | - Xingliang Xiong
- School of Medical Information; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| | - Bin Gao
- School of Medical Information; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| | - Zhen Chen
- School of Medical Information; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| | - Yiting Luo
- School of Medical Information; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| | - Fengjie He
- School of Medical Information; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| | - Shixiong Deng
- Department of Biomedical Engineering; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| | - Longcong Chen
- School of Medical Information; Chongqing Medical University; No. 1, Yixueyuan Road, Yuzhong District Chongqing 400016 China
| |
Collapse
|
114
|
Sun H, Chen H, Zhang X, Liu Y, Guan A, Li Q, Yang Q, Shi Y, Xu S, Tang Y. Colorimetric detection of sodium ion in serum based on the G-quadruplex conformation related DNAzyme activity. Anal Chim Acta 2016; 912:133-8. [DOI: 10.1016/j.aca.2016.01.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 12/11/2022]
|
115
|
Huang PJJ, Liu J. An Ultrasensitive Light-up Cu(2+) Biosensor Using a New DNAzyme Cleaving a Phosphorothioate-Modified Substrate. Anal Chem 2016; 88:3341-7. [PMID: 26857405 DOI: 10.1021/acs.analchem.5b04904] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cu(2+) is a very important metal ion in biology, environmental science, and industry. Developing biosensors for Cu(2+) is a key topic in analytical chemistry. DNAzyme-based sensors are highly attractive for their excellent sensitivity, stability, and programmability. In the past decade, a few Cu(2+) biosensors were reported using DNAzymes with DNA cleavage or DNA ligation activity. However, they require unstable ascorbate or imidazole activation. So far, no RNA-cleaving DNAzymes specific for Cu(2+) are known. In this work, a phosphorothioate (PS) RNA-containing library was used for in vitro selection, and a few new Cu(2+)-specific RNA-cleaving DNAzymes were isolated. Among them, a DNAzyme named PSCu10 was studied further. It has only eight nucleotides in the enzyme loop with a cleavage rate of 0.1 min(-1) in the presence of 1 μM Cu(2+) at pH 6.0 (its optimal pH). Between the two diastereomers of the PS RNA chiral center, the R(p) isomer is 37 times more active than the S(p) one. Among the other divalent metal ions, only Hg(2+) can cleave the substrate due to its extremely high thiophilicity. A catalytic beacon sensor was designed with a detection limit of 1.6 nM Cu(2+) and extremely high selectivity. PSCu10 is specific for Cu(2+), and it has no cleavage in the presence of ascorbate, which reduces Cu(2+) to Cu(+).
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
116
|
DasGupta S, Shelke SA, Li NS, Piccirilli JA. Spinach RNA aptamer detects lead(II) with high selectivity. Chem Commun (Camb) 2016; 51:9034-7. [PMID: 25940073 DOI: 10.1039/c5cc01526j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinach RNA aptamer contains a G-quadruplex motif that serves as a platform for binding and fluorescence activation of a GFP-like fluorophore. Here we show that Pb(2+) induces formation of Spinach's G-quadruplex and activates fluorescence with high selectivity and sensitivity. This device establishes the first example of an RNA-based sensor that provides a simple and inexpensive tool for Pb(2+) detection.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
117
|
Cui L, Peng R, Fu T, Zhang X, Wu C, Chen H, Liang H, Yang C, Tan W. Biostable L-DNAzyme for Sensing of Metal Ions in Biological Systems. Anal Chem 2016; 88:1850-5. [PMID: 26691677 PMCID: PMC4892185 DOI: 10.1021/acs.analchem.5b04170] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
DNAzymes, an important type of metal ion-dependent functional nucleic acid, are widely applied in bioanalysis and biomedicine. However, the use of DNAzymes in practical applications has been impeded by the intrinsic drawbacks of natural nucleic acids, such as interferences from nuclease digestion and protein binding, as well as undesired intermolecular interactions with other nucleic acids. On the basis of reciprocal chiral substrate specificity, the enantiomer of D-DNAzyme, L-DNAzyme, could initiate catalytic cleavage activity with the same achiral metal ion as a cofactor. Meanwhile, by using the advantage of nonbiological L-DNAzyme, which is not subject to the interferences of biological matrixes, as recognition units, a facile and stable L-DNAzyme sensor was proposed for sensing metal ions in complex biological samples and live cells.
Collapse
Affiliation(s)
- Liang Cui
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ruizi Peng
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Cuichen Wu
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
- Department
of Chemistry and Department of Physiology and Functional Genomics,
Center for Research at the Bio/Nano Interface, Health Cancer Center, University
of Florida, Gainesville, Florida 32611-7200, United States
| | - Huapei Chen
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Hao Liang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Chaoyong
James Yang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory
for Chemical Biology of Fujian Province, The MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Department of Chemical
Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio
Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
College of Biology, and Collaborative Research Center of Molecular
Engineering for Theranostics, Hunan University, Changsha 410082, China
- Department
of Chemistry and Department of Physiology and Functional Genomics,
Center for Research at the Bio/Nano Interface, Health Cancer Center, University
of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
118
|
Zhou Y, Tang L, Zeng G, Zhang C, Xie X, Liu Y, Wang J, Tang J, Zhang Y, Deng Y. Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon–gold nanoparticles and DNAzyme catalytic beacons. Talanta 2016; 146:641-7. [DOI: 10.1016/j.talanta.2015.06.063] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
|
119
|
Saran R, Liu J. A comparison of two classic Pb2+-dependent RNA-cleaving DNAzymes. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00125k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
120
|
Sunnapu O, Kotla NG, Maddiboyina B, Singaravadivel S, Sivaraman G. A rhodamine based “turn-on” fluorescent probe for Pb(ii) and live cell imaging. RSC Adv 2016. [DOI: 10.1039/c5ra20482h] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel “turn-on” fluorescent chemosensor RDP-1 based on rhodamine tri methoxy benzaldehyde conjugate was synthesized, which showed high selectivity and sensitivity towards recognition of Pb2+ in aqueous media.
Collapse
Affiliation(s)
- Omprakash Sunnapu
- Institute for Stem Cell Biology and Regenerative Medicine
- Bangalore-560065
- India
| | - Niranjan G. Kotla
- Institute for Stem Cell Biology and Regenerative Medicine
- Bangalore-560065
- India
| | - Balaji Maddiboyina
- Department of Pharmaceutics
- Vishwabharathi College of Pharmaceutical Sciences
- Guntur
- India
| | | | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine
- Bangalore-560065
- India
| |
Collapse
|
121
|
A label-free DNAzyme fluorescence biosensor for amplified detection of Pb2+-based on cleavage-induced G-quadruplex formation. Talanta 2016; 147:302-6. [DOI: 10.1016/j.talanta.2015.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 01/02/2023]
|
122
|
Saran R, Chen Q, Liu J. Searching for a DNAzyme Version of the Leadzyme. J Mol Evol 2015; 81:235-44. [PMID: 26458991 DOI: 10.1007/s00239-015-9702-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022]
Abstract
The leadzyme refers to a small ribozyme that cleaves a RNA substrate in the presence of Pb(2+). In an optimized form, the enzyme strand contains only two unpaired nucleotides. Most RNA-cleaving DNAzymes are much longer. Two classical Pb(2+)-dependent DNAzymes, 8-17 and GR5, both contain around 15 nucleotides in the enzyme loop. This is also the size of most RNA-cleaving DNAzymes that use other metal ions for their activity. Such large enzyme loops make spectroscopic characterization difficult and so far no high-resolution structural information is available for active DNAzymes. The goal of this work is to search for DNAzymes with smaller enzyme loops. A simple replacement of the ribonucleotides in the leadzyme by deoxyribonucleotides failed to produce an active enzyme. A Pb(2+)-dependent in vitro selection combined with deep sequencing was then performed. After sequence alignment and DNA folding, a new DNAzyme named PbE22 was identified, which contains only 5 nucleotides in the enzyme catalytic loop. The biochemical characteristics of PbE22 were compared with those of the leadzyme and the two classical Pb(2+)-dependent DNAzymes. The rate of PbE22 rises with increase in Pb(2+) concentration, being 1.7 h(-1) in the presence of 100 μM Pb(2+) and reaching 3.5 h(-1) at 500 µM Pb(2+). The log of PbE22 rate rises linearly in a pH-dependent fashion (20 µM Pb(2+)) with a slope of 0.74. In addition, many other abundant sequences in the final library were studied. These sequences are quite varied in length and nucleotide composition, but some contain a few conserved nucleotides consistent with the GR5 structure. Interestingly, some sequences are active with Pb(2+) but none of them were active with even 50 mM Mg(2+), which is reminiscent of the difference between the GR5 and 8-17 DNAzymes.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qingyun Chen
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
123
|
Cui L, Wu J, Li J, Ju H. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal-Organic Framework. Anal Chem 2015; 87:10635-41. [PMID: 26427312 DOI: 10.1021/acs.analchem.5b03287] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient electrochemical sensor was presented for lead cation detection using a DNA functionalized iron-porphyrinic metal-organic framework (GR-5/(Fe-P)n-MOF) as a probe. The newly designed probe showed both the recognition behavior of GR-5 to Pb(2+) with high selectivity and the excellent mimic peroxidase performance of (Fe-P)n-MOF. In the presence of Pb(2+), GR-5 could be specifically cleaved at the ribonucleotide (rA) site, which produced the short (Fe-P)n-MOF-linked oligonucleotide fragment to hybridize with hairpin DNA immobilized on the surface of screen-printed carbon electrode (SPCE). Because of the mimic peroxidase property of (Fe-P)n-MOF, enzymatically amplified electrochemical signal was obtained to offer the sensitive detection of Pb(2+) ranging from 0.05 to 200 nM with a detection limit of 0.034 nM. In addition, benefiting from the Pb(2+)-dependent GR-5, the proposed assay could selectively detect Pb(2+) in the presence of other metal ions. The SPCE based electrochemical sensor along with the GR-5/(Fe-P)n-MOF probe exhibited the advantages of low-cost, simple fabrication, high sensitivity and selectivity, providing potential application of on-site and real-time Pb(2+) detection in complex media.
Collapse
Affiliation(s)
- Lin Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jie Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
124
|
Huang PJJ, Vazin M, Liu J. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium. Anal Chem 2015; 87:10443-9. [PMID: 26393365 DOI: 10.1021/acs.analchem.5b02568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested for this purpose. While no Tl(3+)-dependent DNAzymes are obtained, a DNA oligonucleotide containing a single PS-modified RNA nucleotide is found to cleave by ∼7% by Tl(3+) at the RNA position. The remaining 93% are desulfurized. By hybridization of this PS-modified oligonucleotide with the Tm7 DNAzyme, the cleavage yield increases to ∼40% in the presence of Tl(3+) and Er(3+). Tm7 is an Er(3+)-dependent RNA-cleaving DNAzyme. It cleaves only the normal substrate but is completely inactive using the PS-modified substrate. Tl(3+) desulfurizes the PS substrate to the normal substrate to be cleaved by Tm7 and Er(3+). This system is engineered into a catalytic beacon for Tl(3+) with a detection limit of 1.5 nM, which is below its maximal contamination limit defined by the U.S. Environmental Protection Agency (10 nM).
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Vazin
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
125
|
Paper-based scanometric assay for lead ion detection using DNAzyme. Anal Chim Acta 2015; 896:152-9. [DOI: 10.1016/j.aca.2015.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 11/18/2022]
|
126
|
Gong L, Zhao Z, Lv YF, Huan SY, Fu T, Zhang XB, Shen GL, Yu RQ. DNAzyme-based biosensors and nanodevices. Chem Commun (Camb) 2015; 51:979-95. [PMID: 25336076 DOI: 10.1039/c4cc06855f] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNAzymes, screened through in vitro selection, have shown great promise as molecular tools in the design of biosensors and nanodevices. The catalytic activities of DNAzymes depend specifically on cofactors and show multiple enzymatic turnover properties, which make DNAzymes both versatile recognition elements and outstanding signal amplifiers. Combining nanomaterials with unique optical, magnetic and electronic properties, DNAzymes may yield novel fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical and chemiluminescent biosensors. Moreover, some DNAzymes have been utilized as functional components to perform arithmetic operations or as "walkers" to move along DNA tracks. DNAzymes can also function as promising therapeutics, when designed to complement target mRNAs or viral RNAs, and consequently lead to down-regulation of protein expression. This feature article focuses on the most significant achievements in using DNAzymes as recognition elements and signal amplifiers for biosensors, and highlights the applications of DNAzymes in logic gates, DNA walkers and nanotherapeutics.
Collapse
Affiliation(s)
- Liang Gong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Guo Y, Yao W, Xie Y, Zhou X, Hu J, Pei R. Logic gates based on G-quadruplexes: principles and sensor applications. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1633-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
128
|
Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst 2015; 139:6326-42. [PMID: 25356810 DOI: 10.1039/c4an01069h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heavy metal contaminants such as lead ions (Pb(2+)), mercury ions (Hg(2+)) and silver ions (Ag(+)) can cause significant harm to humans and generate enduring bioaccumulation in ecological systems. Even though a variety of methods have been developed for Pb(2+), Hg(2+) and Ag(+) assays, most of them are usually laborious and time-consuming with poor sensitivity. Due to their unique advantages of excellent catalytic properties and high affinity for heavy metal ions, functional nucleic acids such as DNAzymes and aptamers show great promise in the development of novel sensors for heavy metal ion assays. In this review, we summarize the development of functional nucleic acid-based sensors for the detection of Pb(2+), Hg(2+) and Ag(+), and especially focus on two categories including the direct assay and the amplification-based assay. We highlight the emerging trends in the development of sensitive and selective sensors for heavy metal ion assays as well.
Collapse
Affiliation(s)
- Guichi Zhu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | | |
Collapse
|
129
|
Teh HB, Li H, Yau Li SF. Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor. Analyst 2015; 139:5170-5. [PMID: 25118337 DOI: 10.1039/c4an00922c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, label-free DNAzyme-based quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor was developed for the highly sensitive and specific detection of Pb(2+) ions. To enhance the performance of the sensor, oligonucleotide-functionalized gold nanoparticles were used for both frequency and dissipation amplification. This sensor was developed by immobilizing Pb(2+)-specific DNAzymes onto the QCM-D sensor surface and allowing them to hybridize with substrate-functionalized AuNPs. The DNAzyme catalyzed the cleavage of the substrate in the presence of Pb(2+) ions, causing the cleaved substrate-functionalized AuNPs to be removed from the sensor surface. Thus, Pb(2+) ions can be determined on-line by monitoring the change in frequency and dissipation signals. The results revealed that the sensor showed a sensitive response to Pb(2+) ions with detection limits of 14 nM and 20 nM for frequency and dissipation, respectively. This QCM-D biosensor also exhibited excellent selectivity toward Pb(2+) ions in the presence of other divalent metal ions. In addition, the approach was able to detect Pb(2+) in tap water, demonstrating its great potential for monitoring drinking water quality. The proposed sensor system described here represents a new class of lead ion sensor. Its simple detection strategy makes it feasible for 'pollution-free' detection; thus, the approach could have applications in on-line water quality monitoring.
Collapse
Affiliation(s)
- Hui Boon Teh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | | | | |
Collapse
|
130
|
Zhou Z, Xiao L, Xiang Y, Zhou J, Tong A. A general approach for rational design of fluorescent DNA aptazyme sensors based on target-induced unfolding of DNA hairpins. Anal Chim Acta 2015; 889:179-86. [PMID: 26343441 DOI: 10.1016/j.aca.2015.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/03/2023]
Abstract
DNA aptazymes are allosteric DNAzymes activated by the targets of DNA aptamers. They take the advantages of both aptamers and DNAzymes, which can recognize specific targets with high selectivity and catalyze multiple-turnover reactions for signal amplification, respectively, and have shown their great promise in many analytical applications. So far, however, the available examples of DNA aptazyme sensors are still limited in utilizing only several DNAzymes and DNA aptamers, most likely due to the lack of a general and simple approach for rational design. Herein, we have developed such a general approach for designing fluorescent DNA aptazyme sensors. In this approach, aptamers and DNAzymes are connected at the ends to avoid any change in their original sequences, therefore enabling the general use of different aptamers and DNAzymes in the design. Upon activation of the aptazymes by the targets of interest, the rate of fluorescence enhancement via the cleavage of a dually labeled substrate by the active aptazymes is then monitored for target quantification. Two DNAzymes and two aptamers are used as examples for the design of three fluorescent aptazyme sensors, and they all show high selectivity and sensitivity for the detection of their targets. More DNA aptazyme sensors for a broader range of targets could be developed by this general approach as long as suitable DNAzymes and aptamers are used.
Collapse
Affiliation(s)
- Zhaojuan Zhou
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Beijing Third Class Tobacco Supervision Station, Beijing, 101121, China
| | - Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jun Zhou
- Beijing Third Class Tobacco Supervision Station, Beijing, 101121, China.
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
131
|
Zhang J, Tang Y, Teng L, Lu M, Tang D. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode. Biosens Bioelectron 2015; 68:232-238. [DOI: 10.1016/j.bios.2015.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/03/2014] [Accepted: 01/01/2015] [Indexed: 11/28/2022]
|
132
|
Zhang D, Fu R, Zhao Q, Rong H, Wang H. Nanoparticles-Free Fluorescence Anisotropy Amplification Assay for Detection of RNA Nucleotide-Cleaving DNAzyme Activity. Anal Chem 2015; 87:4903-9. [DOI: 10.1021/acs.analchem.5b00479] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dapeng Zhang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Rong Fu
- School
of Medicine and Life Sciences, University of Jinan-Shangdong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| | - Qiang Zhao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Haiqin Rong
- School
of Medicine and Life Sciences, University of Jinan-Shangdong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| |
Collapse
|
133
|
Li L, Feng J, Fan Y, Tang B. Simultaneous Imaging of Zn2+ and Cu2+ in Living Cells Based on DNAzyme Modified Gold Nanoparticle. Anal Chem 2015; 87:4829-35. [DOI: 10.1021/acs.analchem.5b00204] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lu Li
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jie Feng
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Fan
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
134
|
Kuo SY, Li HH, Wu PJ, Chen CP, Huang YC, Chan YH. Dual Colorimetric and Fluorescent Sensor Based On Semiconducting Polymer Dots for Ratiometric Detection of Lead Ions in Living Cells. Anal Chem 2015; 87:4765-71. [DOI: 10.1021/ac504845t] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shih-Yu Kuo
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Hsiang-Hau Li
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Pei-Jing Wu
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Chuan-Pin Chen
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Ya-Chi Huang
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Yang-Hsiang Chan
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| |
Collapse
|
135
|
Ji L, Guo Y, Hong S, Wang Z, Wang K, Chen X, Zhang J, Hu J, Pei R. Label-free detection of Pb2+ based on aggregation-induced emission enhancement of Au-nanoclusters. RSC Adv 2015. [DOI: 10.1039/c5ra03449c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The luminescence intensity of the glutathione capped Au-nanoclusters could be enhanced due to the formation of aggregates, and was employed for the visual detection of Pb2+.
Collapse
Affiliation(s)
- Liya Ji
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
- Key Laboratory of Nano-Bio Interface
| | - Yahui Guo
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Shanni Hong
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Zhili Wang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Kewei Wang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Xing Chen
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Jianye Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Jiming Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry & Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| |
Collapse
|
136
|
Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 2015; 63:276-286. [DOI: 10.1016/j.bios.2014.07.052] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/04/2014] [Accepted: 07/15/2014] [Indexed: 01/31/2023]
|
137
|
Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew Chem Int Ed Engl 2014; 53:13798-802. [PMID: 25314680 PMCID: PMC4297208 DOI: 10.1002/anie.201408333] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 12/29/2022]
Abstract
DNAzymes, which are sequences of DNA with catalytic activity, have been demonstrated as a potential platform for sensing a wide range of metal ions. Despite their significant promise, cellular sensing using DNAzymes has however been difficult, mainly because of the "always-on" mode of first-generation DNAzyme sensors. To overcome this limitation, a photoactivatable (or photocaged) DNAzyme was designed and synthesized, and its application in sensing Zn(II) in living cells was demonstrated. In this design, the adenosine ribonucleotide at the scissile position of the 8-17 DNAzyme was replaced by 2'-O-nitrobenzyl adenosine, rendering the DNAzyme inactive and thus allowing its delivery into cells intact, protected from nonspecific degradation within cells. Irradiation at 365 nm restored DNAzyme activity, thus allowing the temporal control over the sensing activity of the DNAzyme for metal ions. The same strategy was also applied to the GR-5 DNAzyme for the detection of Pb(II), thus demonstrating the possible scope of the method.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Taejin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, 92093, USA
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, 92093, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
138
|
Huang Y, Ma Y, Chen Y, Wu X, Fang L, Zhu Z, Yang CJ. Target-Responsive DNAzyme Cross-Linked Hydrogel for Visual Quantitative Detection of Lead. Anal Chem 2014; 86:11434-9. [DOI: 10.1021/ac503540q] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yishun Huang
- The MOE Key Laboratory of Spectrochemical
Analysis and Instrumentation, Innovation Center of Chemistry for Energy
Materials, State Key Laboratory of Physical Chemistry
of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian
Province, Department of Chemical Biology, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Yanli Ma
- The MOE Key Laboratory of Spectrochemical
Analysis and Instrumentation, Innovation Center of Chemistry for Energy
Materials, State Key Laboratory of Physical Chemistry
of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian
Province, Department of Chemical Biology, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Yahong Chen
- The MOE Key Laboratory of Spectrochemical
Analysis and Instrumentation, Innovation Center of Chemistry for Energy
Materials, State Key Laboratory of Physical Chemistry
of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian
Province, Department of Chemical Biology, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Xuemeng Wu
- The MOE Key Laboratory of Spectrochemical
Analysis and Instrumentation, Innovation Center of Chemistry for Energy
Materials, State Key Laboratory of Physical Chemistry
of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian
Province, Department of Chemical Biology, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Luting Fang
- The MOE Key Laboratory of Spectrochemical
Analysis and Instrumentation, Innovation Center of Chemistry for Energy
Materials, State Key Laboratory of Physical Chemistry
of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian
Province, Department of Chemical Biology, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical
Analysis and Instrumentation, Innovation Center of Chemistry for Energy
Materials, State Key Laboratory of Physical Chemistry
of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian
Province, Department of Chemical Biology, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| | - Chaoyong James Yang
- The MOE Key Laboratory of Spectrochemical
Analysis and Instrumentation, Innovation Center of Chemistry for Energy
Materials, State Key Laboratory of Physical Chemistry
of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian
Province, Department of Chemical Biology, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
| |
Collapse
|
139
|
Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Photocaged DNAzymes as a General Method for Sensing Metal Ions in Living Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408333] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Taejin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| |
Collapse
|
140
|
Bone SM, Hasick NJ, Lima NE, Erskine SM, Mokany E, Todd AV. DNA-only cascade: a universal tool for signal amplification, enhancing the detection of target analytes. Anal Chem 2014; 86:9106-13. [PMID: 25157928 DOI: 10.1021/ac501811r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diagnostic tests performed in the field or at the site of patient care would benefit from using a combination of inexpensive, stable chemical reagents and simple instrumentation. Here, we have developed a universal "DNA-only Cascade" (DoC) to quantitatively detect target analytes with increased speed. The DoC utilizes quasi-circular structures consisting of temporarily inactivated deoxyribozymes (DNAzymes). The catalytic activity of the DNAzymes is restored in a universal manner in response to a broad range of environmental and biological targets. The present study demonstrates DNAzyme activation in the presence of metal ions (Pb(2+)), small molecules (deoxyadenosine triphosphate) and nucleic acids homologous to genes from Meningitis-causing bacteria. Furthermore, DoC efficiently discriminates nucleic acid targets differing by a single nucleotide. When detection of analytes is orchestrated by functional nucleic acids, the inclusion of DoC reagents substantially decreases time for detection and allows analyte quantification. The detection of nucleic acids using DoC was further characterized for its capability to be multiplexed and retain its functionality following long-term exposure to ambient temperatures and in a background of complex medium (human serum).
Collapse
Affiliation(s)
- Simon M Bone
- The University of New South Wales , Kensington, New South Wales 2052, Australia
| | | | | | | | | | | |
Collapse
|
141
|
LIU C, HUANG CZ. Detection of Lead Ions in Water Based on the Surface Energy Transfer between Gold Nanoparticles and Fluorescent Dyes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60760-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
142
|
Zhang Y, Li X, Li H, Song M, Feng L, Guan Y. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions. Analyst 2014; 139:4887-93. [DOI: 10.1039/c4an01022a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
143
|
Zhang L, Huang H, Xu N, Yin Q. Functionalization of cationic poly(p-phenylene ethynylene) with dendritic polyethylene enables efficient DNAzyme delivery for imaging Pb 2+ in living cells. J Mater Chem B 2014; 2:4935-4942. [PMID: 32261786 DOI: 10.1039/c4tb00680a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report here an effective Pb2+-dependent DNAzyme (8-17 DNAzyme) delivery system based on the water-soluble dendritic polyethylene-cationic poly(p-phenylene ethynylene) for successfully imaging Pb2+ in living cells. For utilizing the 8-17 DNAzyme and its unique ability to catalyze a phosphodiester bond cleavage reaction in the presence of Pb2+, the distinctive conjugated polymer-based polyvalent nanocarrier design manages to load and transport 8-17 DNAzyme across cell membranes, and to realize the fluorescence imaging of Pb2+ in living cells. As shown by the confocal microscopy and flow cytometry observations, the fluorescence of Cy5.5 is obviously activated under the conditions of incubation with Pb2+, compared with the absence of Pb2+. Taken together, the study demonstrates the combination of the molecular-wire effect with "dendrimer effects" on their effective DNAzyme delivery and their cellular imaging Pb2+.
Collapse
Affiliation(s)
- Ling Zhang
- DSAPM Lab, PCFM Lab, and OFCM Institu, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
144
|
Huang PJJ, Liu J. Sensing parts-per-trillion Cd(2+), Hg(2+), and Pb(2+) collectively and individually using phosphorothioate DNAzymes. Anal Chem 2014; 86:5999-6005. [PMID: 24851672 DOI: 10.1021/ac501070a] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cadmium, mercury, and lead are collectively banned by many countries and regions in electronic devices due to their extremely high toxicity. To date, no sensing method can detect them as a group and also individually with sufficient sensitivity and selectivity. An RNA-cleaving DNAzyme (Ce13d) was recently reported to be active with trivalent lanthanides, which are hard Lewis acids. In this work, phosphorothioate (PS) modifications were systematically made on Ce13d. A single PS modification at the substrate cleavage site shifts the activity from being dependent on lanthanides to soft thiophilic metals. By incorporating the PS modification to another DNAzyme, a sensor array was prepared to detect each metal. Individual sensors have excellent sensitivity (limit of detection = 4.8 nM Cd(2+), 2.0 nM Hg(2+), and 0.1 nM Pb(2+)). This study provides a new route to obtain metal-specific DNAzymes by atomic replacement and also offers important mechanistic insights into metal binding and DNAzyme catalysis.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario Canada , N2L 3G1
| | | |
Collapse
|
145
|
Li C, Wei L, Liu X, Lei L, Li G. Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Anal Chim Acta 2014; 831:60-4. [DOI: 10.1016/j.aca.2014.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/09/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022]
|
146
|
Yildirim N, Long F, He M, Gao C, Shi HC, Gu AZ. A portable DNAzyme-based optical biosensor for highly sensitive and selective detection of lead (II) in water sample. Talanta 2014; 129:617-22. [PMID: 25127641 DOI: 10.1016/j.talanta.2014.03.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
A portable, rapid and cost-effective DNAzyme based sensor for lead ions detection in water samples has been developed using an optical fiber sensor platform. The presence of Pb(2+) cleaves the DNAzymes and releases the fluorescent labeled fragments, which further hybridize with the complementary strands immobilized on the optic fiber sensor surface. Subsequent fluorescent signals of the hybridized fluorescent labeled fragment provides quantitative information on the concentrations of Pb(2+) with a dynamic range from 2-75 nM with a detection limit of 1.03 nM (0.21 ng mL(-1)). The proposed sensor also shows good selectivity against other mono and divalent metal ions and thus holds great potential for the construction of general DNAzyme-based sensing platform for the monitoring of other heavy metal ions. The sensor can be regenerated with a 1% SDS solution (pH 1.9) over 100 times without significant deterioration of the sensor performance. This portable sensor system can be potentially applied for on-site real-time inexpensive and easy-to-use monitoring of Pb(2+) in environmental samples such as wastewater effluents or water bodies.
Collapse
Affiliation(s)
- Nimet Yildirim
- Bioengineering Program, Northeastern University, Boston, USA; Department of Civil and Environmental Engineering, Northeastern University, Boston, USA; Department of Environment Science and Engineering, Tsinghua University, Beijing, China
| | - Feng Long
- Department of Civil and Environmental Engineering, Northeastern University, Boston, USA; School of Environment and Natural Resources, Renmin Univerisity of China, Beijing, China; Department of Environment Science and Engineering, Tsinghua University, Beijing, China
| | - Miao He
- School of Environment and Natural Resources, Renmin Univerisity of China, Beijing, China; Department of Environment Science and Engineering, Tsinghua University, Beijing, China
| | - Ce Gao
- Bioengineering Program, Northeastern University, Boston, USA; Department of Civil and Environmental Engineering, Northeastern University, Boston, USA; Department of Environment Science and Engineering, Tsinghua University, Beijing, China
| | - Han-Chang Shi
- School of Environment and Natural Resources, Renmin Univerisity of China, Beijing, China; Department of Environment Science and Engineering, Tsinghua University, Beijing, China
| | - April Z Gu
- Bioengineering Program, Northeastern University, Boston, USA; Department of Civil and Environmental Engineering, Northeastern University, Boston, USA; Department of Environment Science and Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
147
|
Huang PJJ, Liu J. Two Pb2+-specific DNAzymes with opposite trends in split-site-dependent activity. Chem Commun (Camb) 2014; 50:4442-4. [PMID: 24643441 DOI: 10.1039/c4cc00864b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By splitting the catalytic core of DNAzymes into two halves, two Pb(2+)-specific DNAzymes retain partial activity, while they show opposite trends of activity as a function of the split site, revealing important nucleotides for catalysis and metal binding.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
148
|
Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification. Biosens Bioelectron 2014; 53:245-9. [DOI: 10.1016/j.bios.2013.09.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
|
149
|
Abstract
Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Fax: 217-244-3186; Tel: 217-333-2619
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Fax: 217-244-3186; Tel: 217-333-2619
| |
Collapse
|
150
|
Dong Y, Tian W, Ren S, Dai R, Chi Y, Chen G. Graphene quantum dots/L-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1646-1651. [PMID: 24405119 DOI: 10.1021/am404552s] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new coreactant electrochemiluminescence (ECL) system including single-layer graphene quantum dots (GQDs) and L-cysteine (L-Cys) was found to be able to produce strong cathodic ECL signal. The ECL signal of GQD/L-Cys coreactant system was revealed to be mainly dependent on some key factors, including the oxidation of L-Cys, the presence of dissolved oxygen and the reduction of GQDs. Then, a possible ECL mechanism was proposed for the coreactant ECL system. Furthermore, the ECL signal of the GQD/L-Cys system was observed to be quenched by lead(II) ions (Pb(2+)). After optimization of some important experimental conditions, including concentrations of GQDs and L-Cys, potential scan rate, response time, and pH value, an ECL sensor was developed for the detection of Pb(2+). The new methodology can offer a rapid, reliable, and selective detection of Pb(2+) with a detection limit of 70 nM and a dynamic range from 100 nM to 10 μM.
Collapse
Affiliation(s)
- Yongqiang Dong
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and Department of Chemistry, Fuzhou University , Fujian 350108, China
| | | | | | | | | | | |
Collapse
|