101
|
Zhao DD, Fan XW, Hao H, Zhang HL, Guo Y. Temporary Solubilizing Tags Method for the Chemical Synthesis of Hydrophobic Proteins. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666181211121758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrophobic proteins, as one of the cellular protein classifications, play an essential function in maintaining the normal life cycle of living cells. Researches on the structure and function of hydrophobic proteins promote the exploration of the causes of major diseases, and development of new therapeutic agents for disease treatment. However, the poor water solubility of hydrophobic proteins creates problems for their preparation, separation, characterization and functional studies. The temporary solubilizing tags are considered a practical strategy to effectively solve the poor water solubility problem of hydrophobic proteins. This strategy can significantly improve the water solubility of hydrophobic peptides/proteins, making them like water-soluble peptides/proteins easy to be purified, characterized. More importantly, the temporary solubilizing tags can be removed after protein synthesis, so thus the structure and function of the hydrophobic proteins are not affected. At present, temporary solubilizing tags have been successfully used to prepare many important hydrophobic proteins such as membrane proteins, lipoproteins and chaperones. In this review, we summarize the recent researches and applications of temporary solubilizing tags.
Collapse
Affiliation(s)
- Dong-Dong Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Xiao-Wen Fan
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - He Hao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Hong-Li Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| |
Collapse
|
102
|
Varnava KG, Sarojini V. Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature. Chem Asian J 2019; 14:1088-1097. [PMID: 30681290 DOI: 10.1002/asia.201801807] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/24/2019] [Indexed: 11/07/2022]
Abstract
To date, the synthesis of peptides is concurrent with the production of enormous amounts of toxic waste. DMF, CH2 Cl2 , and NMP are three of the most toxic organic solvents used in chemical synthesis and are the most common solvents used for peptide synthesis. Additionally, concerns about the hepatotoxicity caused by exposure to DMF and from the toxic and allergenic nature of additives used in peptide synthesis necessitates the need for a green, environmentally friendly, and safer protocol for peptide synthesis. This review summarizes the current literature on green solid-phase peptide synthesis successes and challenges encountered. The review concludes with suggestions for future research towards a simple and efficient green peptide synthesis protocol.
Collapse
Affiliation(s)
- Kyriakos G Varnava
- School of Chemical Sciences, University of Auckland, Auckland, 1142, New Zealand
| | | |
Collapse
|
103
|
Hayashi G, Yanase M, Nakatsuka Y, Okamoto A. Simultaneous and Traceless Ligation of Peptide Fragments on DNA Scaffold. Biomacromolecules 2019; 20:1246-1253. [PMID: 30677290 DOI: 10.1021/acs.biomac.8b01655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peptide ligation is an indispensable step in the chemical synthesis of target peptides and proteins that are difficult to synthesize at once by a solid-phase synthesis. The ligation reaction is generally conducted with two peptide fragments at a high aqueous concentration to increase the reaction rate; however, this often causes unpredictable aggregation and precipitation of starting or resulting peptides due to their hydrophobicities. Here, we have developed a novel peptide ligation strategy harnessing the two intrinsic characteristics of oligodeoxynucleotides (ODNs), i.e., their hydrophilicity and hybridization ability, which allowed increases in the water solubility of peptides and the reaction kinetics due to the proximity effect, respectively. Peptide-ODN conjugates that can be cleaved to regenerate native peptide sequences were synthesized using novel lysine derivatives containing conjugation handles and photolabile linkers, via solid-phase peptide synthesis and subsequent conjugation to 15-mer ODNs. Two complementary conjugates were applied to carbodiimide-mediated peptide ligation on a DNA scaffold, and the subsequent DNA removal was conducted by photoirradiation in a traceless fashion. This DNA scaffold-assisted ligation resulted in a significant acceleration of the reaction kinetics and enabled ligation of a hydrophobic peptide at a micromolar concentration. On the basis of this chemistry, a simultaneous ligation of three different peptide fragments on two different DNA scaffolds has been conducted for the first time.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Masafumi Yanase
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yu Nakatsuka
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan.,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| |
Collapse
|
104
|
Serra M, Bernardi E, Marrubini G, De Lorenzi E, Colombo L. Palladium‐Catalyzed Asymmetric Decarboxylative Allylation of Azlactone Enol Carbonates: Fast Access to Enantioenriched α‐Allyl Quaternary Amino Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Massimo Serra
- Department of Drug Sciences Medicinal Chemistry and Pharmaceutical Technology Section University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Eric Bernardi
- Department of Drug Sciences Medicinal Chemistry and Pharmaceutical Technology Section University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Giorgio Marrubini
- Department of Drug Sciences Medicinal Chemistry and Pharmaceutical Technology Section University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Ersilia De Lorenzi
- Department of Drug Sciences Medicinal Chemistry and Pharmaceutical Technology Section University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Lino Colombo
- Department of Drug Sciences Medicinal Chemistry and Pharmaceutical Technology Section University of Pavia Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
105
|
Synthetic Evaluation of Standard and Microwave-Assisted Solid Phase Peptide Synthesis of a Long Chimeric Peptide Derived from Four Plasmodium falciparum Proteins. Molecules 2018; 23:molecules23112877. [PMID: 30400576 PMCID: PMC6278645 DOI: 10.3390/molecules23112877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
An 82-residue-long chimeric peptide was synthesised by solid phase peptide synthesis (SPPS), following the Fmoc protocol. Microwave (MW) radiation-assisted synthesis was compared to standard synthesis using low loading (0.20 mmol/g) of polyethylene glycol (PEG) resin. Similar synthetic difficulties were found when the chimeric peptide was obtained via these two reaction conditions, indicating that such difficulties were inherent to the sequence and could not be resolved using MW; by contrast, the number of coupling cycles and total reaction time became reduced whilst crude yield and percentage recovery after purification were higher for MW radiation-assisted synthesis.
Collapse
|
106
|
Barkley DA, Han SU, Koga T, Rudick JG. Peptide-Dendron Hybrids that Adopt Sequence-Encoded β-Sheet Conformations. Polym Chem 2018; 9:4994-5001. [PMID: 30923581 PMCID: PMC6433408 DOI: 10.1039/c8py00882e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Rational design rules for programming hierarchical organization and function through mutations of monomers in sequence-defined polymers can accelerate the development of novel polymeric and supramolecular materials. Our strategy for designing peptide-dendron hybrids that adopt predictable secondary and quaternary structures in bulk is based on patterning the sites at which dendrons are conjugated to short peptides. To validate this approach, we have designed and characterized a series of β-sheet-forming peptide-dendron hybrids. Spectroscopic studies of the hybrids in films reveal that the peptide portion of the hybrids adopts the intended secondary structure.
Collapse
Affiliation(s)
- Deborah A. Barkley
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sang Uk Han
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tadanori Koga
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
107
|
Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, Kuhne K, Bergmann R, Haase-Kohn C, Urbanová M, Steinbach J, Pietzsch J. Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. Amino Acids 2018; 51:219-244. [PMID: 30264172 DOI: 10.1007/s00726-018-2657-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
The cell surface receptor claudin-4 (Cld-4) is upregulated in various tumours and represents an important emerging target for both diagnosis and treatment of solid tumours of epithelial origin. The C-terminal fragment of the Clostridium perfringens enterotoxin cCPE290-319 appears as a suitable ligand for targeting Cld-4. The synthesis of this 30mer peptide was attempted via several approaches, which has revealed sequential SPPS using three pseudoproline dipeptide building blocks to be the most efficient one. Labelling with fluorine-18 was achieved on solid phase using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoyl chloride as 18F-acylating agents, which was the most advantageous when [18F]SFB was reacted with the resin-bound 30mer containing an N-terminal 6-aminohexanoic spacer. Binding to Cld-4 was demonstrated via surface plasmon resonance using a protein construct containing both extracellular loops of Cld-4. In addition, cell binding experiments were performed for 18F-labelled cCPE290-319 with the Cld-4 expressing tumour cell lines HT-29 and A431 that were complemented by fluorescence microscopy studies using the corresponding fluorescein isothiocyanate-conjugated peptide. The 30mer peptide proved to be sufficiently stable in blood plasma. Studying the in vivo behaviour of 18F-labelled cCPE290-319 in healthy mice and rats by dynamic PET imaging and radiometabolite analyses has revealed that the peptide is subject to substantial liver uptake and rapid metabolic degradation in vivo, which limits its suitability as imaging probe for tumour-associated Cld-4.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany.
| | - Miriam Bader
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Lenk
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Johanna Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Konstantin Kuhne
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Cathleen Haase-Kohn
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, 166 28, Prague, Czech Republic
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| |
Collapse
|
108
|
Touti F, Lautrette G, Johnson KD, Delaney JC, Wollacott A, Tissire H, Viswanathan K, Shriver Z, Mong SK, Mijalis AJ, Plante OJ, Pentelute BL. Antibody-Bactericidal Macrocyclic Peptide Conjugates To Target Gram-Negative Bacteria. Chembiochem 2018; 19:2039-2044. [DOI: 10.1002/cbic.201800295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Fayçal Touti
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Guillaume Lautrette
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | | | | | | | - Hamid Tissire
- Visterra, Inc.; 275 2nd Avenue 4th Floor Waltham MA 02451 USA
| | | | - Zachary Shriver
- Visterra, Inc.; 275 2nd Avenue 4th Floor Waltham MA 02451 USA
| | - Surin K. Mong
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Alexander J. Mijalis
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | | | - Bradley L. Pentelute
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
109
|
Kaminker* R, Anastasaki A, Gutekunst WR, Luo Y, Lee S, Hawker* CJ. Tuning of protease resistance in oligopeptides through N-alkylation. Chem Commun (Camb) 2018; 54:9631-9634. [PMID: 30095837 PMCID: PMC6141190 DOI: 10.1039/c8cc04407d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-Methylation of amino acids is an effective way to create protease resistance in both natural and synthetic peptides. However, alkyl substituents other than N-methyl have not been extensively studied. Here, we prepare and examine a series of N-substituted peptides in which the size and length of the alkyl group is modulated. These design insights provide a unique and modular handle for tuning proteolysis in oligopeptides.
Collapse
Affiliation(s)
- R. Kaminker*
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - A. Anastasaki
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - W. R. Gutekunst
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - Y. Luo
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - S. Lee
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - C. J. Hawker*
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United Sates
| |
Collapse
|
110
|
Karel S, Sogorkova J, Hermannova M, Nesporova K, Marholdova L, Chmelickova K, Bednarova L, Flegel M, Drasar P, Velebny V. Stabilization of hyaluronan-based materials by peptide conjugation and its use as a cell-seeded scaffold in tissue engineering. Carbohydr Polym 2018; 201:300-307. [PMID: 30241822 DOI: 10.1016/j.carbpol.2018.08.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023]
Abstract
New materials based on molecules naturally occurred in body are assumed to be fully biocompatible and biodegradable. In our study, we used hyaluronic acid (HA) modified with peptides, which meet all this criterion and could be advantageously used in tissue engineering. Peptides with RGD, IKVAV or SIKVAV adhesive motif were attached to HA-based fiber or non-woven textile through ester bond in the term of solid phase peptide synthesis. A linker between HA and peptide containing three glycine or two 6-aminohexanoyl units was applied to make peptides more available for cell surface receptors. Dermal fibroblasts adhered readily on this material, preferentially to RGD peptide with 6-aminohexanoyl linker. Contrary, the absence of adhesive peptide did not allow the cell attachment but maintained the material stability.
Collapse
Affiliation(s)
- Sergej Karel
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-166 10 Prague, Czech Republic.
| | - Jana Sogorkova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | - Martina Hermannova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | - Kristina Nesporova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | - Lucie Marholdova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | | | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-166 10 Prague, Czech Republic
| | - Martin Flegel
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, CZ-166 28 Prague, Czech Republic
| | - Pavel Drasar
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, CZ-166 28 Prague, Czech Republic
| | - Vladimir Velebny
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| |
Collapse
|
111
|
Hayata A, Itoh H, Inoue M. Solid-Phase Total Synthesis and Dual Mechanism of Action of the Channel-Forming 48-mer Peptide Polytheonamide B. J Am Chem Soc 2018; 140:10602-10611. [PMID: 30040396 DOI: 10.1021/jacs.8b06755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polytheonamide B (1) is a unique peptide natural product because of its extremely complex structure, a channel-forming ability in vitro, and the extremely potent cytotoxicity. The 48-mer sequence of 1 comprises alternating d,l-amino acids and possesses an array of sterically bulky β-tetrasubstituted and hydrogen bond forming residues. These unusual structural features are believed to drive 1 to fold into a 4.5 nm long tube, form a transmembrane ion channel at the plasma membrane, and exert cytotoxicity. Despite its potential biological application, however, multiple substitutions by these unusual residues significantly heightened the synthetic challenges, impeding the solid-phase peptide synthesis (SPPS) of 1. In this study, we first addressed the synthesis problem by extensive optimization of various factors of the SPPS. Adaptation of a new protective group strategy allowed for elongation of a 37-mer peptide on resin, to which an N-terminal 11-mer fragment was condensed. Removal of the 18 protective groups and resin gave rise to 1 in excellent overall yield (4.5%, 76 steps from 17). The SPPS protocol is operationally simple and was proven easily amenable to total synthesis of the fluorescent 48-mer probe 2. Synthetic 1 and 2 were utilized for analysis of their cellular behavior. Reflecting its ion-channel function, the addition of 1 to MCF-7 cells rapidly diminished a potential across the plasma membrane. Furthermore, fluorescence imaging study revealed that 1 and 2 were also internalized into the cells, accumulating in acidic lysosomes and neutralizing the lysosomal pH gradient. These new findings indicated that 1 is capable of exerting two functions upon causing apoptotic cell death of mammalian cells: It induces free cation transport across the plasma as well as lysosomal membranes. The present chemical and biological studies provide valuable information for the design and synthesis of polytheonamide-based molecules with more potent and selective biological activities.
Collapse
Affiliation(s)
- Atsushi Hayata
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
112
|
Accelerated microfluidic native chemical ligation at difficult amino acids toward cyclic peptides. Nat Commun 2018; 9:2847. [PMID: 30030439 PMCID: PMC6054628 DOI: 10.1038/s41467-018-05264-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Cyclic peptide-based therapeutics have a promising growth forecast that justifies the development of microfluidic systems dedicated to their production, in phase with the actual transitioning toward continuous flow and microfluidic technologies for pharmaceutical production. The application of the most popular method for peptide cyclization in water, i.e., native chemical ligation, under microfluidic conditions is still unexplored. Herein, we report a general strategy for fast and efficient peptide cyclization using native chemical ligation under homogeneous microfluidic conditions. The strategy relies on a multistep sequence that concatenates the formation of highly reactive S-(2-((2-sulfanylethyl)amino)ethyl) peptidyl thioesters from stable peptide amide precursors with an intramolecular ligation step. With very fast ligation rates (<5 min), even for the most difficult junctions (including threonine, valine, isoleucine, or proline), this technology opens the door toward the scale-independent, expedient preparation of bioactive macrocyclic peptides. Flow-based peptide synthesis is a well-established method, yet difficult to combine with native chemical ligation (NCL), the go-to method for peptide cyclization. Here, the authors developed a microfluidic procedure for peptide cyclization within minutes, using NCL and an SEA alkylthioester peptide.
Collapse
|
113
|
Total synthesis of snake toxin α-bungarotoxin and its analogues by hydrazide-based native chemical ligation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
114
|
Albericio F, El-Faham A. Choosing the Right Coupling Reagent for Peptides: A Twenty-Five-Year Journey. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00159] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, University Road,
Westville, Durban 4001, South Africa
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426,
Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|
115
|
Wadzinski TJ, Steinauer A, Hie L, Pelletier G, Schepartz A, Miller SJ. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nat Chem 2018; 10:644-652. [PMID: 29713033 PMCID: PMC5964040 DOI: 10.1038/s41557-018-0041-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.
Collapse
Affiliation(s)
| | | | - Liana Hie
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | | | | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
116
|
Bédard F, Biron E. Recent Progress in the Chemical Synthesis of Class II and S-Glycosylated Bacteriocins. Front Microbiol 2018; 9:1048. [PMID: 29875754 PMCID: PMC5974097 DOI: 10.3389/fmicb.2018.01048] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
A wide variety of antimicrobial peptides produced by lactic acid bacteria (LAB) have been identified and studied in the last decades. Known as bacteriocins, these ribosomally synthesized peptides inhibit the growth of a wide range of bacterial species through numerous mechanisms and show a great variety of spectrum of activity. With their great potential as antimicrobial additives and alternatives to traditional antibiotics in food preservation and handling, animal production and in veterinary and medical medicine, the demand for bacteriocins is rapidly increasing. Bacteriocins are most often produced by fermentation but, in several cases, the low isolated yields and difficulties associated with their purification seriously limit their use on a large scale. Chemical synthesis has been proposed for their production and recent advances in peptide synthesis methodologies have allowed the preparation of several bacteriocins. Moreover, the significant cost reduction for peptide synthesis reagents and building blocks has made chemical synthesis of bacteriocins more attractive and competitive. From a protein engineering point of view, the chemical approach offers many advantages such as the possibility to rapidly perform amino acid substitution, use unnatural or modified residues, and make backbone and side chain modifications to improve potency, modify the activity spectrum or increase the stability of the targeted bacteriocin. This review summarized synthetic approaches that have been developed and used in recent years to allow the preparation of class IIa bacteriocins and S-linked glycopeptides from LAB. Synthetic strategies such as the use of pseudoprolines, backbone protecting groups, microwave irradiations, selective disulfide bridge formation and chemical ligations to prepare class II and S-glycosylsated bacteriocins are discussed.
Collapse
Affiliation(s)
- François Bédard
- Faculty of Pharmacy and Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, Québec, QC, Canada
| | - Eric Biron
- Faculty of Pharmacy and Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, Québec, QC, Canada
| |
Collapse
|
117
|
Simón-Gracia L, Hunt H, Teesalu T. Peritoneal Carcinomatosis Targeting with Tumor Homing Peptides. Molecules 2018; 23:molecules23051190. [PMID: 29772690 PMCID: PMC6100015 DOI: 10.3390/molecules23051190] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
Over recent decades multiple therapeutic approaches have been explored for improved management of peritoneally disseminated malignancies—a grim condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to achieve elevated local concentration and extended half-life of the drugs in the peritoneal cavity to improve their anticancer efficacy. However, IP-administered chemotherapeutics have a short residence time in the IP space, and are not tumor selective. An increasing body of work suggests that functionalization of drugs and nanoparticles with targeting peptides increases their peritoneal retention and provides a robust and specific tumor binding and penetration that translates into improved therapeutic response. Here we review the progress in affinity targeting of intraperitoneal anticancer compounds, imaging agents and nanoparticles with tumor-homing peptides. We review classes of tumor-homing peptides relevant for PC targeting, payloads for peptide-guided precision delivery, applications for targeted compounds, and the effects of nanoformulation of drugs and imaging agents on affinity-based tumor delivery.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
118
|
Bhatt J, Mukherjee A, Shinto A, Koramadai Karuppusamy K, Korde A, Kumar M, Sarma HD, Repaka K, Dash A. Gallium-68 labeled Ubiquicidin derived octapeptide as a potential infection imaging agent. Nucl Med Biol 2018; 62-63:47-53. [PMID: 29883883 DOI: 10.1016/j.nucmedbio.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/23/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Gallium-68 based infection imaging agents are in demand to detect infection foci with high spatial resolution and sensitivity. In this study, Ubiquicidin derived octapeptide, UBI (31-38) conjugated with macrocyclic chelator NOTA was radiolabeled with 68Ga to develop infection imaging agent. METHODS Circular dichroism (CD) spectroscopy was performed to study conformational changes in UBI (31-38) and its NOTA conjugate in a "membrane like environment". Radiolabeling of NOTA-UBI (31-38) with 68Ga was optimized and quality control analysis was done by chromatography techniques. In vitro evaluation of 68Ga-NOTA-UBI (31-38) in S. aureus and preliminary biological evaluation in animal model of infection was studied. Initial clinical evaluation in three patients with suspected infection was carried out. RESULTS 68Ga-NOTA-UBI (31-38) was prepared in high radiochemical yields and high radiochemical purity. In vitro evaluation of 68Ga-NOTA-UBI (31-38) complex in S. aureus confirmed specificity of the agent for bacteria. Biodistribution studies with 68Ga-NOTA-UBI (31-38) revealed specific uptake of the complex in infected muscle compared to inflamed muscle with T/NT ratio of 3.24 ± 0.7 at 1 h post-injection. Initial clinical evaluation in two patients with histopathologically confirmed infective foci conducted after intravenous injection of 130-185 MBq of 68Ga-NOTA-UBI (31-38) and imaging at 45-60 min post-injection revealed specific uptake at the sites of infection and clearance from vital organs. No uptake of tracer was observed in suspected infection foci in one patient, which was proven to be aseptic and served as negative control. CONCLUSION This is the first report on 68Ga labeled NOTA-UBI (31-38) fragment for prospective infection imaging.
Collapse
Affiliation(s)
- Jyotsna Bhatt
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Ajit Shinto
- Dept of Nuclear Medicine and PET-CT, Kovai Medical Center and Hospital Limited, Coimbatore, India
| | | | - Aruna Korde
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Quality control, Board of Radiation and Isotope Technology, Vashi, Navi Mumbai, India
| | - Mukesh Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Haladhar Dev Sarma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India
| | - Krishnamohan Repaka
- Quality control, Board of Radiation and Isotope Technology, Vashi, Navi Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
119
|
Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Indexed: 05/22/2023]
Abstract
Peptide-based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self-assembly strategy is introduced to construct peptide-based nanomaterials, which can form well-controlled superstructures with high stability and multivalent effect. More recently, peptide-based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide-based materials, from molecular building block peptides and self-assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide-based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self-assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
120
|
Caporale A, Doti N, Monti A, Sandomenico A, Ruvo M. Automatic procedures for the synthesis of difficult peptides using oxyma as activating reagent: A comparative study on the use of bases and on different deprotection and agitation conditions. Peptides 2018; 102:38-46. [PMID: 29486214 DOI: 10.1016/j.peptides.2018.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Solid-Phase Peptide Synthesis (SPPS) is a rapid and efficient methodology for the chemical synthesis of peptides and small proteins. However, the assembly of peptide sequences classified as "difficult" poses severe synthetic problems in SPPS for the occurrence of extensive aggregation of growing peptide chains which often leads to synthesis failure. In this framework, we have investigated the impact of different synthetic procedures on the yield and final purity of three well-known "difficult peptides" prepared using oxyma as additive for the coupling steps. In particular, we have comparatively investigated the use of piperidine and morpholine/DBU as deprotection reagents, the addition of DIPEA, collidine and N-methylmorpholine as bases to the coupling reagent. Moreover, the effect of different agitation modalities during the acylation reactions has been investigated. Data obtained represent a step forward in optimizing strategies for the synthesis of "difficult peptides".
Collapse
Affiliation(s)
- A Caporale
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy
| | - N Doti
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - A Monti
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; DiSTABiF, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - A Sandomenico
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy
| | - M Ruvo
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
121
|
Hara RI, Mitsuhashi Y, Saito K, Maeda Y, Wada T. Solid-Phase Synthesis of Oligopeptides Containing Sterically Hindered Amino Acids on Nonswellable Resin Using 3-Nitro-1,2,4-triazol-1-yl-tris(pyrrolidin-1-yl)phosphonium Hexafluorophosphate (PyNTP) as the Condensing Reagent. ACS COMBINATORIAL SCIENCE 2018; 20:132-136. [PMID: 29338200 DOI: 10.1021/acscombsci.7b00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peptides are still difficult to synthesize when they contain sterically hindered amino acids, such as α,α-disubstituted amino acids and N-substituted amino acids. In this study, solid-phase syntheses of oligopeptides containing multiple α-aminoisobutyric acid (Aib) residues were performed in high yields by using a nonswellable resin as the solid-support and 3-nitro-1,2,4-triazol-1-yl-tris(pyrrolidin-1-yl)phosphonium hexafluorophosphate (PyNTP) as the condensing reagent.
Collapse
Affiliation(s)
- Rintaro Iwata Hara
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuta Mitsuhashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Keita Saito
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yusuke Maeda
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
122
|
Jobin S, Méjean A, Galindo SM, Liang X, Vézina-Dawod S, Biron E. Toward solid-phase peptide fragment ligation by a traceless-Ugi multicomponent reaction approach. Org Biomol Chem 2018; 14:11230-11237. [PMID: 27841889 DOI: 10.1039/c6ob02342h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new methodology to couple peptide fragments on solid support using a traceless isocyanide-based multicomponent reaction is described. The approach uses a microwave-assisted on-resin Ugi four-component reaction to attach a carboxyl free peptide to a supported peptide bearing a free N-terminal amine via the formation of an N-protected amide bond at the ligation site. Afterward, the generated backbone amide protecting group can be efficiently removed by microwave-assisted acidolysis with trifluoroacetic acid to afford a fully deprotected peptide. This straightforward Ugi reaction/deprotection approach was applied to condense various fragment lengths and provided a variety of oligopeptides.
Collapse
Affiliation(s)
- Steve Jobin
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec (QC) G1V 4G2, Canada.
| | - Alexia Méjean
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec (QC) G1V 4G2, Canada.
| | - Sindy-Marcela Galindo
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec (QC) G1V 4G2, Canada.
| | - Xinxia Liang
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec (QC) G1V 4G2, Canada.
| | - Simon Vézina-Dawod
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec (QC) G1V 4G2, Canada.
| | - Eric Biron
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec (QC) G1V 4G2, Canada.
| |
Collapse
|
123
|
The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs. Molecules 2018; 23:molecules23020311. [PMID: 29389911 PMCID: PMC6017364 DOI: 10.3390/molecules23020311] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Host-defense peptides, also called antimicrobial peptides (AMPs), whose protective action has been used by animals for millions of years, fulfill many requirements of the pharmaceutical industry, such as: (1) broad spectrum of activity; (2) unlike classic antibiotics, they induce very little resistance; (3) they act synergically with conventional antibiotics; (4) they neutralize endotoxins and are active in animal models. However, it is considered that many natural peptides are not suitable for drug development due to stability and biodisponibility problems, or high production costs. This review describes the efforts to overcome these problems and develop new antimicrobial drugs from these peptides or inspired by them. The discovery process of natural AMPs is discussed, as well as the development of synthetic analogs with improved pharmacological properties. The production of these compounds at acceptable costs, using different chemical and biotechnological methods, is also commented. Once these challenges are overcome, a new generation of versatile, potent and long-lasting antimicrobial drugs is expected.
Collapse
|
124
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018; 57:2105-2109. [DOI: 10.1002/anie.201711546] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
125
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
126
|
Baumruck AC, Tietze D, Steinacker LK, Tietze AA. Chemical synthesis of membrane proteins: a model study on the influenza virus B proton channel. Chem Sci 2018; 9:2365-2375. [PMID: 29719709 PMCID: PMC5897842 DOI: 10.1039/c8sc00004b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
NCL results in the quantitative yield of a membrane protein, where a thioester peptide is formed from an oxo-ester with an in situ cleavable solubilizing tag.
In the present study we have developed and optimized a robust strategy for the synthesis of highly hydrophobic peptides, especially membrane proteins, exemplarily using the influenza B M2 proton channel (BM2(1–51)). This strategy is based on the native chemical ligation of two fragments, where the thioester fragment is formed from an oxo-ester peptide, which is synthesized using Fmoc-SPPS, and features an in situ cleavable solubilizing tag (ADO, ADO2 or ADO-Lys5). The nearly quantitative production of the ligation product was followed by an optimized work up protocol, resulting in almost quantitative desulfurization and Acm-group cleavage. Circular dichroism analysis in a POPC lipid membrane revealed that the synthetic BM2(1–51) construct adopts a helical structure similar to that of the previously characterized BM2(1–33).
Collapse
Affiliation(s)
- A C Baumruck
- Darmstadt University of Technology , Clemens-Schöpf Institute of Organic Chemistry and Biochemistry , Alarich-Weiss Str. 4 , 64287 Darmstadt , Germany .
| | - D Tietze
- Darmstadt University of Technology , Eduard-Zintl-Institute of Inorganic and Physical Chemistry , Alarich-Weiss-Str. 4 , 64287 Darmstadt , Germany
| | - L K Steinacker
- Darmstadt University of Technology , Clemens-Schöpf Institute of Organic Chemistry and Biochemistry , Alarich-Weiss Str. 4 , 64287 Darmstadt , Germany .
| | - A A Tietze
- Darmstadt University of Technology , Clemens-Schöpf Institute of Organic Chemistry and Biochemistry , Alarich-Weiss Str. 4 , 64287 Darmstadt , Germany .
| |
Collapse
|
127
|
Jaradat DMM. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 2017; 50:39-68. [PMID: 29185032 DOI: 10.1007/s00726-017-2516-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022]
Abstract
A historical overview of peptide chemistry from T. Curtius to E. Fischer to M. Bergmann and L. Zervas is first presented. Next, the fundamentals of peptide synthesis with a focus on solid phase peptide synthesis by R. B. Merrifield are described. Immobilization strategies to attach the first amino acid to the resin, coupling strategies in stepwise peptide chain elongation, and approaches to synthesize difficult peptide sequences are also shown. A brief comparison between tert-butyloxycarbonyl (Boc)/benzyl (Bzl) strategy and 9-fluorenylmethoxycarbonyl (Fmoc)/tert-butyl (t -Bu) strategy utilized in solid phase peptide synthesis is given with an emphasis on the latter. Finally, the review focuses on the discovery and development of peptide ligation and the latest advances in this field including native amide bond formation strategies, these include the native chemical ligation, α-ketoacid-hydroxylamine ligation, and serine/threonine ligation which are the most commonly used chemoselective ligation methods that provide amide bond at the ligation site. This review provides an overview of the literature concerning the most important advances in the chemical synthesis of proteins and peptides covering the period from 1882 to 2017.
Collapse
Affiliation(s)
- Da'san M M Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan.
| |
Collapse
|
128
|
Chemical synthesis of membrane proteins by the removable backbone modification method. Nat Protoc 2017; 12:2554-2569. [DOI: 10.1038/nprot.2017.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
129
|
Zhang T, Song W, Zhao J, Liu J. Full Solution-Phase Synthesis of Acetyl Hexapeptide-3 by Fragments Coupling Strategy. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teng Zhang
- College
of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wei Song
- Department of Polypeptide Engineering, Active Protein & Polypeptide Engineering Center of Xi’an Hua Ao Li Kang, Xi’an, 710054, P. R. China
| | - Jinli Zhao
- Department of Polypeptide Engineering, Active Protein & Polypeptide Engineering Center of Xi’an Hua Ao Li Kang, Xi’an, 710054, P. R. China
| | - Jianli Liu
- College
of Life Science, Northwest University, Xi’an, 710069, P. R. China
| |
Collapse
|
130
|
Chen S, Wei W, Wang J, Xia Y, Shen Y, Wu X, Jing H, Liang Y. Palladium‐Catalyzed Isocyanide Insertion with Allylic Esters: Synthesis of
N
‐(But‐2‐enoyl)‐
N
‐(
tert
‐butyl)benzamide Derivatives
via
Intramolecular Acyl Transfer Termination. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Si Chen
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Wan‐Xu Wei
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jia Wang
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yu Xia
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yi Shen
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xin‐Xing Wu
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 People's Republic of China
| | - Huanwang Jing
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yong‐Min Liang
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
131
|
Cheng B, Müller R, Trauner D. Total Syntheses of Cystobactamids and Structural Confirmation of Cystobactamid 919‐2. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bichu Cheng
- Department of Chemistry University of Munich Butenandtstrasse 5–13, Haus F 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East, Room 712 New York NY 10003 USA
| | - Rolf Müller
- Department of Microbial Natural Products Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research Saarland University 66123 Saarbrücken Germany
| | - Dirk Trauner
- Department of Chemistry University of Munich Butenandtstrasse 5–13, Haus F 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East, Room 712 New York NY 10003 USA
| |
Collapse
|
132
|
Cheng B, Müller R, Trauner D. Total Syntheses of Cystobactamids and Structural Confirmation of Cystobactamid 919-2. Angew Chem Int Ed Engl 2017; 56:12755-12759. [PMID: 28731542 DOI: 10.1002/anie.201705387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 12/21/2022]
Abstract
The cystobactamids are a family of antibacterial natural products with unprecedented chemical scaffolds that are active against both Gram-positive and Gram-negative pathogens. Herein, we describe the first total synthesis of cystobactamid 919-2 from three fragments. Our convergent synthesis enabled both the confirmation of the correct structure and the determination of the absolute configuration of cystobactamid 919-2.
Collapse
Affiliation(s)
- Bichu Cheng
- Department of Chemistry, University of Munich, Butenandtstrasse 5-13, Haus F, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, NY, 10003, USA
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, 66123, Saarbrücken, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Munich, Butenandtstrasse 5-13, Haus F, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, NY, 10003, USA
| |
Collapse
|
133
|
Gori A, Gagni P, Rinaldi S. Disulfide Bond Mimetics: Strategies and Challenges. Chemistry 2017; 23:14987-14995. [PMID: 28749012 DOI: 10.1002/chem.201703199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/25/2022]
Abstract
The activity profile of many biologically relevant proteins and peptides often relies on a precise 3D structural organization. In this context, disulfide bonds are natural covalent constraints that play a key role in driving and stabilizing the folding pattern of these molecules. Despite its prominent significance as structural motif, the disulfide bond itself is inherently unstable under physiological conditions, posing a major limit to the use and development of disulfide-rich peptides and proteins as molecular tools and drug lead compounds. To tackle this restriction, disulfide engineering with stable functional analogues has arisen a considerable interest. Here, the most popular approaches to disulfide replacement are reviewed and discussed with particular emphasis on advantages and limitations under both functional and synthetic perspectives.
Collapse
Affiliation(s)
- Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| | - Paola Gagni
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| |
Collapse
|
134
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 658] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
135
|
Jbara M, Maity SK, Brik A. Palladium in der chemischen Synthese und Modifizierung von Proteinen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702370] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
136
|
Jbara M, Maity SK, Brik A. Palladium in the Chemical Synthesis and Modification of Proteins. Angew Chem Int Ed Engl 2017; 56:10644-10655. [DOI: 10.1002/anie.201702370] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
137
|
Kumar A, Jad YE, de la Torre BG, El-Faham A, Albericio F. Re-evaluating the stability of COMU in different solvents. J Pept Sci 2017; 23:763-768. [DOI: 10.1002/psc.3024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Ashish Kumar
- School of Chemistry and Physics; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Yahya E. Jad
- School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Beatriz G. de la Torre
- School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Laboratory of Medicine and Medical Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
- Chemistry Department, Faculty of Science; Alexandria University; PO Box 426, Ibrahimia 12321 Alexandria Egypt
| | - Fernando Albericio
- School of Chemistry and Physics; University of KwaZulu-Natal; Durban 4001 South Africa
- Department of Chemistry, College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine; Barcelona Science Park; Barcelona 08028 Spain
| |
Collapse
|
138
|
Kumar A, Jad YE, El-Faham A, de la Torre BG, Albericio F. Green solid-phase peptide synthesis 4. γ-Valerolactone and N -formylmorpholine as green solvents for solid phase peptide synthesis. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
139
|
Jacobsen MT, Erickson PW, Kay MS. Aligator: A computational tool for optimizing total chemical synthesis of large proteins. Bioorg Med Chem 2017; 25:4946-4952. [PMID: 28651912 DOI: 10.1016/j.bmc.2017.05.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Patrick W Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States.
| |
Collapse
|
140
|
Li JB, Tang S, Zheng JS, Tian CL, Liu L. Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins. Acc Chem Res 2017; 50:1143-1153. [PMID: 28374993 DOI: 10.1021/acs.accounts.7b00001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical synthesis can produce water-soluble globular proteins bearing specifically designed modifications. These synthetic molecules have been used to study the biological functions of proteins and to improve the pharmacological properties of protein drugs. However, the above advances notwithstanding, membrane proteins (MPs), which comprise 20-30% of all proteins in the proteomes of most eukaryotic cells, remain elusive with regard to chemical synthesis. This difficulty stems from the strong hydrophobic character of MPs, which can cause considerable handling issues during ligation, purification, and characterization steps. Considerable efforts have been made to improve the solubility of transmembrane peptides for chemical ligation. These methods can be classified into two main categories: the manipulation of external factors and chemical modification of the peptide. This Account summarizes our research advances in the development of chemical modification especially the two generations of removable backbone modification (RBM) strategy for the chemical synthesis of MPs. In the first RBM generation, we install a removable modification group at the backbone amide of Gly within the transmembrane peptides. In the second RBM generation, the RBM group can be installed into all primary amino acid residues. The second RBM strategy combines the activated intramolecular O-to-N acyl transfer reaction, in which a phenyl group remains unprotected during the coupling process, which can play a catalytic role to generate the activated phenyl ester to assist in the formation of amide. The key feature of the RBM group is its switchable stability in trifluoroacetic acid. The stability of these backbone amide N-modifications toward TFA can be modified by regulating the electronic effects of phenol groups. The free phenol group is acylated to survive the TFA deprotection step, while the acyl phenyl ester will be quantitatively hydrolyzed in a neutral aqueous solution, and the free phenol group increases the electron density of the benzene ring to make the RBM labile to TFA. The transmembrane peptide segment bearing RBM groups behaves like a water-soluble peptide during fluorenylmethyloxycarbonyl based solid-phase peptide synthesis (Fmoc SPPS), ligation, purification, and characterization. The quantitative removal of the RBM group can be performed to obtain full-length MPs. The RBM strategy was used to prepare the core transmembrane domain Kir5.1[64-179] not readily accessible by recombinant protein expression, the influenza A virus M2 proton channel with phosphorylation, the cation-specific ion channel p7 from the hepatitis C virus with site-specific NMR isotope labels, and so on. The RBM method enables the practical engineering of small- to medium-sized MPs or membrane protein domains to address fundamental questions in the biochemical, biophysical, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jia-Bin Li
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Chang-Lin Tian
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
141
|
Jad YE, Govender T, Kruger HG, El-Faham A, de la Torre BG, Albericio F. Green Solid-Phase Peptide Synthesis (GSPPS) 3. Green Solvents for Fmoc Removal in Peptide Chemistry. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Ayman El-Faham
- Department
of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | | | - Fernando Albericio
- Department
of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering,
Biomaterials and Nanomedicine, Barcelona
Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
142
|
Caporale A, Doti N, Sandomenico A, Ruvo M. Evaluation of combined use of Oxyma and HATU in aggregating peptide sequences. J Pept Sci 2017; 23:272-281. [DOI: 10.1002/psc.2977] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 01/31/2023]
Affiliation(s)
| | - Nunzianna Doti
- IBB-CNR and CIRPeB; Via Mezzocannone 16 80134 Naples Italy
| | | | - Menotti Ruvo
- IBB-CNR and CIRPeB; Via Mezzocannone 16 80134 Naples Italy
| |
Collapse
|
143
|
Peng J, Yang HJ, Geng Y, Wei Z, Wang L, Guo CY. Novel, recyclable supramolecular metal complexes for the synthesis of cyclic carbonates from epoxides and CO 2 under solvent-free conditions. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2016.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
144
|
Abstract
Solid-phase peptide synthesis (SPPS) is the method of choice for chemical synthesis of peptides. In this nonspecialist review, we describe commonly used resins, linkers, protecting groups, and coupling reagents in 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS. Finally, a detailed protocol for manual Fmoc SPPS is presented.
Collapse
|
145
|
Karas JA, Noor A, Schieber C, Connell TU, Separovic F, Donnelly PS. The efficient synthesis and purification of amyloid-β(1–42) using an oligoethylene glycol-containing photocleavable lysine tag. Chem Commun (Camb) 2017; 53:6903-6905. [DOI: 10.1039/c7cc03147e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An oligoethylene glycol-containing photocleavable lysine tag was developed to facilitate the efficient synthesis and purification of the Aβ42 peptide.
Collapse
Affiliation(s)
- John A. Karas
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Christine Schieber
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Timothy U. Connell
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Frances Separovic
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Paul S. Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| |
Collapse
|
146
|
Jacobsen MT, Petersen ME, Ye X, Galibert M, Lorimer GH, Aucagne V, Kay MS. A Helping Hand to Overcome Solubility Challenges in Chemical Protein Synthesis. J Am Chem Soc 2016; 138:11775-82. [PMID: 27532670 DOI: 10.1021/jacs.6b05719] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although native chemical ligation (NCL) and related chemoselective ligation approaches provide an elegant method to stitch together unprotected peptides, the handling and purification of insoluble and aggregation-prone peptides and assembly intermediates create a bottleneck to routinely preparing large proteins by completely synthetic means. In this work, we introduce a new general tool, Fmoc-Ddae-OH, N-Fmoc-1-(4,4-dimethyl-2,6-dioxocyclo-hexylidene)-3-[2-(2-aminoethoxy)ethoxy]-propan-1-ol, a heterobifunctional traceless linker for temporarily attaching highly solubilizing peptide sequences ("helping hands") onto insoluble peptides. This tool is implemented in three simple and nearly quantitative steps: (i) on-resin incorporation of the linker at a Lys residue ε-amine, (ii) Fmoc-SPPS elongation of a desired solubilizing sequence, and (iii) in-solution removal of the solubilizing sequence using mild aqueous hydrazine to cleave the Ddae linker after NCL-based assembly. Successful introduction and removal of a Lys6 helping hand is first demonstrated in two model systems (Ebola virus C20 peptide and the 70-residue ribosomal protein L31). It is then applied to the challenging chemical synthesis of the 97-residue co-chaperonin GroES, which contains a highly insoluble C-terminal segment that is rescued by a helping hand. Importantly, the Ddae linker can be cleaved in one pot following NCL or desulfurization. The purity, structure, and chaperone activity of synthetic l-GroES were validated with respect to a recombinant control. Additionally, the helping hand enabled synthesis of d-GroES, which was inactive in a heterochiral mixture with recombinant GroEL, providing additional insight into chaperone specificity. Ultimately, this simple, robust, and easy-to-use tool is expected to be broadly applicable for the synthesis of challenging peptides and proteins.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Mark E Petersen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Xiang Ye
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Mathieu Galibert
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - George H Lorimer
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| |
Collapse
|
147
|
Beyer I, Rezaei-Ghaleh N, Klafki HW, Jahn O, Haußmann U, Wiltfang J, Zweckstetter M, Knölker HJ. Solid-Phase Synthesis and Characterization of N-Terminally Elongated Aβ-3-x -Peptides. Chemistry 2016; 22:8685-93. [PMID: 27167300 PMCID: PMC5084751 DOI: 10.1002/chem.201600892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 01/24/2023]
Abstract
In addition to the prototypic amyloid-β (Aβ) peptides Aβ1-40 and Aβ1-42 , several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid-phase peptide synthesis of the N-terminally elongated Aβ-peptides Aβ-3-38 , Aβ-3-40 , and Aβ-3-42 . Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ-3-38 and Aβ-3-40 are generated by transfected cells even in the presence of a tripartite β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(-3) can be separated from N-terminally-truncated Aβ forms by high-resolution isoelectric-focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N-terminally elongated Aβ variants in Alzheimer's disease.
Collapse
Affiliation(s)
- Isaak Beyer
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Nasrollah Rezaei-Ghaleh
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute for Experimental Medicine, Proteomics Group, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ute Haußmann
- University of Duisburg-Essen, 45141, Essen, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany. ,
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany. ,
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.
| |
Collapse
|
148
|
Maity SK, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Palladium-Assisted Removal of a Solubilizing Tag from a Cys Side Chain To Facilitate Peptide and Protein Synthesis. Org Lett 2016; 18:3026-9. [PMID: 27268382 DOI: 10.1021/acs.orglett.6b01442] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible attachment of solubilizing tags to hydrophobic peptides to facilitate their purification and ligation is an essential yet challenging task in chemical protein synthesis. The efficient palladium-assisted removal of the solubilizing tag linked to the Cys side chain is reported. The strategy was applied for the efficient preparation of histone protein H4 from two fragments via one-pot operation of ligation, removal of the solubilizing tag, and desulfurization.
Collapse
Affiliation(s)
- Suman Kumar Maity
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Muhammad Jbara
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Shay Laps
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| |
Collapse
|
149
|
Zheng JS, He Y, Zuo C, Cai XY, Tang S, Wang ZA, Zhang LH, Tian CL, Liu L. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification. J Am Chem Soc 2016; 138:3553-61. [PMID: 26943264 DOI: 10.1021/jacs.6b00515] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.
Collapse
Affiliation(s)
- Ji-Shen Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Yao He
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chao Zuo
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiao-Ying Cai
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Zhipeng A Wang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Long-Hua Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
150
|
De Leon Rodriguez LM, Hemar Y, Cornish J, Brimble MA. Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chem Soc Rev 2016; 45:4797-824. [DOI: 10.1039/c5cs00941c] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses about β-sheet peptide structure at the molecular level and the bulk mechanical properties of the corresponding hydrogels.
Collapse
Affiliation(s)
| | - Yacine Hemar
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- The Riddet Institute
| | - Jillian Cornish
- Department of Medicine
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|