101
|
Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties. Polymers (Basel) 2017; 10:polym10010010. [PMID: 30966044 PMCID: PMC6415002 DOI: 10.3390/polym10010010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have been widely used to increase the efficacy of chemotherapeutics, largely through passive accumulation provided by the enhanced permeability and retention effect. Their incorporation into biopolymer coatings enables the preparation of magnetic field-responsive, biocompatible nanoparticles that are well dispersed in aqueous media. Here we describe a synthetic route to prepare functionalized, stable magnetite nanoparticles (MNPs) coated with a temperature-responsive polymer, by means of the hydrothermal method combined with an oil/water (o/w) emulsion process. The effects of both pH and temperature on the electrophoretic mobility and surface charge of these MNPs are investigated. The magnetite/polymer composition of these systems is detected by Fourier Transform Infrared Spectroscopy (FTIR) and quantified by thermogravimetric analysis. The therapeutic possibilities of the designed nanostructures as effective heating agents for magnetic hyperthermia are demonstrated, and specific absorption rates as high as 150 W/g, with 20 mT magnetic field and 205 kHz frequency, are obtained. This magnetic heating response could provide a promising nanoparticle system for combined diagnostics and cancer therapy.
Collapse
|
102
|
Tu Z, Wycisk V, Cheng C, Chen W, Adeli M, Haag R. Functionalized graphene sheets for intracellular controlled release of therapeutic agents. NANOSCALE 2017; 9:18931-18939. [PMID: 29177354 DOI: 10.1039/c7nr06588d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since therapeutic agents target specific compartments inside the cells, their efficiency depends on their intracellular release from drug delivery systems (DDS). However, control over the intracellular release of therapeutic agents is a challenging issue and can only be achieved by governing their interactions with the DDS. In this work, polyglycerol amine- and polyglycerol sulfate-functionalized graphene sheets as positively and negatively charged 2D nanomaterials with 150 nm lateral size were used to deliver and control the release of doxorubicin (DOX) inside cells. A pH-sensitive dye was conjugated onto the surfaces of graphene sheets and used as an antenna to obtain specific signals from the acidic cell compartments. It was found that both positively and negatively charged graphene sheets undergo similar acidification processes after cellular uptake. Nevertheless, the intracellular drug release of these DOX-loaded nanomaterials was distinctly different. As an overall effect of the π-π stacking and electrostatic interactions, the release of DOX from the positively charged graphene sheets was much faster than that from their analogs with a negative surface charge. Therefore, therapeutic efficiency in the first case was much higher than that in the latter. Based on our findings, the intracellular release of drugs from the surfaces of graphene sheets can be finely tuned by manipulating their functionalities, which is of great importance in the designing of the future graphene-based nanomedicines.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Organische Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
103
|
Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr Polym 2017; 175:159-169. [DOI: 10.1016/j.carbpol.2017.07.078] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022]
|
104
|
Li H, Jin Z, Cho S, Jeon MJ, Nguyen VD, Park JO, Park S. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy. NANOTECHNOLOGY 2017; 28:425101. [PMID: 28944765 DOI: 10.1088/1361-6528/aa8477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.
Collapse
Affiliation(s)
- Hao Li
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
105
|
Wang Y, Wang L, Yan M, Dong S, Hao J. Near-Infrared-Light-Responsive Magnetic DNA Microgels for Photon- and Magneto-Manipulated Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28185-28194. [PMID: 28766338 DOI: 10.1021/acsami.7b05502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functional DNA molecules have been introduced into polymer-based nanocarrier systems to incorporate chemotherapy drugs for cancer therapy. Here is the first report of dual-responsive microgels composed of a core of Au nanorods and a shell of magnetic ionic liquid and DNA moieties in the cross-linking network simultaneously, as effective drug delivery vectors. TEM images indicated a magnetic polymer shell has an analogous "doughnut" shape which loosely surround the AuNRs core. When irradiated with a near-infrared-light (near-IR) laser, Au nanorods are the motors which convert the light to heat, leading to the release of the encapsulated payloads with high controllability. DNA acts not only as a cross-linker agent, but also as a gatekeeper to regulate the release of drugs. The internalization study and MTT assay confirm that these core-shell DNA microgels are excellent candidates which can enhance the cytotoxicity of cancer cells controlled by near-IR laser and shield the high toxicity of chemotherapeutic agents to improve the killing efficacy of chemotherapeutic agents efficiently in due course.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| | - Miaomiao Yan
- Department of Pharmacy, Binzhou Medical College , Yantai 264003, People's Republic of China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| |
Collapse
|
106
|
Zhang A, Li A, Tian W, Li Z, Wei C, Sun Y, Zhao W, Liu M, Liu J. A Target-Directed Chemo-Photothermal System Based on Transferrin and Copolymer-Modified MoS2
Nanoplates with pH-Activated Drug Release. Chemistry 2017; 23:11346-11356. [DOI: 10.1002/chem.201701916] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Aitang Zhang
- College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 P. R. China
| | - Aihua Li
- College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 P. R. China
| | - Wenxue Tian
- School of Pharmacy; Qingdao University; Qingdao 266021 P. R. China
| | - Zichao Li
- College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 P. R. China
| | - Chen Wei
- School of Pharmacy; Qingdao University; Qingdao 266021 P. R. China
| | - Yong Sun
- School of Pharmacy; Qingdao University; Qingdao 266021 P. R. China
| | - Wei Zhao
- College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 P. R. China
| | - Mengli Liu
- College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 P. R. China
| | - Jingquan Liu
- College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 P. R. China
| |
Collapse
|
107
|
Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 2017; 136:98-114. [DOI: 10.1016/j.biomaterials.2017.05.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
|
108
|
Dung NT, Long NV, Tam LTT, Nam PH, Tung LD, Phuc NX, Lu LT, Kim Thanh NT. High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles. NANOSCALE 2017; 9:8952-8961. [PMID: 28267161 DOI: 10.1039/c6nr09325f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures. Using a seeded growth method, we successfully synthesised chemically stable CoFe@Pt core/shell nanostructures. The obtained core/shell nanoparticles have high saturation magnetisation up to 135 emu g-1. The magnetisation value of the core/shell nanoparticles remains 93 emu g-1 after being exposed to air for 12 weeks. Hydrophobic CoFe@Pt nanoparticles were rendered water-dispersible by encapsulating with poly(maleic anhydride-alt-1-octadecene) (PMAO). These nanoparticles were stable in water for at least 3 months and in a wide range of pH from 2 to 11.
Collapse
Affiliation(s)
- Ngo T Dung
- Institute for Tropical Technology (ITT)-Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1947-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
110
|
Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017; 16:400-423. [PMID: 28154410 PMCID: PMC5455971 DOI: 10.1038/nrd.2016.248] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.
Collapse
Affiliation(s)
- Bart J. Crielaard
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, Groningen, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Stefano Rivella
- Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA, United States of America
| |
Collapse
|
111
|
Li J, Zeng J, Jia X, Liu L, Zhou T, Liu P. pH, temperature and reduction multi-responsive polymeric microspheres as drug delivery system for anti-tumor drug: Effect of middle hollow layer between pH and reduction dual-responsive cores and temperature sensitive shells. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
112
|
Dine EJA, Ferjaoui Z, Roques-Carmes T, Schjen A, Meftah A, Hamieh T, Toufaily J, Schneider R, Gaffet E, Alem H. Efficient synthetic access to thermo-responsive core/shell nanoparticles. NANOTECHNOLOGY 2017; 28:125601. [PMID: 28145892 DOI: 10.1088/1361-6528/aa5d81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
Collapse
Affiliation(s)
- Enaam Jamal Al Dine
- Institut Jean Lamour (IJL), UMR CNRS 7198, Université de Lorraine, Department N2EV, Parc de Saurupt CS50840 F-54011 Nancy, France. Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Mertz D, Sandre O, Bégin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta Gen Subj 2017; 1861:1617-1641. [PMID: 28238734 DOI: 10.1016/j.bbagen.2017.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607, Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
114
|
Ferjaoui Z, Schneider R, Meftah A, Gaffet E, Alem H. Functional responsive superparamagnetic core/shell nanoparticles and their drug release properties. RSC Adv 2017. [DOI: 10.1039/c7ra02437a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Folic acid functionalized responsive core/shell superparamagnetic iron oxide nanoparticles were successfully synthesized for further application in cancer therapy. Their cancer drug loading and release performances were demonstrated.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Institut Jean Lamour (IJL)
- Université de Lorraine
- Department N2EV
- UMR CNRS 7198
- 54011 Nancy
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés (LRGP)
- Université de Lorraine
- UMR CNRS 7274
- 54001 Nancy
- France
| | - Abdelaziz Meftah
- Unite Nanamatériaux et Photonique
- Faculty of Sciences of Tunis
- Tunis El-Manar University
- 2092 Tunis
- Tunisia
| | - Eric Gaffet
- Institut Jean Lamour (IJL)
- Université de Lorraine
- Department N2EV
- UMR CNRS 7198
- 54011 Nancy
| | - Halima Alem
- Institut Jean Lamour (IJL)
- Université de Lorraine
- Department N2EV
- UMR CNRS 7198
- 54011 Nancy
| |
Collapse
|
115
|
Santha Moorthy M, Subramanian B, Panchanathan M, Mondal S, Kim H, Lee KD, Oh J. Fucoidan-coated core–shell magnetic mesoporous silica nanoparticles for chemotherapy and magnetic hyperthermia-based thermal therapy applications. NEW J CHEM 2017. [DOI: 10.1039/c7nj03211k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fucoidan-coated FeNP@SiOH@Fuc NPs have been proposed for chemotherapy and thermal therapy applications in emerging cancer therapy.
Collapse
Affiliation(s)
- Madhappan Santha Moorthy
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Bharathiraja Subramanian
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Manivasagan Panchanathan
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Sudip Mondal
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine
- Busan-48513
- Republic of Korea
| | - Junghwan Oh
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
- Marine-Integrated Bionics Research Center
| |
Collapse
|
116
|
Wang M. Emerging Multifunctional NIR Photothermal Therapy Systems Based on Polypyrrole Nanoparticles. Polymers (Basel) 2016; 8:E373. [PMID: 30974650 PMCID: PMC6432477 DOI: 10.3390/polym8100373] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023] Open
Abstract
Near-infrared (NIR)-light-triggered therapy platforms are now considered as a new and exciting possibility for clinical nanomedicine applications. As a promising photothermal agent, polypyrrole (PPy) nanoparticles have been extensively studied for the hyperthermia in cancer therapy due to their strong NIR light photothermal effect and excellent biocompatibility. However, the photothermal application of PPy based nanomaterials is still in its preliminary stage. Developing PPy based multifunctional nanomaterials for cancer treatment in vivo should be the future trend and object for cancer therapy. In this review, the synthesis of PPy nanoparticles and their NIR photothermal conversion performance were first discussed, followed by a summary of the recent progress in the design and implementation on the mulitifunctionalization of PPy or PPy based therapeutic platforms, as well as the introduction of their exciting biomedical applications based on the synergy between the photothermal conversion effect and other stimulative responsibilities.
Collapse
Affiliation(s)
- Mozhen Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
117
|
Li Z, Ye E, Lakshminarayanan R, Loh XJ. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4782-4806. [PMID: 27482950 DOI: 10.1002/smll.201601129] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The development of hybrid biomaterials has been attracting great attention in the design of materials for biomedicine. The nanosized level of inorganic and organic or even bioactive components can be combined into a single material by this approach, which has created entirely new advanced compositions with truly unique properties for drug delivery. The recent advances in using hybrid nanovehicles as remotely controlled therapeutic delivery carriers are summarized with respect to different nanostructures, including hybrid host-guest nanoconjugates, micelles, nanogels, core-shell nanoparticles, liposomes, mesoporous silica, and hollow nanoconstructions. In addition, the controlled release of guest molecules from these hybrid nanovehicles in response to various remote stimuli such as alternating magnetic field, near infrared, or ultrasound triggers is further summarized to introduce the different mechanisms of remotely triggered release behavior. Through proper chemical functionalization, the hybrid nanovehicle system can be further endowed with many new properties toward specific biomedical applications.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
| |
Collapse
|
118
|
Liwinska W, Symonowicz M, Stanislawska I, Lyp M, Stojek Z, Zabost E. Environmentally sensitive nanohydrogels decorated with a three-strand oligonucleotide helix for controlled loading and prolonged release of intercalators. RSC Adv 2016. [DOI: 10.1039/c6ra16592c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocompatible nanohydrogels modified with three-segment oligonucleotide hybrids were used for controlled loading and prolonged release of anticancer intercalators in hyperthermia treatment.
Collapse
Affiliation(s)
| | | | | | - Marek Lyp
- College of Rehabilitation
- Warsaw
- Poland
| | | | - Ewelina Zabost
- Faculty of Chemistry
- University of Warsaw
- 02-093 Warsaw
- Poland
| |
Collapse
|