101
|
Hansen K, Lau AM, Giles K, McDonnell JM, Struwe WB, Sutton BJ, Politis A. A Mass-Spectrometry-Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angew Chem Int Ed Engl 2018; 57:17194-17199. [PMID: 30408305 PMCID: PMC6392142 DOI: 10.1002/anie.201812018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/09/2022]
Abstract
Immunoglobulins are biomolecules involved in defence against foreign substances. Flexibility is key to their functional properties in relation to antigen binding and receptor interactions. We have developed an integrative strategy combining ion mobility mass spectrometry (IM-MS) with molecular modelling to study the conformational dynamics of human IgG antibodies. Predictive models of all four human IgG subclasses were assembled and their dynamics sampled in the transition from extended to collapsed state during IM-MS. Our data imply that this collapse of IgG antibodies is related to their intrinsic structural features, including Fab arm flexibility, collapse towards the Fc region, and the length of their hinge regions. The workflow presented here provides an accurate structural representation in good agreement with the observed collision cross section for these flexible IgG molecules. These results have implications for studying other nonglobular flexible proteins.
Collapse
Affiliation(s)
- Kjetil Hansen
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Andy M. Lau
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | | | | | | | - Brian J. Sutton
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonUK
| | - Argyris Politis
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| |
Collapse
|
102
|
Kalenius E, Groessl M, Rissanen K. Ion mobility–mass spectrometry of supramolecular complexes and assemblies. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0062-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
103
|
Endres KJ, Xie TZ, Chakraborty S, Hoopingarner C, Wesdemiotis C. Monitoring Metallo-Macromolecular Assembly Equilibria by Ion Mobility-Mass Spectrometry. Macromol Rapid Commun 2018; 40:e1800667. [PMID: 30507049 DOI: 10.1002/marc.201800667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Indexed: 12/25/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) allows the separation of isomeric and isobaric species on the basis of their size, shape, and charge. The fast separation timescale (ms) and high sensitivity of these measurements make IM-MS an ideally suitable method for monitoring changes in macromolecular structure, such as those occurring in interconverting terpyridine-based metallosupramolecular self-assemblies. IM-MS is used to verify the elemental composition (size) and architecture (shape) of the self-assembled products. Additionally, this article demonstrates its applicability to the elucidation of concentration-driven association-dissociation (fusion-fission) equilibria between isobaric structures. IM-MS enables both quantitative separation and identification of the interconverting complexes as well as derivation of the corresponding equilibrium constants (i.e., thermodynamic information) from extracted IM-MS abundance data.
Collapse
Affiliation(s)
- Kevin J Endres
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Ting-Zheng Xie
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Sourav Chakraborty
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Chad Hoopingarner
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Chrys Wesdemiotis
- Departments of Chemistry and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
104
|
Ouyang H, Bo T, Zhang Z, Guo X, He M, Li J, Yang S, Ma X, Feng Y. Ion mobility mass spectrometry with molecular modelling to reveal bioactive isomer conformations and underlying relationship with isomerization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1931-1940. [PMID: 30151930 DOI: 10.1002/rcm.8271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE In medicine and drug development, molecular modelling is an important tool. It is attractive to develop a platform connecting the theoretical structural modelling and the results from experimental measurement. In addition, the separation and structural analysis of bioactive constituent isomers are still challenging tasks. METHODS Drift tube ion mobility (IM) mass spectrometry (MS) provides the experimental collision cross section (CCS) which contains the structural information. The experimental CCS can be compared with the calculated CCS of the molecular modelling structures. This technique is especially useful for bioactive constituents in herbal medicine because active isomers with the same chemical formula are common in these samples. IM helps separate and identify these isomers and reveals details about their structures and conformations. RESULTS Two model bioactive constituents, caffeoylquinic acids (CQAs) and dicaffeoylquinic acids (di-CQAs), were selected to systematically investigate the influence of solution, ion source conditions and ion heating on the isomer CCS distributions. By comparing the calculated CCS with the experimental value, we identified the favorable conformations of CQAs. The most compact conformation of a CQA was less likely to isomerize than the more extended conformation. It was found that the isomerization tendency was in accord with the conformation favorability. CONCLUSIONS This study offers an effective approach to predict and demystify the conformation and isomerization of the active constituents in herbal medicines.
Collapse
Affiliation(s)
- Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
| | - Tao Bo
- Agilent Technologies, No. 3, Wang Jing Bei Lu, Beijing, 100102, China
| | - Zhengxiang Zhang
- Agilent Technologies, No. 3, Wang Jing Bei Lu, Beijing, 100102, China
| | - Xinqiu Guo
- Ming De Tian Sheng Biotech Inc., Changping Campus of Peking University, Beijing, 102200, China
| | - Mingzhen He
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
| | - Junmao Li
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
| | - Shilin Yang
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, 330006, China
| | - Xin Ma
- Agilent Technologies, No. 3, Wang Jing Bei Lu, Beijing, 100102, China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, 330006, China
| |
Collapse
|
105
|
Hansen K, Lau AM, Giles K, McDonnell JM, Struwe WB, Sutton BJ, Politis A. A Mass‐Spectrometry‐Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kjetil Hansen
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| | - Andy M. Lau
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| | - Kevin Giles
- Waters Corp. Stamford Road Wilmslow SK9 4AX UK
| | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics King's College London UK
| | | | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics King's College London UK
| | - Argyris Politis
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
106
|
Abstract
A sizeable proportion of active protein sequences lack structural motifs making them irresolvable by NMR and crystallography. Such intrinsically disordered proteins (IDPs) or regions (IDRs) play a major role in biological mechanisms. They are often involved in cell regulation processes, and by extension can be the perpetrator or signifier of disease. In light of their importance and the shortcomings of conventional methods of biophysical analysis to identify them and to describe their conformational variance, IDPs and IDRs have been termed "the dark proteome." In this chapter we describe the use of ion mobility-mass spectrometry (IM-MS) coupled with electrospray ionization to analyze the conformational diversity of IDPs. Using the LEA protein COR15A as an exemplar system and contrasting it with the behavior of myoglobin, we outline the methods for analyzing an IDP using nanoelectrospray ionization coupled with IM-MS, covering sample preparation, purification; optimization of mass spectrometry conditions and tuning parameters; data collection and analysis. Following this, we detail the use of a "toy" model that provides a predictive framework for the study of all proteins with ESI-IM-MS.
Collapse
|
107
|
Oranzi NR, Polfer NC, Lei J, Yost RA. Influence of Experimental Conditions on the Ratio of 25-Hydroxyvitamin D3 Conformers for Validating a Liquid Chromatography/Ion Mobility-Mass Spectrometry Method for Routine Quantitation. Anal Chem 2018; 90:13549-13556. [DOI: 10.1021/acs.analchem.8b03668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas R. Oranzi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nicolas C. Polfer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jiajun Lei
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
108
|
Ahdash Z, Lau AM, Martens C, Politis A. Analyzing Protein Architectures and Protein-Ligand Complexes by Integrative Structural Mass Spectrometry. J Vis Exp 2018. [PMID: 30371663 PMCID: PMC6235531 DOI: 10.3791/57966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proteins are an important class of biological macromolecules that play many key roles in cellular functions including gene expression, catalyzing metabolic reactions, DNA repair and replication. Therefore, a detailed understanding of these processes provides critical information on how cells function. Integrative structural MS methods offer structural and dynamical information on protein complex assembly, complex connectivity, subunit stoichiometry, protein oligomerization and ligand binding. Recent advances in integrative structural MS have allowed for the characterization of challenging biological systems including large DNA binding proteins and membrane proteins. This protocol describes how to integrate diverse MS data such as native MS and ion mobility-mass spectrometry (IM-MS) with molecular dynamics simulations to gain insights into a helicase-nuclease DNA repair protein complex. The resulting approach provides a framework for detailed studies of ligand binding to other protein complexes involved in important biological processes.
Collapse
Affiliation(s)
| | - Andy M Lau
- Department of Chemistry, King's College London
| | | | | |
Collapse
|
109
|
Mitra A, Mandal AK. Conjugation of para-benzoquinone of Cigarette Smoke with Human Hemoglobin Leads to Unstable Tetramer and Reduced Cooperative Oxygen Binding. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2048-2058. [PMID: 29967937 DOI: 10.1007/s13361-018-2011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/27/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Besides multiple life-threatening diseases like lung cancer and cardiovascular disease, cigarette smoking is known to produce hypoxia, a state of inadequate oxygen supply to tissues. Hypoxia plays a pivotal role in the development of chronic obstructive pulmonary disease. Smoking during pregnancy imposes risk for the unborn child. In addition to carbon monoxide, conjugation of para-benzoquinone (pBQ), derived from cigarette smoke, with human hemoglobin (HbA) was also reported to contribute in hypoxia. In fact, conjugation of pBQ is more alarming than carbon monoxide as it is an irreversible covalent modification. In the present study, the functional assay of Hb-pBQ, performed through oxygen equilibrium curve, showed a significant decrease in both P50 and cooperativity. However, the structural changes associated with the observed functional perturbation of the hemoglobin conjugate (Hb-pBQ) are unknown to date. Enhanced sensitivity and high resolution of nano-ESI mass spectrometry platform have enabled to investigate the native structure of oligomers of hemoglobin in a single scan. The structural integrity of Hb-pBQ measured through the dissociation equilibrium constants (Kd) indicated that compared to HbA, Kd of tetramer-dimer and dimer-monomer equilibria were increased by 4.98- and 64.3-folds, respectively. Using isotope exchange mass spectrometry, we observed perturbations in the inter-subunit interactions of deoxy and oxy states of Hb-pBQ. However, the three-dimensional architecture of Hb-pBQ, monitored through collision cross-sectional area, did not show any change. We propose that the significant destabilization of the functionally active structure of hemoglobin upon conjugation with pBQ results in tighter oxygen binding that leads to hypoxia. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Amrita Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100ft Road, Koramangala, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100ft Road, Koramangala, Bangalore, 560034, India.
| |
Collapse
|
110
|
Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Clowers BH, Russell DH. Fourier Transform-Ion Mobility-Orbitrap Mass Spectrometer: A Next-Generation Instrument for Native Mass Spectrometry. Anal Chem 2018; 90:10472-10478. [PMID: 30091588 PMCID: PMC6464636 DOI: 10.1021/acs.analchem.8b02463] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new instrument configuration for native ion mobility-mass spectrometry (IM-MS) is described. Macromolecule ions are generated by using a static ESI source coupled to an RF ion funnel, and these ions are then mobility and mass analyzed using a periodic focusing drift tube IM analyzer and an Orbitrap mass spectrometer. The instrument design retains the capabilities for first-principles determination of rotationally averaged ion-neutral collision cross sections and high-resolution measurements in both mobility and mass analysis modes for intact protein complexes. Operation in the IM mode utilizes FT-IMS modes (originally described by Knorr ( Knorr , F. J. Anal. Chem . 1985 , 57 ( 2 ), 402 - 406 )), which provides a means to overcome the inherent duty cycle mismatch for drift tube (DT)-IM and Orbitrap mass analysis. The performance of the native ESI-FT-DT-IM-Orbitrap MS instrument was evaluated using the protein complexes Gln K (MW 44 kDa) and streptavidin (MW 53 kDa) bound to small molecules (ADP and biotin, respectively) and transthyretin (MW 56 kDa) bound to thyroxine and zinc.
Collapse
Affiliation(s)
- Michael L. Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
111
|
Chen Y, Zuo Z, Dai X, Xiao P, Fang X, Wang X, Wang W, Ding CF. Gas-phase complexation of α-/β-cyclodextrin with amino acids studied by ion mobility-mass spectrometry and molecular dynamics simulations. Talanta 2018; 186:1-7. [DOI: 10.1016/j.talanta.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/11/2023]
|
112
|
Metwally H, Duez Q, Konermann L. Chain Ejection Model for Electrospray Ionization of Unfolded Proteins: Evidence from Atomistic Simulations and Ion Mobility Spectrometry. Anal Chem 2018; 90:10069-10077. [DOI: 10.1021/acs.analchem.8b02926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Quentin Duez
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc, 23, Mons 7000, Belgium
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
113
|
Chai M, Young MN, Liu FC, Bleiholder C. A Transferable, Sample-Independent Calibration Procedure for Trapped Ion Mobility Spectrometry (TIMS). Anal Chem 2018; 90:9040-9047. [DOI: 10.1021/acs.analchem.8b01326] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
114
|
Kamrath MZ, Rizzo TR. Combining Ion Mobility and Cryogenic Spectroscopy for Structural and Analytical Studies of Biomolecular Ions. Acc Chem Res 2018; 51:1487-1495. [PMID: 29746100 DOI: 10.1021/acs.accounts.8b00133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion mobility spectrometry (IMS) has become a valuable tool in biophysical and bioanalytical chemistry because of its ability to separate and characterize the structure of gas-phase biomolecular ions on the basis of their collisional cross section (CCS). Its importance has grown with the realization that in many cases, biomolecular ions retain important structural characteristics when produced in the gas phase by electrospray ionization (ESI). While a CCS can help distinguish between structures of radically different types, one cannot expect a single number to differentiate similar conformations of a complex molecule. Molecular spectroscopy has also played an increasingly important role for structural characterization of biomolecular ions. Spectroscopic measurements, particularly when performed at cryogenic temperatures, can be extremely sensitive to small changes in a molecule's conformation and provide tight constraints for calculations of biomolecular structures. However, spectra of complex molecules can be heavily congested due to the presence of multiple stable conformations, each of which can have a distinct spectrum. This congestion can inhibit spectral analysis and complicate the extraction of structural information. Even when a single conformation is present, the conformational search process needed to match a measured spectrum with a computed structure can be overwhelming for peptides of more than a few amino acids, for example. We have recently combined ion mobility spectrometry and cryogenic ion spectroscopy (CIS) to characterize the structures of gas-phase biomolecular ions. In this Account, we illustrate how the coupling of IMS and CIS is by nature synergistic. On the one hand, IMS can be used as a conformational filter to reduce spectral congestion that arises from heterogeneous samples, facilitating structural analysis. On the other hand, highly resolved, cryogenic spectra can serve as a selective detector for IMS that can increase the effective resolution and hence the maximum number of distinct species that can be detected. Taken together, spectra and CCS measurements on the same system facilitates structural analysis and strengthens the conclusions that can be drawn from each type of data. After describing different approaches to combining these two techniques in such a way as to simplify the data obtained from each one separately, we present two examples that illustrate the type of insight gained from using spectra and CCS data together for characterizing gas-phase biomolecular ions. In one example, the CCS is used as a constraint for quantum chemical structure calculations of kinetically trapped species, where a lowest-energy criterion is not applicable. In a second example, we use both the CCS and a cryogenic infrared spectrum as a means to distinguish isomeric glycans.
Collapse
Affiliation(s)
- Michael Z. Kamrath
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
115
|
Martin EM, Jackson MP, Gamerdinger M, Gense K, Karamonos TK, Humes JR, Deuerling E, Ashcroft AE, Radford SE. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J Biol Chem 2018; 293:8554-8568. [PMID: 29650757 PMCID: PMC5986199 DOI: 10.1074/jbc.ra117.001568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide-associated complex (NAC) is a ribosome-associated chaperone that is important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI-MS), limited proteolysis, NMR, and cross-linking, we analyzed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates with unrelated sequences and structures, independently of actively translating ribosomes.
Collapse
Affiliation(s)
- Esther M Martin
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Matthew P Jackson
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Martin Gamerdinger
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Karina Gense
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Theodoros K Karamonos
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Julia R Humes
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Elke Deuerling
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Alison E Ashcroft
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
116
|
Zhao Y, Yang JY, Thieker DF, Xu Y, Zong C, Boons GJ, Liu J, Woods RJ, Moremen KW, Amster IJ. A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1153-1165. [PMID: 29520710 PMCID: PMC6004239 DOI: 10.1007/s13361-018-1903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 06/10/2023]
Abstract
Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear. Here, we describe the application of traveling wave ion mobility spectrometry (TWIMS) to study the conformational details of the Robo1-HS interaction. The results suggest that Robo1 exists in two conformations that differ by their compactness and capability to interact with HS. The results also suggest that the highly flexible interdomain hinge region connecting the Ig1 and Ig2 domains of Robo1 plays an important functional role in promoting the Robo1-Slit interaction. Moreover, variations in the sulfation pattern and size of HS were found to affect its binding affinity and selectivity to interact with different conformations of Robo1. Both MS measurements and CIU experiments show that the Robo1-HS interaction requires the presence of a specific size and pattern of modification of HS. Furthermore, the effect of N-glycosylation on the conformation of Robo1 and its binding modes with HS is reported. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yuejie Zhao
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jeong Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David F Thieker
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
117
|
Sinz A. Cross‐Linking/Mass Spectrometry for Studying Protein Structures and Protein–Protein Interactions: Where Are We Now and Where Should We Go from Here? Angew Chem Int Ed Engl 2018; 57:6390-6396. [DOI: 10.1002/anie.201709559] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of PharmacyMartin Luther University Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle (Saale) Germany
| |
Collapse
|
118
|
Sinz A. Vernetzung/Massenspektrometrie zur Untersuchung von Proteinstrukturen und Protein‐Protein‐Wechselwirkungen: Wo stehen wir und welchen Weg wollen wir einschlagen? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Sinz
- Abteilung für Pharmazeutische Chemie & BioanalytikInstitut für PharmazieMartin-Luther-Universität Halle-Wittenberg Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale) Deutschland
| |
Collapse
|
119
|
Structural Lipids Enable the Formation of Functional Oligomers of the Eukaryotic Purine Symporter UapA. Cell Chem Biol 2018; 25:840-848.e4. [PMID: 29681524 PMCID: PMC6058078 DOI: 10.1016/j.chembiol.2018.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
The role of membrane lipids in modulating eukaryotic transporter assembly and function remains unclear. We investigated the effect of membrane lipids in the structure and transport activity of the purine transporter UapA from Aspergillus nidulans. We found that UapA exists mainly as a dimer and that two lipid molecules bind per UapA dimer. We identified three phospholipid classes that co-purified with UapA: phosphatidylcholine, phosphatidylethanolamine (PE), and phosphatidylinositol (PI). UapA delipidation caused dissociation of the dimer into monomers. Subsequent addition of PI or PE rescued the UapA dimer and allowed recovery of bound lipids, suggesting a central role of these lipids in stabilizing the dimer. Molecular dynamics simulations predicted a lipid binding site near the UapA dimer interface. Mutational analyses established that lipid binding at this site is essential for formation of functional UapA dimers. We propose that structural lipids have a central role in the formation of functional, dimeric UapA. Mass spectrometry reveals specific lipid binding to the eukaryotic transporter UapA Interfacial lipids stabilize the functional UapA dimer MD simulations reveal the lipid binding sites Mutagenesis of a lipid binding site disrupts UapA dimerization and function in vivo
Collapse
|
120
|
May JC, Jurneczko E, Stow SM, Kratochvil I, Kalkhof S, McLean JA. Conformational Landscapes of Ubiquitin, Cytochrome c, and Myoglobin: Uniform Field Ion Mobility Measurements in Helium and Nitrogen Drift Gas. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:79-90. [PMID: 29915518 PMCID: PMC6003721 DOI: 10.1016/j.ijms.2017.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, a commercial uniform field drift tube ion mobility-mass spectrometer (IM-MS) was utilized to measure the gas-phase conformational populations of three well-studied proteins: ubiquitin (8566 Da), cytochrome c (12,359 Da), and myoglobin in both apo and holo forms (16,951 and 17,567 Da, respectively) in order to evaluate the use of this technology for broadscale structural proteomics applications. Proteins were electrosprayed from either acidic organic (pH ~3) or aqueous buffered (pH ~6.6) solution phase conditions, which generated a wide range of cation charge states corresponding to both extended (unfolded) and compact (folded) gas-phase conformational populations. Corresponding collision cross section (CCS) measurements were compiled for significant ion mobility peak features observed at each charge state in order to map the conformational landscapes of these proteins in both helium and nitrogen drift gases. It was observed that the conformational landscapes were similar in both drift gases, with differences being attributed primarily to ion heating during helium operation due to the necessity of operating the instrument with higher pressure differentials. Higher resolving powers were observed in nitrogen, which allowed for slightly better structural resolution of closely-spaced conformer populations. The instrumentation was found to be particularly adept at measuring low abundance conformers which are only present under gentle conditions which minimize ion heating. This work represents the single largest ion mobility CCS survey published to date for these three proteins with 266 CCS values and 117 ion mobility spectra, many of which have not been previously reported.
Collapse
Affiliation(s)
- Jody C. May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Integrative Biosystems Research and Education, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
| | - Ewa Jurneczko
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Integrative Biosystems Research and Education, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
| | - Sarah M. Stow
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Integrative Biosystems Research and Education, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
| | - Isabel Kratochvil
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, 04103 Leipzig, Germany
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Integrative Biosystems Research and Education, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
| |
Collapse
|
121
|
Sallam S, Dolog I, Paik BA, Jia X, Kiick KL, Wesdemiotis C. Sequence and Conformational Analysis of Peptide–Polymer Bioconjugates by Multidimensional Mass Spectrometry. Biomacromolecules 2018; 19:1498-1507. [DOI: 10.1021/acs.biomac.7b01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sahar Sallam
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, Jazan University, Jazan, Saudi Arabia
| | - Ivan Dolog
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Bradford A. Paik
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xinqiao Jia
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
122
|
Zanotto L, Heerdt G, Souza PCT, Araujo G, Skaf MS. High performance collision cross section calculation-HPCCS. J Comput Chem 2018; 39:1675-1681. [PMID: 29498071 DOI: 10.1002/jcc.25199] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
Since the commercial introduction of Ion Mobility coupled with Mass Spectrometry (IM-MS) devices in 2003, a large number of research laboratories have embraced the technique. IM-MS is a fairly rapid experiment used as a molecular separation tool and to obtain structural information. The interpretation of IM-MS data is still challenging and relies heavily on theoretical calculations of the molecule's collision cross section (CCS) against a buffer gas. Here, a new software (HPCCS) is presented, which performs CCS calculations using high perfomance computing techniques. Based on the trajectory method, HPCCS can accurately calculate CCS for a great variety of molecules, ranging from small organic molecules to large protein complexes, using helium or nitrogen as buffer gas with considerable gains in computer time compared to publicly available codes under the same level of theory. HPCCS is available as free software under the Academic Use License at https://github.com/cepid-cces/hpccs. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leandro Zanotto
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Gabriel Heerdt
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Paulo C T Souza
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil.,Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, 9747, AG, The Netherlands
| | - Guido Araujo
- Institute of Computing and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|
123
|
Eyers CE, Vonderach M, Ferries S, Jeacock K, Eyers PA. Understanding protein–drug interactions using ion mobility–mass spectrometry. Curr Opin Chem Biol 2018; 42:167-176. [DOI: 10.1016/j.cbpa.2017.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023]
|
124
|
Stuchfield D, Barran P. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Curr Opin Chem Biol 2018; 42:177-185. [DOI: 10.1016/j.cbpa.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 02/05/2023]
|
125
|
Ion mobility in the pharmaceutical industry: an established biophysical technique or still niche? Curr Opin Chem Biol 2018; 42:147-159. [DOI: 10.1016/j.cbpa.2017.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
|
126
|
Fang Y, Wang Z, Li Y, Quan Y, Cheng Y. The amplified electrochemiluminescence response signal promoted by the Ir(iii)-containing polymer complex. Analyst 2018; 143:2405-2410. [DOI: 10.1039/c8an00426a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Ir(iii)-containing polymer complex can emit an apparently enhanced ECL signal using TPrA as a co-reactant in CH3CN solution due to the effective intramolecular metal–ligand charge transfer (MLCT) from the Ir(iii)-complex centre to the polymer backbone.
Collapse
Affiliation(s)
- Yayun Fang
- Department of Polymer Science & Engineering
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Ziyu Wang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Yang Li
- Department of Polymer Science & Engineering
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Yiwu Quan
- Department of Polymer Science & Engineering
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
127
|
Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 2018; 8:22335-22350. [PMID: 35539746 PMCID: PMC9081429 DOI: 10.1039/c8ra01574k] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolomics is the systematic study of all the metabolites present within a biological system, which consists of a mass of molecules, having a variety of physical and chemical properties and existing over an extensive dynamic range in biological samples. Diverse analytical techniques are needed to achieve higher coverage of metabolites. The application of mass spectrometry (MS) in metabolomics has increased exponentially since the discovery and development of electrospray ionization and matrix-assisted laser desorption ionization techniques. Significant advances have also occurred in separation-based MS techniques (gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and ion mobility-mass spectrometry), as well as separation-free MS techniques (direct infusion-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, mass spectrometry imaging, and direct analysis in real time mass spectrometry) in the past decades. This review presents a brief overview of the recent advanced MS techniques and their latest applications in metabolomics. The software/websites for MS result analyses are also reviewed. Metabolomics is the systematic study of all the metabolites present within a biological system, supply functional information and has received extensive attention in the field of life sciences.![]()
Collapse
Affiliation(s)
- Jun-Ling Ren
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ling Kong
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
128
|
Sallam S, Luo Y, Becker ML, Wesdemiotis C. Multidimensional mass spectrometry characterization of isomeric biodegradable polyesters. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:402-410. [PMID: 29183194 DOI: 10.1177/1469066717711401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The biodegradable polyester copolymer poly(propylene fumarate) (PPF) is increasingly utilized in bone tissue engineering studies due to its suitability as inert cross-linkable scaffold material. The well-defined poly(propylene fumarate) oligomers needed for this purpose are synthesized by post-polymerization isomerization of poly(propylene maleate), which is prepared by ring opening polymerization of maleic anhydride and propylene oxide. In this study, multidimensional mass spectrometry methodologies, interfacing matrix-assisted laser desorption ionization and electrospray ionization with mass analysis, tandem mass spectrometry fragmentation and/or ion mobility mass spectrometry, have been employed to characterize the composition, end groups, chain connectivity and isomeric purity of the isomeric copolyesters poly(propylene maleate)and poly(propylene fumarate). It is demonstrated that the polymerization catalyst is incorporated into the polymer chain (as the initiating chain end) and that the poly(propylene maleate) to poly(propylene fumarate) isomerization using an amine base proceeds with quantitative yield. Hydrolytic degradation is shown not to alter the double bond geometry of the poly(propylene fumarate) or poly(propylene maleate) chains.
Collapse
Affiliation(s)
- Sahar Sallam
- 1 Department of Chemistry, The University of Akron, Akron, OH, USA
| | - Yuanyuan Luo
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Matthew L Becker
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Chrys Wesdemiotis
- 1 Department of Chemistry, The University of Akron, Akron, OH, USA
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| |
Collapse
|
129
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
130
|
Marchand A, Livet S, Rosu F, Gabelica V. Drift Tube Ion Mobility: How to Reconstruct Collision Cross Section Distributions from Arrival Time Distributions? Anal Chem 2017; 89:12674-12681. [DOI: 10.1021/acs.analchem.7b01736] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Adrien Marchand
- INSERM, CNRS, Université
Bordeaux, Laboratoire Acides Nucléiques Régulations
Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Sandrine Livet
- INSERM, CNRS, Université
Bordeaux, Laboratoire Acides Nucléiques Régulations
Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Frédéric Rosu
- CNRS, INSERM, Université
Bordeaux, Institut Européen de Chimie et Biologie (IECB, UMS3033,
US001), 2 rue Robert Escarpit, 33607 Pessac, France
| | - Valérie Gabelica
- INSERM, CNRS, Université
Bordeaux, Laboratoire Acides Nucléiques Régulations
Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
131
|
Ahdash Z, Lau AM, Byrne RT, Lammens K, Stüetzer A, Urlaub H, Booth PJ, Reading E, Hopfner KP, Politis A. Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex. Nucleic Acids Res 2017; 45:12025-12038. [PMID: 29149348 PMCID: PMC5715905 DOI: 10.1093/nar/gkx890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023] Open
Abstract
The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA.
Collapse
Affiliation(s)
- Zainab Ahdash
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Andy M. Lau
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Robert Thomas Byrne
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 München, Germany
| | - Katja Lammens
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 München, Germany
| | - Alexandra Stüetzer
- Bioanalytical Mass Spectrometry Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Paula J. Booth
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Eamonn Reading
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 München, Germany
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
132
|
Recent advances in ion mobility-mass spectrometry for improved structural characterization of glycans and glycoconjugates. Curr Opin Chem Biol 2017; 42:1-8. [PMID: 29080446 DOI: 10.1016/j.cbpa.2017.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022]
Abstract
Glycans and glycoconjugates are involved in regulating a vast array of cellular and molecular processes. Despite the importance of glycans in biology and disease, characterization of glycans remains difficult due to their structural complexity and diversity. Mass spectrometry (MS)-based techniques have emerged as the premier analytical tools for characterizing glycans. However, traditional MS-based strategies struggle to distinguish the large number of coexisting isomeric glycans that are indistinguishable by mass alone. Because of this, ion mobility spectrometry coupled to MS (IM-MS) has received considerable attention as an analytical tool for improving glycan characterization due to the capability of IM to resolve isomeric glycans before MS measurements. In this review, we present recent improvements in IM-MS instrumentation and methods for the structural characterization of isomeric glycans. In addition, we highlight recent applications of IM-MS that illustrate the enormous potential of this technology in a variety of research areas, including glycomics, glycoproteomics, and glycobiology.
Collapse
|
133
|
Laszlo KJ, Bush MF. Effects of Charge State, Charge Distribution, and Structure on the Ion Mobility of Protein Ions in Helium Gas: Results from Trajectory Method Calculations. J Phys Chem A 2017; 121:7768-7777. [PMID: 28910102 DOI: 10.1021/acs.jpca.7b08154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Collision cross section (Ω) values of gas-phase ions of proteins and protein complexes are used to probe the structures of the corresponding species in solution. Ions of many proteins exhibit increasing Ω-values with increasing charge state but most Ω-values calculated for protein ions have used simple collision models that do not explicitly account for charge. Here we use a combination of ion mobility mass spectrometry experiments with helium gas and trajectory method calculations to characterize the extents to which increases in experimental Ω-values with increasing charge state may be attributed to increased momentum transfer concomitant with enhanced long-range interactions between the protein ion and helium atoms. Ubiquitin and C-to-N terminally linked diubiquitin ions generated from different solution conditions exhibit more than a 2-fold increase in Ω with increasing charge state. For native and energy-relaxed models of the proteins and most methods for distributing charge, Ω-values calculated using the trajectory method increase by less than 1% over the range of charge states observed from typical solution conditions used for native mass spectrometry. However, the calculated Ω-values increase by 10% to 15% over the full range of charge states observed from all solution conditions. Therefore, contributions from enhanced ion-induced dipole interactions with increasing charge state are significant but without additional structural changes can account for only a fraction of the increase in Ω observed experimentally. On the basis of these results, we suggest guidelines for calculating Ω-values in the context of applications in biophysics and structural biology.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
134
|
Devine PWA, Fisher HC, Calabrese AN, Whelan F, Higazi DR, Potts JR, Lowe DC, Radford SE, Ashcroft AE. Investigating the Structural Compaction of Biomolecules Upon Transition to the Gas-Phase Using ESI-TWIMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1855-1862. [PMID: 28484973 PMCID: PMC5556138 DOI: 10.1007/s13361-017-1689-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 05/11/2023]
Abstract
Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Paul W A Devine
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Henry C Fisher
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona Whelan
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel R Higazi
- Ipsen Ltd. UK, Wrexham Industrial Estate, 9 Ash Road North, Wrexham, LL13 9UF, UK
| | | | - David C Lowe
- MedImmune, Sir Aaron Klug Building, Granta Science Park, Cambridge, CB21 6GH, UK
| | - Sheena E Radford
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E Ashcroft
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
135
|
Konermann L. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1827-1835. [PMID: 28710594 DOI: 10.1007/s13361-017-1739-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/12/2023]
Abstract
Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4+ and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
136
|
Wagner ND, Clemmer DE, Russell DH. ESI-IM-MS and Collision-Induced Unfolding That Provide Insight into the Linkage-Dependent Interfacial Interactions of Covalently Linked Diubiquitin. Anal Chem 2017; 89:10094-10103. [DOI: 10.1021/acs.analchem.7b02932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicole D. Wagner
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
137
|
Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Hann S, Fjeldsted JC. An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements. Anal Chem 2017; 89:9048-9055. [PMID: 28763190 DOI: 10.1021/acs.analchem.7b01729] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collision cross section (CCS) measurements resulting from ion mobility-mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS-based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study, we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (DTCCSN2) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these DTCCSN2 values are evaluated across three additional laboratories on a commercially available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field DTCCSN2 values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.
Collapse
Affiliation(s)
- Sarah M Stow
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Tim J Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU, Vienna) , Vienna 1190, Austria
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | - Teresa Mairinger
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU, Vienna) , Vienna 1190, Austria
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Emma E Rennie
- Agilent Technologies , Santa Clara, California 95051, United States
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Stephan Hann
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU, Vienna) , Vienna 1190, Austria
| | - John C Fjeldsted
- Agilent Technologies , Santa Clara, California 95051, United States
| |
Collapse
|
138
|
He Q, Mao J, Wesdemiotis C, Quirk RP, Foster MD. Synthesis and Isomeric Characterization of Well-Defined 8-Shaped Polystyrene Using Anionic Polymerization, Silicon Chloride Linking Chemistry, and Metathesis Ring Closure. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Qiming He
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Jialin Mao
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Roderic P. Quirk
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Mark D. Foster
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
139
|
Laszlo KJ, Bush MF. Interpreting the Collision Cross Sections of Native-like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions. Anal Chem 2017. [PMID: 28636334 DOI: 10.1021/acs.analchem.7b01474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effects of charge state on structures of native-like cations of serum albumin, streptavidin, avidin, and alcohol dehydrogenase were probed using cation-to-anion proton-transfer reactions (CAPTR), ion mobility, mass spectrometry, and complementary energy-dependent experiments. The CAPTR products all have collision cross-section (Ω) values that are within 5.5% of the original precursor cations. The first CAPTR event for each precursor yields products that have smaller Ω values and frequently exhibit the greatest magnitude of change in Ω resulting from a single CAPTR event. To investigate how the structures of the precursors affect the structures of the products, ions were activated as a function of energy prior to CAPTR. In each case, the Ω values of the activated precursors increase with increasing energy, but the Ω values of the CAPTR products are smaller than the activated precursors. To investigate the stabilities of the CAPTR products, the products were activated immediately prior to ion mobility. These results show that additional structures with smaller or larger Ω values can be populated and that the structures and stabilities of these ions depend most strongly on the identity of the protein and the charge state of the product, rather than the charge state of the precursor or the number of CAPTR events. Together, these results indicate that the excess charges initially present on native-like ions have a modest, but sometimes statistically significant, effect on their Ω values. Therefore, potential contributions from charge state should be considered when using experimental Ω values to elucidate structures in solution.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
140
|
Allen SJ, Eaton RM, Bush MF. Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c. Anal Chem 2017. [PMID: 28636328 DOI: 10.1021/acs.analchem.7b01234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility (IM) is a gas-phase separation technique that is used to determine the collision cross sections of native-like ions of proteins and protein complexes, which are in turn used as restraints for modeling the structures of those analytes in solution. Here, we evaluate the stability of native-like ions using tandem IM experiments implemented using structures for lossless ion manipulations (SLIM). In this implementation of tandem IM, ions undergo a first dimension of IM up to a switch that is used to selectively transmit ions of a desired mobility. Selected ions are accumulated in a trap and then released after a delay to initiate the second dimension of IM. For delays ranging from 16 to 33 231 ms, the collision cross sections of native-like, 7+ cytochrome c ions increase monotonically from 15.1 to 17.1 nm2. The largest products formed in these experiments at near-ambient temperature are still far smaller than those formed in energy-dependent experiments (∼21 nm2). However, the collision cross section increases by ∼2% between delay times of 16 and 211 ms, which may have implications for other IM experiments on these time scales. Finally, two subpopulations from the full population were each mobility selected and analyzed as a function of delay time, showing that the three populations can be differentiated for at least 1 s. Together, these results suggest that elements of native-like structure can have long lifetimes at near-ambient temperature in the gas phase but that gas-phase dynamics should be considered when interpreting results from IM.
Collapse
Affiliation(s)
- Samuel J Allen
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M Eaton
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
141
|
Jhingree JR, Bellina B, Pacholarz KJ, Barran PE. Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1450-1461. [PMID: 28585116 PMCID: PMC5486678 DOI: 10.1007/s13361-017-1692-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jacquelyn R Jhingree
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kamila J Pacholarz
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
142
|
Laszlo KJ, Buckner JH, Munger EB, Bush MF. Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1382-1391. [PMID: 28224394 PMCID: PMC5555649 DOI: 10.1007/s13361-017-1620-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than ~4. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - John H Buckner
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
- Department of Chemistry, Carleton College, One North College Street, Northfield, MN, 55057, USA
| | - Eleanor B Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
143
|
Efficient protein production inspired by how spiders make silk. Nat Commun 2017; 8:15504. [PMID: 28534479 PMCID: PMC5457526 DOI: 10.1038/ncomms15504] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/04/2017] [Indexed: 01/05/2023] Open
Abstract
Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.
Collapse
|
144
|
Semi-automated screen for global protein conformational changes in solution by ion mobility spectrometry–massspectrometry combined with size-exclusion chromatography and differential hydrogen–deuterium exchange. J Chromatogr A 2017; 1496:51-57. [DOI: 10.1016/j.chroma.2017.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
|
145
|
Lai AL, Clerico EM, Blackburn ME, Patel NA, Robinson CV, Borbat PP, Freed JH, Gierasch LM. Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. J Biol Chem 2017; 292:8773-8785. [PMID: 28428246 PMCID: PMC5448104 DOI: 10.1074/jbc.m116.770404] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/12/2017] [Indexed: 11/06/2022] Open
Abstract
Proteins are dynamic entities that populate conformational ensembles, and most functions of proteins depend on their dynamic character. Allostery, in particular, relies on ligand-modulated shifts in these conformational ensembles. Hsp70s are allosteric molecular chaperones with conformational landscapes that involve large rearrangements of their two domains (viz. the nucleotide-binding domain and substrate-binding domain) in response to adenine nucleotides and substrates. However, it remains unclear how the Hsp70 conformational ensemble is populated at each point of the allosteric cycle and how ligands control these populations. We have mapped the conformational species present under different ligand-binding conditions throughout the allosteric cycle of the Escherichia coli Hsp70 DnaK by two complementary methods, ion-mobility mass spectrometry and double electron-electron resonance. Our results obtained under biologically relevant ligand-bound conditions confirm the current picture derived from NMR and crystallographic data of domain docking upon ATP binding and undocking in response to ADP and substrate. Additionally, we find that the helical lid of DnaK is a highly dynamic unit of the structure in all ligand-bound states. Importantly, we demonstrate that DnaK populates a partially docked state in the presence of ATP and substrate and that this state represents an energy minimum on the DnaK allosteric landscape. Because Hsp70s are emerging as potential drug targets for many diseases, fully mapping an allosteric landscape of a molecular chaperone like DnaK will facilitate the development of small molecules that modulate Hsp70 function via allosteric mechanisms.
Collapse
Affiliation(s)
- Alex L Lai
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-2703
| | | | - Mandy E Blackburn
- the School of Environmental, Physical, and Applied Sciences, University of Central Missouri, Warrensburg, Missouri 64093, and
| | - Nisha A Patel
- the Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Carol V Robinson
- the Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Peter P Borbat
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-2703
| | - Jack H Freed
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-2703
| | - Lila M Gierasch
- the Departments of Biochemistry and Molecular Biology and .,Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
146
|
Pacholarz KJ, Burnley RJ, Jowitt TA, Ordsmith V, Pisco JP, Porrini M, Larrouy-Maumus G, Garlish RA, Taylor RJ, de Carvalho LPS, Barran PE. Hybrid Mass Spectrometry Approaches to Determine How L-Histidine Feedback Regulates the Enzyzme MtATP-Phosphoribosyltransferase. Structure 2017; 25:730-738.e4. [PMID: 28392260 PMCID: PMC5415358 DOI: 10.1016/j.str.2017.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/09/2017] [Accepted: 03/09/2017] [Indexed: 11/24/2022]
Abstract
MtATP-phosphoribosyltransferase (MtATP-PRT) is an enzyme catalyzing the first step of the biosynthesis of L-histidine in Mycobacterium tuberculosis, and proposed to be regulated via an allosteric mechanism. Native mass spectrometry (MS) reveals MtATP-PRT to exist as a hexamer. Conformational changes induced by L-histidine binding and the influence of buffer pH are determined with ion mobility MS, hydrogen deuterium exchange (HDX) MS, and analytical ultracentrifugation. The experimental collision cross-section (DTCCSHe) decreases from 76.6 to 73.5 nm2 upon ligand binding at pH 6.8, which correlates to the decrease in CCS calculated from crystal structures. No such changes in conformation were found at pH 9.0. Further detail on the regions that exhibit conformational change on L-histidine binding is obtained with HDX-MS experiments. On incubation with L-histidine, rapid changes are observed within domain III, and around the active site at longer times, indicating an allosteric effect. Hybrid MS approaches map global and local conformational changes in MtATP- PRT IM-MS shows hexameric MtATP-PRT to undergo conformational change on L-histidine binding HDX-MS maps conformational changes to regions close to and remote from the active site
Collapse
Affiliation(s)
- Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, 131 Princess Street, Manchester M1 7DN, UK; School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | | | - Thomas A Jowitt
- The Biomolecular Analysis Facility, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Victoria Ordsmith
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - João Pedro Pisco
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Massimiliano Porrini
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Gérald Larrouy-Maumus
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | | | - Luiz Pedro Sório de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
147
|
Laszlo KJ, Munger EB, Bush MF. Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas Phase. J Phys Chem B 2017; 121:2759-2766. [PMID: 28301724 PMCID: PMC5486214 DOI: 10.1021/acs.jpcb.7b00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The fidelity between the structures of proteins in solution and protein ions in the gas phase is critical to experiments that use gas-phase measurements to infer structures in solution. Here we generate ions of lysozyme, a 129-residue protein whose native tertiary structure contains four internal disulfide bonds, from three solutions that preserve varying extents of the original native structure. We then use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of those ions in the gas phase and ion mobility to probe their structures. The collision cross section (Ω) distributions of each CAPTR product depends to varying extents on the original solution, the charge state of the product, and the charge state of the precursor. For example, the Ω distributions of the 6+ ions depend strongly on the original solutions conditions and to a lesser extent on the charge state of the precursor. Energy-dependent experiments suggest that very different structures are accessible to disulfide-reduced and disulfide-intact ions, but similar Ω distributions are formed at high energy for disulfide-intact ions from denaturing and from aqueous conditions. The Ω distributions of the 3+ ions are all similar but exhibit subtle differences that depend more strongly on the original solutions conditions than other factors. More generally, these results suggest that specific CAPTR products may be especially sensitive to specific elements of structure in solution.
Collapse
Affiliation(s)
- Kenneth J. Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Eleanor B. Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
148
|
High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry. Anal Chim Acta 2017; 961:82-90. [DOI: 10.1016/j.aca.2017.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 11/20/2022]
|
149
|
Ewing SA, Donor MT, Wilson JW, Prell JS. Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:587-596. [PMID: 28194738 PMCID: PMC5634518 DOI: 10.1007/s13361-017-1594-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/09/2016] [Accepted: 12/29/2016] [Indexed: 05/19/2023]
Abstract
Ion mobility-mass spectrometry (IM-MS) can be a powerful tool for determining structural information about ions in the gas phase, from small covalent analytes to large, native-like or denatured proteins and complexes. For large biomolecular ions, which may have a wide variety of possible gas-phase conformations and multiple charge sites, quantitative, physically explicit modeling of collisional cross sections (CCSs) for comparison to IMS data can be challenging and time-consuming. We present a "trajectory method" (TM) based CCS calculator, named "Collidoscope," which utilizes parallel processing and optimized trajectory sampling, and implements both He and N2 as collision gas options. Also included is a charge-placement algorithm for determining probable charge site configurations for protonated protein ions given an input geometry in pdb file format. Results from Collidoscope are compared with those from the current state-of-the-art CCS simulation suite, IMoS. Collidoscope CCSs are within 4% of IMoS values for ions with masses from ~18 Da to ~800 kDa. Collidoscope CCSs using X-ray crystal geometries are typically within a few percent of IM-MS experimental values for ions with mass up to ~3.5 kDa (melittin), and discrepancies for larger ions up to ~800 kDa (GroEL) are attributed in large part to changes in ion structure during and after the electrospray process. Due to its physically explicit modeling of scattering, computational efficiency, and accuracy, Collidoscope can be a valuable tool for IM-MS research, especially for large biomolecular ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Simon A Ewing
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, OR, 97403-1253, USA
| | - Micah T Donor
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, OR, 97403-1253, USA
| | - Jesse W Wilson
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, OR, 97403-1253, USA
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, OR, 97403-1253, USA.
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, OR, 97403-1252, USA.
| |
Collapse
|
150
|
Li J, Lyu W, Rossetti G, Konijnenberg A, Natalello A, Ippoliti E, Orozco M, Sobott F, Grandori R, Carloni P. Proton Dynamics in Protein Mass Spectrometry. J Phys Chem Lett 2017; 8:1105-1112. [PMID: 28207277 DOI: 10.1021/acs.jpclett.7b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University , 350002 Fuzhou, China
| | - Wenping Lyu
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University , 52056 Aachen, Germany
- Computation-Based Science and Technology Research Center, Cyprus Institute , 2121 Aglantzia, Nicosia, Cyprus
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University , 52062 Aachen, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich , D-52425 Jülich, Germany
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Modesto Orozco
- Joint BSC-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona , Avgda Diagonal 647, Barcelona 08028, Spain
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- JARA-HPC, 52425 Jülich, Germany
| |
Collapse
|