101
|
Soft mesoporous organosilica nanorods with gold plasmonic core for significantly enhanced cellular uptake. J Colloid Interface Sci 2019; 550:81-89. [DOI: 10.1016/j.jcis.2019.04.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022]
|
102
|
Kim K, Choi H, Choi ES, Park MH, Ryu JH. Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy. Pharmaceutics 2019; 11:E301. [PMID: 31262049 PMCID: PMC6680416 DOI: 10.3390/pharmaceutics11070301] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/24/2022] Open
Abstract
Hyaluronic acid (HA) has been widely investigated in cancer therapy due to its excellent characteristics. HA, which is a linear anionic polymer, has biocompatibility, biodegradability, non-immunogenicity, non-inflammatory, and non-toxicity properties. Various HA nanomedicines (i.e., micelles, nanogels, and nanoparticles) can be prepared easily using assembly and modification of its functional groups such as carboxy, hydroxy and N-acetyl groups. Nanometer-sized HA nanomedicines can selectively deliver drugs or other molecules into tumor sites via their enhanced permeability and retention (EPR) effect. In addition, HA can interact with overexpressed receptors in cancer cells such as cluster determinant 44 (CD44) and receptor for HA-mediated motility (RHAMM) and be degraded by a family of enzymes called hyaluronidase (HAdase) to release drugs or molecules. By interaction with receptors or degradation by enzymes inside cancer cells, HA nanomedicines allow enhanced targeting cancer therapy. In this article, recent studies about HA nanomedicines in drug delivery systems, photothermal therapy, photodynamic therapy, diagnostics (because of the high biocompatibility), colloidal stability, and cancer targeting are reviewed for strategies using micelles, nanogels, and inorganic nanoparticles.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eun Seong Choi
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Myoung-Hwan Park
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea.
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| |
Collapse
|
103
|
Mabrouk M, Rajendran R, Soliman IE, Ashour MM, Beherei HH, Tohamy KM, Thomas S, Kalarikkal N, Arthanareeswaran G, Das DB. Nanoparticle- and Nanoporous-Membrane-Mediated Delivery of Therapeutics. Pharmaceutics 2019; 11:E294. [PMID: 31234394 PMCID: PMC6631283 DOI: 10.3390/pharmaceutics11060294] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Pharmaceutical particulates and membranes possess promising prospects for delivering drugs and bioactive molecules with the potential to improve drug delivery strategies like sustained and controlled release. For example, inorganic-based nanoparticles such as silica-, titanium-, zirconia-, calcium-, and carbon-based nanomaterials with dimensions smaller than 100 nm have been extensively developed for biomedical applications. Furthermore, inorganic nanoparticles possess magnetic, optical, and electrical properties, which make them suitable for various therapeutic applications including targeting, diagnosis, and drug delivery. Their properties may also be tuned by controlling different parameters, e.g., particle size, shape, surface functionalization, and interactions among them. In a similar fashion, membranes have several functions which are useful in sensing, sorting, imaging, separating, and releasing bioactive or drug molecules. Engineered membranes have been developed for their usage in controlled drug delivery devices. The latest advancement in the technology is therefore made possible to regulate the physico-chemical properties of the membrane pores, which enables the control of drug delivery. The current review aims to highlight the role of both pharmaceutical particulates and membranes over the last fifteen years based on their preparation method, size, shape, surface functionalization, and drug delivery potential.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Rajakumari Rajendran
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Islam E Soliman
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | | | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Khairy M Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | | | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK.
| |
Collapse
|
104
|
Zhang Y, Li Y, Tian H, Zhu Q, Wang F, Fan Z, Zhou S, Wang X, Xie L, Hou Z. Redox-Responsive and Dual-Targeting Hyaluronic Acid–Methotrexate Prodrug Self-Assembling Nanoparticles for Enhancing Intracellular Drug Self-Delivery. Mol Pharm 2019; 16:3133-3144. [PMID: 31198046 DOI: 10.1021/acs.molpharmaceut.9b00359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, P. R. China
| | | | | | | | | | - Song Zhou
- Department of General Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhang Zhou 363000, China
| | - Xiaowen Wang
- Department of General Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhang Zhou 363000, China
| | - Liya Xie
- The First Affiliated Hospital of Xiamen University, Xiamen 361002, China
| | | |
Collapse
|
105
|
Anirudhan T, Sekhar V. C, Nair SS. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
106
|
Ren Q, Liang Z, Jiang X, Gong P, Zhou L, Sun Z, Xiang J, Xu Z, Peng X, Li S, Li W, Cai L, Tang J. Enzyme and pH dual-responsive hyaluronic acid nanoparticles mediated combination of photodynamic therapy and chemotherapy. Int J Biol Macromol 2019; 130:845-852. [DOI: 10.1016/j.ijbiomac.2019.03.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
107
|
Breaking the barricade of oral chemotherapy through polysaccharide nanocarrier. Int J Biol Macromol 2019; 130:34-49. [DOI: 10.1016/j.ijbiomac.2019.02.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023]
|
108
|
Wu ZY, Lee CC, Lin HM. Hyaluronidase-Responsive Mesoporous Silica Nanoparticles with Dual-Imaging and Dual-Target Function. Cancers (Basel) 2019; 11:E697. [PMID: 31137518 PMCID: PMC6562767 DOI: 10.3390/cancers11050697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Nanoparticle-based drug delivery systems are among the most popular research topics in recent years. Compared with traditional drug carriers, mesoporous silica nanoparticles (MSN) offer modifiable surfaces, adjustable pore sizes and good biocompatibility. Nanoparticle-based drug delivery systems have become a research direction for many scientists. With the active target factionalized, scientists could deliver drug carriers into cancer cells successfully. However, drugs in cancer cells could elicit drug resistance and induce cell exocytosis. Thus, the drug cannot be delivered to its pharmacological location, such as the nucleus. Therefore, binding the cell membrane and the nuclear target on the nanomaterial so that the anticancer drug can be delivered to its pharmacological action site is our goal. In this study, MSN-EuGd was synthesized by doping Eu3+ and Gd3+ during the synthesis of MSN. The surface of the material was then connected to the TAT peptide as the nucleus target for targeting the cancer nucleus and then loaded with the anticancer drug camptothecin (CPT). Then, the surface of MSN-EuGd was bonded to the hyaluronic acid as an active target and gatekeeper. With this system, it is possible and desirable to achieve dual imaging and dual targeting, as well as to deliver drugs to the cell nucleus under a hyaluronidase-controlled release. The experimental approach is divided into three parts. First, we conferred the material with fluorescent and magnetic dual-imaging property by doping Eu3+ and Gd3+ into the MSN. Second, modification of the cell membrane target molecule and the nucleus target molecule occurred on the surface of the nanoparticle, making the nanoparticle a target drug carrier. Third, the loading of drug molecules into the carrier gave the entire carrier a specific target profile and enabled the ability to treat cancer. In this study, we investigated the basic properties of the drug carrier, including physical properties, chemical properties, and in vitro tests. The result showed that we have successfully designed a drug delivery system that recognizes normal cells and cancer cells and has good anticancer effects.
Collapse
Affiliation(s)
- Zhi-Yuan Wu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Cheng-Chang Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
109
|
Vergaro V, Pisano I, Grisorio R, Baldassarre F, Mallamaci R, Santoro A, Suranna GP, Papadia P, Fanizzi FP, Ciccarella G. CaCO 3 as an Environmentally Friendly Renewable Material for Drug Delivery Systems: Uptake of HSA-CaCO 3 Nanocrystals Conjugates in Cancer Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1481. [PMID: 31067790 PMCID: PMC6539763 DOI: 10.3390/ma12091481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023]
Abstract
Chemical and biochemical functionalization of nanoparticles (NPs) can lead to an active cellular uptake enhancing their efficacy thanks to the targeted localization in tumors. In the present study calcium carbonate nano-crystals (CCNs), stabilized by an alcohol dehydration method, were successfully modified by grafting human serum albumin (HSA) on the surface to obtain a pure protein corona. Two types of CCNs were used: naked CaCO3 and the (3-aminopropyl)triethoxysilane (APTES) modified CaCO3-NH2. The HSA conjugation with naked CCN and amino-functionalized CCN (CCN-NH2) was established through the investigation of modification in size, zeta potential, and morphology by Transmission Electron Microscopy (TEM). The amount of HSA coating on the CCNs surface was assessed by spectrophotometry. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) confirmed the grafting of APTES to the surface and successive adsorption of HSA. Furthermore, to evaluate the effect of protein complexation of CCNs on cellular behavior, bioavailability, and biological responses, three human model cancer cell lines, breast cancer (MCF7), cervical cancer (HeLa), and colon carcinoma (Caco-2) were selected to characterize the internalization kinetics, localization, and bio-interaction of the protein-enclosed CCNs. To monitor internalization of the various conjugates, chemical modification with fluorescein-isothiocyanate (FITC) was performed, and their stability over time was measured. Confocal microscopy was used to probe the uptake and confirm localization in the perinuclear region of the cancer cells. Flow cytometry assays confirmed that the bio-functionalization influence cellular uptake and the CCNs behavior depends on both cell line and surface features.
Collapse
Affiliation(s)
- Viviana Vergaro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Isabella Pisano
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari «Aldo Moro», Via E. Orabona 4, I-70125 Bari, Italy.
| | - Roberto Grisorio
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Ingegneria Civile Ambientale, Del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari Via Orabona 4, 70125 Bari, Italy.
| | - Francesca Baldassarre
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Rosanna Mallamaci
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari «Aldo Moro», Via E. Orabona 4, I-70125 Bari, Italy.
| | - Antonella Santoro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Via Amendola 165/A, 70126 Bari, Italy.
| | - Gian Paolo Suranna
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Ingegneria Civile Ambientale, Del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari Via Orabona 4, 70125 Bari, Italy.
| | - Paride Papadia
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Ciccarella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
110
|
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 2019; 196:189-204. [PMID: 30963549 PMCID: PMC6468175 DOI: 10.1111/cei.13287] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is easy to argue that vaccine development represents humankind's most important and successful endeavour, such is the impact that vaccination has had on human morbidity and mortality over the last 200 years. During this time the original method of Jenner and Pasteur, i.e. that of injecting live-attenuated or inactivated pathogens, has been developed and supplemented with a wide range of alternative approaches which are now in clinical use or under development. These next-generation technologies have been designed to produce a vaccine that has the effectiveness of the original live-attenuated and inactivated vaccines, but without the associated risks and limitations. Indeed, the method of development has undoubtedly moved away from Pasteur's three Is paradigm (isolate, inactivate, inject) towards an approach of rational design, made possible by improved knowledge of the pathogen-host interaction and the mechanisms of the immune system. These novel vaccines have explored methods for targeted delivery of antigenic material, as well as for the control of release profiles, so that dosing regimens can be matched to the time-lines of immune system stimulation and the realities of health-care delivery in dispersed populations. The methods by which vaccines are administered are also the subject of intense research in the hope that needle and syringe dosing, with all its associated issues regarding risk of injury, cross-infection and patient compliance, can be replaced. This review provides a detailed overview of new vaccine vectors as well as information pertaining to the novel delivery platforms under development.
Collapse
Affiliation(s)
- J. Wallis
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - D. P. Shenton
- Defence Science and Technology LaboratoryPorton DownUK
| | - R. C. Carlisle
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| |
Collapse
|
111
|
Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy. Carbohydr Polym 2019; 209:161-171. [DOI: 10.1016/j.carbpol.2019.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
|
112
|
Tirella A, Kloc-Muniak K, Good L, Ridden J, Ashford M, Puri S, Tirelli N. CD44 targeted delivery of siRNA by using HA-decorated nanotechnologies for KRAS silencing in cancer treatment. Int J Pharm 2019; 561:114-123. [DOI: 10.1016/j.ijpharm.2019.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
|
113
|
Huang G, Chen J. Preparation and applications of hyaluronic acid and its derivatives. Int J Biol Macromol 2019; 125:478-484. [DOI: 10.1016/j.ijbiomac.2018.12.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022]
|
114
|
Fortuni B, Inose T, Ricci M, Fujita Y, Van Zundert I, Masuhara A, Fron E, Mizuno H, Latterini L, Rocha S, Uji-I H. Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Sci Rep 2019; 9:2666. [PMID: 30804375 PMCID: PMC6389875 DOI: 10.1038/s41598-019-39107-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Most targeting strategies of anticancer drug delivery systems (DDSs) rely on the surface functionalization of nanocarriers with specific ligands, which trigger the internalization in cancer cells via receptor-mediated endocytosis. The endocytosis implies the entrapment of DDSs in acidic vesicles (endosomes and lysosomes) and their eventual ejection by exocytosis. This process, intrinsic to eukaryotic cells, is one of the main drawbacks of DDSs because it reduces the drug bioavailability in the intracellular environment. The escape of DDSs from the acidic vesicles is, therefore, crucial to enhance the therapeutic performance at low drug dose. To this end, we developed a multifunctionalized DDS that combines high specificity towards cancer cells with endosomal escape capabilities. Doxorubicin-loaded mesoporous silica nanoparticles were functionalized with polyethylenimine, a polymer commonly used to induce endosomal rupture, and hyaluronic acid, which binds to CD44 receptors, overexpressed in cancer cells. We show irrefutable proof that the developed DDS can escape the endosomal pathway upon polymeric functionalization. Interestingly, the combination of the two polymers resulted in higher endosomal escape efficiency than the polyethylenimine coating alone. Hyaluronic acid additionally provides the system with cancer targeting capability and enzymatically controlled drug release. Thanks to this multifunctionality, the engineered DDS had cytotoxicity comparable to the pure drug whilst displaying high specificity towards cancer cells. The polymeric engineering here developed enhances the performance of DDS at low drug dose, holding great potential for anticancer therapeutic applications.
Collapse
Affiliation(s)
- Beatrice Fortuni
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
| | - Tomoko Inose
- RIES Hokkaido University, Research Institute for Electronic Science, N20W10, Kita-Ward Sapporo, 0010020, Japan
| | - Monica Ricci
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Yasuhiko Fujita
- Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga, 520-8567, Japan
| | - Indra Van Zundert
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Akito Masuhara
- Yamagata University, department of Engineering, Yonezawa, Yamagata, 992-8510, Japan
| | - Eduard Fron
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Hideaki Mizuno
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Loredana Latterini
- University of Perugia, department of Chemistry, Biology and Biotechnology, via Elce di sotto 8, Perugia, Italy
| | - Susana Rocha
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
| | - Hiroshi Uji-I
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
- RIES Hokkaido University, Research Institute for Electronic Science, N20W10, Kita-Ward Sapporo, 0010020, Japan.
| |
Collapse
|
115
|
Guglielmi V, Carton F, Vattemi G, Arpicco S, Stella B, Berlier G, Marengo A, Boschi F, Malatesta M. Uptake and intracellular distribution of different types of nanoparticles in primary human myoblasts and myotubes. Int J Pharm 2019; 560:347-356. [PMID: 30797075 DOI: 10.1016/j.ijpharm.2019.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/22/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
The use of nanoparticles as drug carriers in the field of skeletal muscle diseases has been poorly addressed and the interaction of nanoparticles with skeletal muscle cells has been investigated almost exclusively on C2C12 murine myoblasts. In this study we investigated the effects poly(lactide-co-glycolide) nanoparticles, mesoporous silica nanoparticles and liposomes, on the viability of primary human myoblasts and analyzed their cellular uptake and intracellular distribution in both primary human myoblasts and myotubes. Our data demonstrate that poly(lactide-co-glycolide) nanoparticles do not negatively affect myoblasts viability, contrarily to mesoporous silica nanoparticles and liposomes that induce a decrease in cell viability at the highest doses and longest incubation time. Poly(lactide-co-glycolide) nanoparticles and mesoporous silica nanoparticles are internalized by endocytosis, poly(lactide-co-glycolide) nanoparticles undergo endosomal escape whereas mesoporous silica nanoparticles always occur within vacuoles. Liposomes were rarely observed within the cells. The uptake of all tested nanoparticles was less prominent in primary human myotubes as compared to myoblasts. Our findings represent the first step toward the characterization of the interaction between nanoparticles and primary human muscle cells and suggest that poly(lactide-co-glycolide) nanoparticles might find an application for drug delivery to skeletal muscle.
Collapse
Affiliation(s)
- V Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| | - F Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| | - G Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, P.le L.A. Scuro, 10 - 37134 Verona, Italy
| | - S Arpicco
- Department of Drug Science and Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | - B Stella
- Department of Drug Science and Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | - G Berlier
- Department of Chemistry and NIS Centre, University of Torino, Via P. Giuria, 7 - 10125 Torino, Italy
| | - A Marengo
- Department of Drug Science and Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | - F Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie, 15 - 37134 Verona, Italy
| | - M Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy.
| |
Collapse
|
116
|
Li P, Liu L, Lu Q, Yang S, Yang L, Cheng Y, Wang Y, Wang S, Song Y, Tan F, Li N. Ultrasmall MoS 2 Nanodots-Doped Biodegradable SiO 2 Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5771-5781. [PMID: 30653297 DOI: 10.1021/acsami.8b18924] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, we developed ultrasmall molybdenum disulfide (MoS2) quantum dots for computed tomography (CT) and multispectral optoacoustic tomography (MSOT) imaging-guided photothermal therapy (PTT). But, due to rapid body elimination and limited blood circulation time, the tumor uptake of the dots is low. In our study, this problem was solved via designing an amino-modified biodegradable nanomaterial based on MoS2 quantum-dots-doped disulfide-based SiO2 nanoparticles (denoted MoS2@ss-SiO2) for multimodal application. By integrating the MoS2 quantum dots into clearable SiO2 nanoparticles, this nanoplatform with an appropriate particle size can not only degrade and excrete in a reasonable period induced by redox responsiveness of glutathione but also exhibit a high tumor uptake due to the longer blood circulation time. Moreover, hyaluronic acid and chlorin e6 (Ce6) were adsorbed on the outer shell for tumor-targeting effect and photodynamic therapy, respectively. So, this biodegradable and clearable theranostic nanocomposite, which is applicable in integrated fluorescence/CT/MSOT imaging-guided combined photothermal therapy (PTT) and photodynamic therapy, is very promising in biomedical applications in the future.
Collapse
Affiliation(s)
- Peishan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - Li Liu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - Qianglan Lu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - Shan Yang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - Lifang Yang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - Yu Cheng
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - YiDan Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - SiYu Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - YiLin Song
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - Fengping Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , 300072 Tianjin , P. R. China
| |
Collapse
|
117
|
Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 2019; 16:219-237. [DOI: 10.1080/17425247.2019.1575806] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
118
|
Costanzo M, Vurro F, Cisterna B, Boschi F, Marengo A, Montanari E, Meo CD, Matricardi P, Berlier G, Stella B, Arpicco S, Malatesta M. Uptake and intracellular fate of biocompatible nanocarriers in cycling and noncycling cells. Nanomedicine (Lond) 2019; 14:301-316. [PMID: 30667300 DOI: 10.2217/nnm-2018-0148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM To elucidate whether different cytokinetic features (i.e., presence or absence of mitotic activity) may influence cell uptake and distribution of nanocarriers, in vitro tests on liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were carried out on C2C12 murine muscle cells either able to proliferate as myoblasts (cycling cells) or terminally differentiate into myotubes (noncycling cells). MATERIALS & METHODS Cell uptake and intracellular fate of liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were investigated by confocal fluorescence microscopy and transmission electron microscopy. RESULTS Nanocarrier internalization and distribution were similar in myoblasts and myotubes; however, myotubes demonstrated a lower uptake capability. CONCLUSION All nanocarriers proved to be suitably biocompatible for both myoblasts and myotubes. The lower uptake capability of myotubes is probably due to different plasma membrane composition related to the differentiation process.
Collapse
Affiliation(s)
- Manuela Costanzo
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| | - Federica Vurro
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie, 15 - 37134 Verona, Italy
| | - Alessandro Marengo
- Department of Drug Science & Technology, University of Turin, Via P. Giuria, 9 - 10125 Torino, Italy
| | - Elita Montanari
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro, 5 - 00185 Roma, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro, 5 - 00185 Roma, Italy
| | - Pietro Matricardi
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro, 5 - 00185 Roma, Italy
| | - Gloria Berlier
- Department of Chemistry & NIS Centre, University of Turin, Via P. Giuria, 7 - 10125 Torino, Italy
| | - Barbara Stella
- Department of Drug Science & Technology, University of Turin, Via P. Giuria, 9 - 10125 Torino, Italy
| | - Silvia Arpicco
- Department of Drug Science & Technology, University of Turin, Via P. Giuria, 9 - 10125 Torino, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| |
Collapse
|
119
|
Zhang Y, Xing Y, Xian M, Shuang S, Dong C. Folate-targeting and bovine serum albumin-gated mesoporous silica nanoparticles as a redox-responsive carrier for epirubicin release. NEW J CHEM 2019. [DOI: 10.1039/c8nj05476b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A targeted DDS with covalently conjugated BSA and folate for GSH-triggered drug release and recognition of FR-positive cancer cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yang Xing
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Ming Xian
- Department of chemistry
- Washington State University
- Pullman
- USA
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
120
|
Yan X, Chen Q, An J, Liu DE, Huang Y, Yang R, Li W, Chen L, Gao H. Hyaluronic acid/PEGylated amphiphilic nanoparticles for pursuit of selective intracellular doxorubicin release. J Mater Chem B 2019; 7:95-102. [DOI: 10.1039/c8tb02370k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of nanomedicine possessing anticancer and antimicrobial agents to combat microbes in tumor tissues to alleviate cancer-drugs resistance.
Collapse
Affiliation(s)
- Xiangjie Yan
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| | - Qixian Chen
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jinxia An
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| | - De-E Liu
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| | - Yongkang Huang
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| | - Rui Yang
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| | - Wei Li
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| | - Li Chen
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| | - Hui Gao
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
| |
Collapse
|
121
|
Batra H, Pawar S, Bahl D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol Res 2018; 139:91-105. [PMID: 30408575 DOI: 10.1016/j.phrs.2018.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022]
Abstract
A huge surge of research is being conducted on combination therapy with anticancer compounds formulated in the form of nanoparticles (NPs). Numerous advantages like dose minimalization and synergism, reversal of multi drug resistance (MDRs), enhanced efficacy have emerged with nanoencapsulation of chemotherapeutic agents with chemo-sensitizing agent like curcumin. Within last couple of years various nano-sized formulations have been designed and tested both in vitro with cell lines for different types of cancers and in vivo with cancer types and drug resistance models. Despite the combinatorial models being advanced, translation to human trials has not been as smooth as one would have hoped, with as few as twenty ongoing clinical trials with curcumin combination, with less than 1/10th being nano-particulate formulations. Mass production of nano-formulation based on their physico-chemical and pharmacokinetics deficits poses as major hurdle up the ladder. Combination of these nano-sized dosage with poorly bioavailable drugs, unspecific target binding ability and naturally unstable curcumin further complicates the formulation aspects. Emphasis is now therefore being laid on altering natural forms of curcumin and usage of formulations like prodrug or coating of curcumin to overcome stability issues and focus more on enhancing the pharmaceutical and therapeutic ability of the nano-composites. Current studies and futuristic outlook in this direction are discussed in the review, which can serve as the basis for upcoming research which could boost commercial translational of improved nano-sized curcumin combination chemotherapy.
Collapse
Affiliation(s)
- Harshul Batra
- Neuroscience Institute & Center for Behavioral Neuroscience, Georgia State University, 789 Petit Science Center, Atlanta, GA, 30303, United States.
| | - Shrikant Pawar
- Department of Computer Science, Georgia State University, 34 Peachtree Street, Atlanta, GA, 30303, United States; Department of Biology, Georgia State University, 34 Peachtree Street, Atlanta, GA, 30303, United States
| | - Dherya Bahl
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
122
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
123
|
Peretti E, Miletto I, Stella B, Rocco F, Berlier G, Arpicco S. Strategies to Obtain Encapsulation and Controlled Release of Pentamidine in Mesoporous Silica Nanoparticles. Pharmaceutics 2018; 10:pharmaceutics10040195. [PMID: 30347763 PMCID: PMC6320796 DOI: 10.3390/pharmaceutics10040195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Pentamidine (PTM), an antiprotozoal agent used in clinics as pentamidine isethionate salt (PTM-S), recently showed high potential also for the treatment of cancer and myotonic dystrophy type I. However, a severe limit to the systemic administration of PTM is represented by its nephrotoxicity, leading to the need for a system able to achieve a controlled release of the drug. In this study, mesoporous silica nanoparticles (MSNs) were employed for the first time to encapsulate PTM. PTM-S was first used for loading experiments into bare (MSN-OH) and aminopropyl, cyanopropyl and carboxypropyl-functionalized MSNs (MSN-NH2, MSN-CN and MSN-COOH respectively) but it was not adequately loaded in any MSNs. The free base of PTM (PTM-B) was then obtained from PTM-S and successfully loaded into MSNs. Specifically, MSN-COOH exhibited the highest loading capacity. In vitro evaluation of PTM-B kinetic release from the different MSNs was carried out. An influence of the functional groups in slowing the release of the drug, when compared to bare MSNs was observed. Altogether, these results demonstrate that MSN-COOH could be a promising system to achieve a controlled release of PTM.
Collapse
Affiliation(s)
- Enrico Peretti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino, Italy.
| | - Ivana Miletto
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", 15121 Alessandria, Italy.
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
| | - Flavio Rocco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
| | - Gloria Berlier
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, 10125 Torino, Italy.
| | - Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
| |
Collapse
|
124
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
125
|
Abstract
Hyaluronic acid has good biocompatibility, biodegradability, and nonimmunogenicity. In addition, it has the ability to recognize specific receptors that are overexpressed on the surface of tumor cells, and cancer drugs can be targeted to the tumor cells to better kill them. Therefore, hyaluronic acid has attracted much attention as drug delivery vehicle. Herein, the application of hyaluronic acid as carrier in drug delivery was analyzed and summarized in detail. It showed that hyaluronic acid would have broad prospects for drug delivery.
Collapse
Affiliation(s)
- Gangliang Huang
- a Active Carbohydrate Research Institute, Chongqing Normal University , Chongqing , P. R. China
| | - Hualiang Huang
- b School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan , P. R. China
| |
Collapse
|
126
|
Sunguroğlu C, Sezgin DE, Aytar Çelik P, Çabuk A. Higher titer hyaluronic acid production in recombinant Lactococcus lactis. Prep Biochem Biotechnol 2018; 48:734-742. [DOI: 10.1080/10826068.2018.1508036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Cansu Sunguroğlu
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Dilber Ece Sezgin
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Pınar Aytar Çelik
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ahmet Çabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
127
|
Liu M, Xu Y, Huang C, Jia T, Zhang X, Yang DP, Jia N. Hyaluronic acid-grafted three-dimensional MWCNT array as biosensing interface for chronocoulometric detection and fluorometric imaging of CD44-overexpressing cancer cells. Mikrochim Acta 2018; 185:338. [DOI: 10.1007/s00604-018-2861-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
|
128
|
Li YF, Zhang HT, Xin L. Hyaluronic acid-modified polyamidoamine dendrimer G5-entrapped gold nanoparticles delivering METase gene inhibits gastric tumor growth via targeting CD44+ gastric cancer cells. J Cancer Res Clin Oncol 2018; 144:1463-1473. [PMID: 29858680 DOI: 10.1007/s00432-018-2678-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Gastric cancer (GC) is the second most common leading cause of cancer-related death. Cancer stem cell (CSC) with the mark of CD44 played an important role in GC. rMETase was wildly exploited as chemotherapeutic option for GC. Polymers synthetic nanoparticle drug delivery systems have been commonly used for cancer therapy. With the decorating of Hyaluronic acid (HA), a receptor of CD44, nanoparticles exhibit with good biocompatibility and aqueous solubility. METHODS The characteristic of nanoparticles (NPs) was analyzed by TEM and DLS. The viability and proliferation of GC cells were examined by MTT assays. The levels of CD44, Cyt C, and c-caspase 3 were examined by Western blot. The level of ROS was measured by DCFH-DA assays. The morphology of tissues was detected using hematoxylin-eosin (H&E) stain. Nude mice xenograft models were used to evaluate the effect of HA-PAMAM-Au-METase on GC. RESULTS The transfection of rMETase carried by HA-G5 PAMAM-Au visibly inhibited the proliferation and tumorsphere formation of GC cells through obviously enhancing METase activity. Elevation of METase activity suppressed the proliferation of CD44(+) GC cells through down-regulating MET in cellular supernatant that resulted in the increase of Cyc C and ROS levels. The number of CD44(+) GC cells in nude mice injected with G5 PAMAM-Au-METase decorated by HA was markly declined resulting in the inhibition of tumor growth. CONCLUSION HA-G5 PAMAM-Au-METase significantly suppressed tumor growth of GC by targeted damaging the mitochondrial function of CD44(+) gastric CSCs.
Collapse
Affiliation(s)
- Yi-Fan Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, NO. 1 Minde Rd, Nanchang, 330006, People's Republic of China
| | - Hou-Ting Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, NO. 1 Minde Rd, Nanchang, 330006, People's Republic of China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, NO. 1 Minde Rd, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
129
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
130
|
Chi Ting Au-Yeung G, Sarig U, Sarig H, Bogireddi H, Bronshtein T, Baruch L, Spizzichino A, Bortman J, Freddy BYC, Machluf M, Venkatraman SS. Restoring the biophysical properties of decellularized patches through recellularization. Biomater Sci 2018; 5:1183-1194. [PMID: 28513656 DOI: 10.1039/c7bm00208d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM-previously shown to affect cell survival, proliferation, migration, organization, differentiation and maturation. Inversely, the effects of cells on the ECM constructs' biophysical properties, under physiological-like conditions, remain still largely unknown. We hypothesized that by re-cellularizing porcine cardiac ECM (pcECM, as a model scaffold) some of the original biophysical properties of the myocardial tissue can be restored, which are related to the scaffold's surface and the bulk modifications consequent to cellularization. We performed a systematic biophysical assessment of pcECM scaffolds seeded with human mesenchymal stem cells (MSCs), a common multipotent cell source in cardiac regenerative medicine. We report a new type of FTE study in which cell interactions with a composite-scaffold were evaluated from the perspective of their contribution to the biophysical properties of the construct surface (FTIR, WETSEM™) and bulk (DSC, TGA, and mechanical testing). The results obtained were compared with acellular pcECM and native ventricular tissue serving as negative and positive controls, respectively. MSC recellularization resulted in an inter-fiber plasticization effect, increased protein density, masking of acylated glycosaminoglycans (GAGs) and active pcECM remodelling which further stabilized the reseeded construct and increased its denaturation resistance. The systematic approach presented herein, therefore, identifies cells as "biological plasticizers" and yields important methodologies, understanding, and data serving both as a reference as well as possible 'design criteria' for future studies in FTE.
Collapse
Affiliation(s)
- Gigi Chi Ting Au-Yeung
- NTU-Technion Biomedical labs, School of Materials and Science Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Ricci V, Zonari D, Cannito S, Marengo A, Scupoli MT, Malatesta M, Carton F, Boschi F, Berlier G, Arpicco S. Hyaluronated mesoporous silica nanoparticles for active targeting: influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties. J Colloid Interface Sci 2018; 516:484-497. [DOI: 10.1016/j.jcis.2018.01.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/17/2022]
|
132
|
Russo A, Maiolino S, Pagliara V, Ungaro F, Tatangelo F, Leone A, Scalia G, Budillon A, Quaglia F, Russo G. Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget 2018; 7:79670-79687. [PMID: 27835895 PMCID: PMC5346744 DOI: 10.18632/oncotarget.13216] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023] Open
Abstract
Colon cancer is one of the leading causes of cancer-related death worldwide and the therapy with 5-fluorouracil (5-FU) is mainly limited due to resistance. Recently, we have demonstrated that nucleolar stress upon 5-FU treatment leads to the activation of ribosome-free rpL3 (L3) as proapoptotic factor. In this study, we analyzed L3 expression profile in colon cancer tissues and demonstrated that L3 mRNA amount decreased with malignant progression and the intensity of its expression was inversely related to tumor grade and Bcl-2/Bax ratio. With the aim to develop a combined therapy of 5-FU plus plasmid encoding L3 (pL3), we firstly assessed the potentiation of the cytotoxic effect of 5-FU on colon cancer cells by L3. Next, 10 μM 5-FU and 2 μg of pL3 were encapsulated in biocompatible nanoparticles (NPs) chemically conjugated with HA to achieve active tumor-targeting ability in CD44 overexpressing cancer cells. We showed the specific intracellular accumulation of NPs in cells and a sustained release for 5-FU and L3. Analysis of cytotoxicity and apoptotic induction potential of combined NPs clearly showed that the 5-FU plus L3 were more effective in inducing apoptosis than 5-FU or L3 alone. Furthermore, we show that the cancer-specific chemosensitizer effect of combined NPs may be dependent on L3 ability to affect 5-FU efflux by controlling P-gp (P-glycoprotein) expression. These results led us to propose a novel combined therapy with the use of 5-FU plus L3 in order to establish individualized therapy by examining L3 profiles in tumors to yield a better clinical outcomes.
Collapse
Affiliation(s)
- Annapina Russo
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Sara Maiolino
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Valentina Pagliara
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | - Alessandra Leone
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | | | - Alfredo Budillon
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Giulia Russo
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| |
Collapse
|
133
|
Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids Surf B Biointerfaces 2018; 168:50-59. [PMID: 29456044 DOI: 10.1016/j.colsurfb.2018.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 01/16/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) were functionalized with amino groups (MSN-NH2) and then with hyaluronic acid, a biocompatible biopolymer which can be recognized by CD44 receptors in tumor cells, to obtain a targeting drug delivery system. To this purpose, three hyaluronic acid samples differing for the molecular weight, namely HAS (8-15 kDa), HAM (30-50 kDa) and HAL (90-130 kDa), were used. The MSN-HAS, MSN-HAM, and MSN-HAL materials were characterized through zeta potential and dynamic light scattering measurements at pH = 7.4 and T = 37 °C to simulate physiological conditions. While zeta potential showed an increasing negative value with the increase of the HA chain length, an anomalous value of the hydrodynamic diameter was observed for MSN-HAL, which was smaller than that of MSN-HAS and MSN-HAM samples. The cellular uptake of MSN-HA samples on HeLa cells at 37 °C was studied by optical and electron microscopy. HA chain length affected significantly the cellular uptake that occurred at a higher extent for MSN-NH2 and MSN-HAS than for MSN-HAM and MSN-HAL samples. Cellular uptake experiments carried out at 4 °C showed that the internalization process was inhibited for MSN-HA samples but not for MSN-NH2. This suggests the occurrence of two different mechanisms of internalization. For MSN-NH2 the uptake is mainly driven by the attractive electrostatic interaction with membrane phospholipids, while MSN-HA internalization involves CD44 receptors overexpressed in HeLa cells.
Collapse
|
134
|
Aftab S, Shah A, Nadhman A, Kurbanoglu S, Aysıl Ozkan S, Dionysiou DD, Shukla SS, Aminabhavi TM. Nanomedicine: An effective tool in cancer therapy. Int J Pharm 2018; 540:132-149. [PMID: 29427746 DOI: 10.1016/j.ijpharm.2018.02.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Abstract
Various types of nanoparticles (NPs) have been used in delivering anticancer drugs to the site of action. This area has become more attractive in recent years due to optimal size and negligible undesirable side effects caused by the NPs. The focus of this review is to explore various types of NPs and their surface/chemical modifications as well as attachment of targeting ligands for tuning their properties in order to facilitate targeted delivery to the cancer sites in a rate-controlled manner. Heme compatibility, biodistribution, longer circulation time, hydrophilic lipophilic balance for high bioavailability, prevention of drug degradation and leakage are important in transporting drugs to the targeted cancer sites. The review discusses advantages of polymeric, magnetic, gold, and mesoporous silica NPs in delivering chemotherapeutic agents over the conventional dosage formulations along with their shortcomings/risks and possible solutions/alternatives.
Collapse
Affiliation(s)
- Saima Aftab
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey.
| | - Akhtar Nadhman
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Sibel Aysıl Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Shyam S Shukla
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Tejraj M Aminabhavi
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|
135
|
Shu F, Lv D, Song XL, Huang B, Wang C, Yu Y, Zhao SC. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Adv 2018; 8:6581-6589. [PMID: 35540394 PMCID: PMC9078328 DOI: 10.1039/c7ra12969f] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/26/2018] [Indexed: 12/22/2022] Open
Abstract
Since metal organic frameworks (MOF) have exhibited fascinating potential in biomedical applications, it is worthwhile to construct a MOF-based multifunctional drug delivery system. In the present study, the anticancer drug doxorubicin (DOX) was loaded into zeolitic imidazolate framework-8 (ZIF-8) via a one-pot process. The formed DOX@ZIF-8 was then coated with polydopamine, successively chelated with Fe3+ and conjugated with hyaluronic acid (HA), finally resulting in a multifunctional ZIF-8 nanocarrier. The characterization results confirmed the successful formation of the hybrid nanocarrier. pH-responsive drug release of DOX was observed due to the innate pH-dependent stability of ZIF-8. Importantly, the flow cytometry and confocal laser scanning microscope results both verified the targeting ability of DOX@ZIF-HA toward prostate cancer PC-3 cells. The improved therapeutic efficacy of DOX@ZIF-HA when compared to the inhibited group was also demonstrated. Furthermore, the chelation of Fe3+ by PDA makes the prepared DOX@ZIF-HA a good contrast agent for magnetic resonance (MR) imaging. Hence, we hope the constructed ZIF-8 based multifunctional nanocarrier could be a candidate for cancer theranostics.
Collapse
Affiliation(s)
- Fangpeng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University Guangzhou 510515 China
| | - Daojun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University Guangzhou 510515 China
| | - Xian-Lu Song
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou 510095 China
| | - Bin Huang
- Department of Urology, Nanfang Hospital, Southern Medical University Guangzhou 510515 China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University Guangzhou 510515 China
| | - Yuzhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University Guangzhou 510515 China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University Guangzhou 510515 China
| |
Collapse
|
136
|
Chen C, Sun W, Wang X, Wang Y, Wang P. pH-responsive nanoreservoirs based on hyaluronic acid end-capped mesoporous silica nanoparticles for targeted drug delivery. Int J Biol Macromol 2018; 111:1106-1115. [PMID: 29357289 DOI: 10.1016/j.ijbiomac.2018.01.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are greatly appealing for efficient drug delivery due to their excellent drug loading capacities. However, it remains as a major challenge to realize site-specific controlled release with MSNs. This work examines a smart pH-responsive drug release system using MSNs for CD44-targeting drug delivery. Specifically, hyaluronic acid (HA) was applied as an end-capping agent to seal drug loads inside the mesoporous of MSNs through the acid labile hydrazine bonds. HA exposed on the surface of the particles can also serve as a targeting agent at the same time, enable site specific targeting toward CD-44 overexpressing cells. The system showed a good stability at physiological pHs, yet drug release could be triggered in response to changes in pH. Further studies showed that the HA-fabricated particles could achieve much enhanced cellular uptake via CD44 receptor-mediated endocytosis by Hela cells (CD44 receptor-positive), and as a result, doxorubicin-loaded MSNs exhibited significantly enhanced drug efficacy toward cancer cells overexpressing CD44 receptor (IC50 = 0.56 μg/mL), whereas the normal cells showed weakly cytotoxicity (IC50 = 1.03 μg/mL). Such a fabrication strategy may provide a new platform for preparation of high performance drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wen Sun
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
137
|
Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? Int J Mol Sci 2018; 19:ijms19010181. [PMID: 29346265 PMCID: PMC5796130 DOI: 10.3390/ijms19010181] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
An area that has come to be of tremendous interest in tumor research in the last decade is the role of the microenvironment in the biology of neoplastic diseases. The tumor microenvironment (TME) comprises various cells that are collectively important for normal tissue homeostasis as well as tumor progression or regression. Seminal studies have demonstrated the role of the dialogue between cancer cells (at many sites) and the cellular component of the microenvironment in tumor progression, metastasis, and resistance to treatment. Using an appropriate system of microenvironment and tumor culture is the first step towards a better understanding of the complex interaction between cancer cells and their surroundings. Three-dimensional (3D) models have been widely described recently. However, while it is claimed that they can bridge the gap between in vitro and in vivo, it is sometimes hard to decipher their advantage or limitation compared to classical two-dimensional (2D) cultures, especially given the broad number of techniques used. We present here a comprehensive review of the different 3D methods developed recently, and, secondly, we discuss the pros and cons of 3D culture compared to 2D when studying interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Cyril Touboul
- UMR INSERM U965, Angiogenèse et Recherche Translationnelle, Hôpital Lariboisière, 49 bd de la Chapelle, 75010 Paris, France.
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, Faculté de Médecine de Créteil UPEC, Paris XII, 40 Avenue de Verdun, 94000 Créteil, France.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
- INSERM U955, Equipe 7, 94000 Créteil, France.
| |
Collapse
|
138
|
Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int J Mol Sci 2018; 19:E195. [PMID: 29315231 PMCID: PMC5796144 DOI: 10.3390/ijms19010195] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.
Collapse
Affiliation(s)
- Muhammad Kashif Riaz
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Muhammad Adil Riaz
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Xue Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Congcong Lin
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
139
|
Huang L, Liu J, Gao F, Cheng Q, Lu B, Zheng H, Xu H, Xu P, Zhang X, Zeng X. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. J Mater Chem B 2018; 6:4618-4629. [DOI: 10.1039/c8tb00989a] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel enzyme and redox dual-responsive targeted drug delivery system based on hollow mesoporous silica nanoparticles was developed for cancer therapy.
Collapse
|
140
|
Li H, Zhang W, He N, Tong W, Gao C. Phototriggered N 2-Generating Submicron Particles for Selective Killing of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44369-44376. [PMID: 29220165 DOI: 10.1021/acsami.7b16362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Killing of cancer cells by applying mechanical disruption has been an appealing emerging strategy for cancer treatment in recent years. In this study, photoresponsive submicron particles based on diazo-resin that are able to release N2 under UV irradiation were prepared through a polyamine-salt aggregation method. After surface modification with hyaluronic acid, the particles could be internalized selectively by cancer cells and were mainly located in lysosomes after 6 h incubation. The viability of cancer cells decreased obviously after they were co-cultured with photoresponsive particles and UV irradiation due to the integrity damage of lysosomes by phototriggered N2 generation and the subsequent increased number of reactive oxygen species.
Collapse
Affiliation(s)
- Huiying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou , Hangzhou 310027, China
| | - Wenbo Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou , Hangzhou 310027, China
| | - Ning He
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou , Hangzhou 310027, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou , Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou , Hangzhou 310027, China
| |
Collapse
|
141
|
Bhat R, García I, Aznar E, Arnaiz B, Martínez-Bisbal MC, Liz-Marzán LM, Penadés S, Martínez-Máñez R. Lectin-gated and glycan functionalized mesoporous silica nanocontainers for targeting cancer cells overexpressing Lewis X antigen. NANOSCALE 2017; 10:239-249. [PMID: 29210428 DOI: 10.1039/c7nr06415b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gated mesoporous silica nanoparticles can deliver payload upon the application of a predefined stimulus, and therefore are promising drug delivery systems. Despite their important role, relatively low emphasis has been placed on the design of gating systems that actively target carbohydrate tumor cell membrane receptors. We describe herein a new Lewis X (Lex) antigen-targeted delivery system comprising mesoporous silica nanoparticles (MSNs) loaded with ATTO 430LS dye, functionalized with a Lex derivative (1) and capped with a fucose-specific carbohydrate-binding protein (Aleuria aurantia lectin (AAL)). This design takes advantage of the affinity of AAL for Lex overexpressed receptors in certain cancer cells. In the proximity of the cells, AAL is detached from MSNs to bind Lex, and selectins in the cells bind Lex in the gated MSNs, thereby inducing cargo delivery. Gated MSNs are nontoxic to colon cancer DLD-1 cells, and ATTO 430LS dye delivered correlated with the amount of Lex antigen overexpressed at the DLD-1 cell surface. This is one of the few examples of MSNs using biologically relevant glycans for both capping (via interaction with AAL) and targeting (via interaction with overexpressed Lex at the cell membrane).
Collapse
Affiliation(s)
- R Bhat
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Dual targeting mesoporous silica nanoparticles for inhibiting tumour cell invasion and metastasis. Int J Pharm 2017; 534:71-80. [DOI: 10.1016/j.ijpharm.2017.09.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 12/12/2022]
|
143
|
Zhou H, Xu H, Li X, Lv Y, Ma T, Guo S, Huang Z, Wang X, Xu P. Dual targeting hyaluronic acid - RGD mesoporous silica coated gold nanorods for chemo-photothermal cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:261-270. [DOI: 10.1016/j.msec.2017.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/16/2017] [Accepted: 08/01/2017] [Indexed: 01/27/2023]
|
144
|
Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interface Sci 2017; 249:374-385. [PMID: 28335985 DOI: 10.1016/j.cis.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/18/2022]
Abstract
The design and development of multifunctional nanoplatforms for biomedical applications still remains to be challenging. This review reports the recent advances in aqueous-phase synthesis of iron oxide nanoparticles (Fe3O4 NPs) and their composites for magnetic resonance (MR) imaging and photothermal therapy of cancer. Water dispersible and colloidally stable Fe3O4 NPs synthesized via controlled coprecipitation route, hydrothermal route and mild reduction route are introduced. Some of key strategies to improve the r2 relaxivity of Fe3O4 NPs and to enhance their uptake by cancer cells are discussed in detail. These aqueous-phase synthetic methods can also be applied to prepare Fe3O4 NP-based composites for dual-mode molecular imaging applications. More interestingly, aqueous-phase synthesized Fe3O4 NPs are able to be fabricated as multifunctional theranostic agents for multi-mode imaging and photothermal therapy of cancer. This review will provide some meaningful information for the design and development of various Fe3O4 NP-based multifunctional nanoplatforms for cancer diagnosis and therapy.
Collapse
|
145
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
146
|
Huang D, Chen YS, Thakur SS, Rupenthal ID. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur J Pharm Biopharm 2017; 119:125-136. [DOI: 10.1016/j.ejpb.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
|
147
|
Schmidt S, Alberti S, Vana P, Soler-Illia GJAA, Azzaroni O. Thermosensitive Cation-Selective Mesochannels: PNIPAM-Capped Mesoporous Thin Films as Bioinspired Interfacial Architectures with Concerted Functions. Chemistry 2017; 23:14500-14506. [DOI: 10.1002/chem.201702368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sonja Schmidt
- Georg-August-Universität Göttingen; Institut für Physikalische Chemie; Tammannstr. 6 37077 Göttingen Germany
| | - Sebastián Alberti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata, CONICET; CC. 16 Suc. 4, La Plata 1900 Argentina
| | - Philipp Vana
- Georg-August-Universität Göttingen; Institut für Physikalische Chemie; Tammannstr. 6 37077 Göttingen Germany
| | - Galo J. A. A. Soler-Illia
- Instituto de Nanosistemas; Universidad Nacional de General San Martín; Av. 25 de Mayo 1021 San Martín, Provincia de Buenos Aires Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata, CONICET; CC. 16 Suc. 4, La Plata 1900 Argentina
| |
Collapse
|
148
|
Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1203-1211. [DOI: 10.1016/j.msec.2017.03.176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023]
|
149
|
Layer-by-layer assembly of hyaluronic acid/carboxymethylchitosan polyelectrolytes on the surface of aminated mesoporous silica for the oral delivery of 5-fluorouracil. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
150
|
Chattopadhyay S, Chen JY, Chen HW, Hu CMJ. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics 2017; 1:244-260. [PMID: 29071191 PMCID: PMC5646730 DOI: 10.7150/ntno.19796] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Synthetic nanoparticles play an increasingly significant role in vaccine design and development as many nanoparticle vaccines show improved safety and efficacy over conventional formulations. These nanoformulations are structurally similar to viruses, which are nanoscale pathogenic organisms that have served as a key selective pressure driving the evolution of our immune system. As a result, mechanisms behind the benefits of nanoparticle vaccines can often find analogue to the interaction dynamics between the immune system and viruses. This review covers the advances in vaccine nanotechnology with a perspective on the advantages of virus mimicry towards immune potentiation. It provides an overview to the different types of nanomaterials utilized for nanoparticle vaccine development, including functionalization strategies that bestow nanoparticles with virus-like features. As understanding of human immunity and vaccine mechanisms continue to evolve, recognizing the fundamental semblance between synthetic nanoparticles and viruses may offer an explanation for the superiority of nanoparticle vaccines over conventional vaccines and may spur new design rationales for future vaccine research. These nanoformulations are poised to provide solutions towards pressing and emerging human diseases.
Collapse
Affiliation(s)
- Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| |
Collapse
|