101
|
Formentín P, Catalán Ú, Pol L, Fernández-Castillejo S, Solà R, Marsal LF. Collagen and fibronectin surface modification of nanoporous anodic alumina and macroporous silicon for endothelial cell cultures. J Biol Eng 2018; 12:21. [PMID: 30305842 PMCID: PMC6166296 DOI: 10.1186/s13036-018-0111-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ability to direct the cellular response by means of biomaterial surface topography is important for biomedical applications. Substrate surface topography has been shown to be an effective cue for the regulation of cellular response. Here, the response of human aortic endothelial cells to nanoporous anodic alumina and macroporous silicon with collagen and fibronectin functionalization has been studied. METHODS Confocal microscopy and scanning electron microscopy were employed to analyse the effects of the material and the porosity on the adhesion, morphology, and proliferation of the cells. Cell spreading and filopodia formation on macro- and nanoporous material was characterized by atomic force microscopy. We have also studied the influence of the protein on the adhesion. RESULTS It was obtained the best results when the material is functionalized with fibronectin, regarding cells adhesion, morphology, and proliferation. CONCLUSION These results permit to obtain chemical modified 3D structures for several biotechnology applications such as tissue engineering, organ-on-chip or regenerative medicine.
Collapse
Affiliation(s)
- P. Formentín
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Ú. Catalán
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Hospital Universitari Sant Joan (HUSJR), Institut d’Investigació Sanitaria Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - L. Pol
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - S. Fernández-Castillejo
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Hospital Universitari Sant Joan (HUSJR), Institut d’Investigació Sanitaria Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - R. Solà
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Hospital Universitari Sant Joan (HUSJR), Institut d’Investigació Sanitaria Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - L. F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| |
Collapse
|
102
|
Liu W, Li J, Cheng M, Wang Q, Yeung KWK, Chu PK, Zhang X. Zinc-Modified Sulfonated Polyetheretherketone Surface with Immunomodulatory Function for Guiding Cell Fate and Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800749. [PMID: 30356934 PMCID: PMC6193167 DOI: 10.1002/advs.201800749] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Indexed: 05/19/2023]
Abstract
The cytokines released by immune cells are considered important factors to induce bone tissue regeneration. However, the pathway of those bone-targeting macrophage cytokines induced by biomaterial surface under tissue microenvironment is rarely reported. In this study, the immunomodulatory capability of zinc ions on macrophage polarization and its effects on osteogenic differentiation are investigated. Hence, a layer of zinc ions are incorporated on sulfonated polyetheretherketone (SPEEK) biomaterials by using a customized magnetron sputtering technique. The results reveal that the microenvironment on Zn-coated SPEEK can modulate nonactivated macrophage polarization to an anti-inflammatory phenotype and induce the secretion of anti-inflammatory and osteogenic cytokines. The osteogenic differentiation capability of bone marrow stromal cells (BMSCs) is therefore enhanced, leading to improved osteointegration between the zinc-coated SPEEK and bone tissue. This study verifies that zinc ion is a promising additive in the osteoimmunomodulation process and provides knowledge that may pave the way to develop the next generation of immunomodulatory biomaterials.
Collapse
Affiliation(s)
- Wei Liu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| | - Jinhua Li
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Department of Physics and Department of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077China
| | - Mengqi Cheng
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| | - Qiaojie Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| | - Kelvin W. K. Yeung
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| |
Collapse
|
103
|
Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 2018; 181:318-332. [PMID: 30098568 DOI: 10.1016/j.biomaterials.2018.07.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/22/2018] [Accepted: 07/28/2018] [Indexed: 12/27/2022]
Abstract
Immune cells are sensitive to the microstructural and textural properties of materials. Tuning the structural features of synthetic bone grafts could be a valuable strategy to regulate the specific response of the immune system, which in turn modulates the activity of bone cells. The aim of this study was to analyse the effect of the structural characteristics of biomimetic calcium deficient hydroxyapatite (CDHA) on the innate immune response of macrophages and the subsequent impact on osteogenesis and osteoclastogenesis. Murine RAW 264.7 cells were cultured, under standard and inflammatory conditions, on chemically identical CDHA substrates that varied in microstructure and porosity. The impact on osteogenesis was evaluated by incubating osteoblastic cells (SaOS-2) with RAW-CDHA conditioned extracts. The results showed that macrophages were sensitive to different textural and structural properties of CDHA. Under standard conditions, the impact of inflammatory cytokine production by RAW cells cultured on CDHA played a significant role in the degradation of substrates, suggesting the impact of resorptive behaviour of RAW cells on biomimetic surfaces. Osteoblast differentiation was stimulated by the conditioned media collected from RAW cells cultured on needle-like nanostructured CDHA. The results demonstrated that needle-like nanostructured CDHA was able to generate a favourable osteoimmune environment to regulate osteoblast differentiation and osteogenesis. Under inflammatory conditions, the incubation of RAW cells with less porous CDHA resulted in a decreased gene expression and release of pro-inflammatory cytokines.
Collapse
|
104
|
Li X, Wang X, Ito A. Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev 2018; 47:4954-4980. [PMID: 29911725 DOI: 10.1039/c8cs00028j] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines, one of the most effective and powerful public health measures, have saved countless lives over the past century and still have a tremendous global impact. As an indispensable component of modern vaccines, adjuvants play a critical role in strengthening and/or shaping a specific immune response against infectious diseases as well as malignancies. The application of nanotechnology provides the possibility of precisely tailoring the building blocks of nanoadjuvants towards modern vaccines with the desired immune response. The last decade has witnessed great academic progress in inorganic nanomaterials for vaccine adjuvants in terms of nanometer-scale synthesis, structure control, and functionalization design. Inorganic adjuvants generally facilitate the delivery of antigens, allowing them to be released in a sustained manner, enhance immunogenicity, deliver antigens efficiently to specific targets, and induce a specific immune response. In particular, the recent discovery of the intrinsic immunomodulatory function of inorganic nanomaterials further allows us to shape the immune response towards the desired type and increase the efficacy of vaccines. In this article, we comprehensively review state-of-the-art research on the use of inorganic nanomaterials as vaccine adjuvants. Attention is focused on the physicochemical properties of versatile inorganic nanoadjuvants, such as composition, size, morphology, shape, hydrophobicity, and surface charge, to effectively stimulate cellular immunity, considering that the clinically used alum adjuvants can only induce strong humoral immunity. In addition, the efforts made to date to expand the application of inorganic nanoadjuvants in cancer vaccines are summarized. Finally, we discuss the future prospects and our outlook on tailoring inorganic nanoadjuvants towards next-generation vaccines.
Collapse
Affiliation(s)
- Xia Li
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
105
|
Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials 2018; 180:91-103. [PMID: 30031224 DOI: 10.1016/j.biomaterials.2018.07.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 06/17/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
Abstract
Cartilage lesions in degenerative osteoarthritis (OA) are involved with pathological microenvironmental alterations induced by inflammatory macrophages, and apoptotic and/or hypertrophic chondrocytes. However, current non-operative therapies for cartilage repair in OA can rarely achieve long-term and satisfactory outcomes. This study aims to evaluate a newly developed squid type II collagen (SCII) for repairing OA-induced cartilage lesions. Our in vitro data show that SCII induces M2 polarization of macrophages, and activates macrophages to express pro-chondrogenic genes (TGF-β and IGF), which greatly improves the microenvironment around chondrocytes to produce type II collagen and glycosaminoglycan. In addition, glycine in SCII activates glycine receptors on inflammatory chondrocytes to decrease intracellular calcium concentration, leading to effective inhibition of chondrocyte apoptosis and hypertrophy. The in vitro effects of SCII are further confirmed in vivo. In a rat model of OA, SCII increases the ratio of M2 macrophages, elevates the levels of pro-chondrogenic cytokines (TGF-β1 and TGF-β3) in synovial fluid, and inhibits chondrocyte apoptosis and MMP13 production. Our findings show that SCII immunomodulates M2 activation of macrophages to skew the local OA microenvironment towards a pro-chondrogenic atmosphere, and promotes cartilage repair under inflammatory condition. It shows great potential for SCII to be a novel biomaterial for cartilage repair in OA.
Collapse
Affiliation(s)
- Meilu Dai
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Baiyan Sui
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Yang Xue
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Xin Liu
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| |
Collapse
|
106
|
Li X, Huang Q, Elkhooly TA, Liu Y, Wu H, Feng Q, Liu L, Fang Y, Zhu W, Hu T. Effects of titanium surface roughness on the mediation of osteogenesis via modulating the immune response of macrophages. ACTA ACUST UNITED AC 2018; 13:045013. [PMID: 29657156 DOI: 10.1088/1748-605x/aabe33] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Osteoblastic lineage cells are commonly used to evaluate the in vitro osteogenic ability of bone biomaterials. However, contradictory results obtained from in vivo and in vitro studies are not uncommon. With the increasing understanding of osteoimmunology, the immune response has been recognized as playing an important role in bone regeneration. In this study, we examined the effect of submicron-scaled titanium surface roughness (ranging from approximately 100 to 400 nm) on the response of osteoblasts and macrophages. The results showed that osteoblast differentiation enhanced with increased surface roughness of titanium substrates. The cytoskeleton of macrophages altered with the variation in titanium surface roughness. The production of cytokines (TNF-α, IL-6, IL-4 and IL-10) could be regulated by titanium surface roughness. Moreover, macrophages cultured on titanium surfaces exhibited a tendency to polarize to M1 phenotype with the increase of surface roughness. Material/macrophage conditioned medium tended to promote osteoblast differentiation with the increase of surface roughness. The results indicate that increasing surface roughness in the submicron range is beneficial for osteogenesis via modulating the immune response of macrophages. Modifying biomaterial surfaces based on their immunomodulatory effects is considered as a novel strategy for the improvement of their biological performance.
Collapse
Affiliation(s)
- Xuezhong Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Liu R, Lin Y, Lin J, Zhang L, Mao X, Huang B, Xiao Y, Chen Z, Chen Z. Blood Prefabrication Subcutaneous Small Animal Model for the Evaluation of Bone Substitute Materials. ACS Biomater Sci Eng 2018; 4:2516-2527. [PMID: 33435115 DOI: 10.1021/acsbiomaterials.8b00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yixiong Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Jinying Lin
- Xiamen Stomatological Hospital, Xiamen 361000, China
| | - Linjun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xueli Mao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Baoxin Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
108
|
Huang Q, Li X, Elkhooly TA, Xu S, Liu X, Feng Q, Wu H, Liu Y. The osteogenic, inflammatory and osteo-immunomodulatory performances of biomedical Ti-Ta metal-metal composite with Ca- and Si-containing bioceramic coatings. Colloids Surf B Biointerfaces 2018; 169:49-59. [PMID: 29747030 DOI: 10.1016/j.colsurfb.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 02/01/2023]
Abstract
It is known that good mechanical properties, low modulus to reduce stress-shielding effect, favorable osteogenic activity and limited inflammatory response are critical factors for orthopedic implants to induce excellent osteointegration. In this study, Ti-20% Ta metal-metal composite (referred as Ti-Ta) which consisted of Ti- and Ta-rich phases was fabricated via the strategy of powder metallurgy. Micro-arc oxidation (MAO) was employed to modify the surface of Ti-Ta composite. The surfaces of Ti-Ta composite after MAO treatment at an applied voltage of 250 (referred as MAO-250 V) or 300 V (referred as MAO-300 V) exhibited three distinct zones with significantly different morphological features and surface chemistry. Osteoblast-like SaOS-2 cells were found to be preferential to attach on the Ta-rich phase and its surrounding areas, exhibiting an area-dependent adhesion tendency. However, the attachment of Raw 264.7 macrophages was found to be insensitive to the surface characteristics. The proliferation and differentiation of SaOS-2 cells cultured on various surfaces basically followed the trend: MAO-modified surfaces > Ti-Ta surface > Ti surface. The Ti-Ta and MAO-modified surfaces were found to inhibit the inflammatory response and polarize macrophages to anti-inflammatory M2 phenotype compared to Ti surface. Moreover, the microenvironments created by Ti-Ta, MAO-250 V and MAO-300 V/macrophage interactions promoted the proliferation and differentiation of SaOS-2 cells compared to that created by Ti/macrophage interactions. MAO-300 V surface exhibited further enhanced positive osteo-immunomodulatory effects compared to Ti-Ta surface. Together, the Ti-20% Ta metal-metal composite modified by MAO at an applied voltage of 300 V is considered as a promising implant material for orthopedic applications.
Collapse
Affiliation(s)
- Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Xuezhong Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Tarek A Elkhooly
- Department of ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Shenghang Xu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
109
|
Gulati K, Hamlet SM, Ivanovski S. Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. J Mater Chem B 2018; 6:2677-2689. [PMID: 32254221 DOI: 10.1039/c8tb00450a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its biocompatibility and corrosion resistance, titanium is one of the most commonly used implantable biomaterials. Numerous in vitro and in vivo investigations have established that titanium surfaces with a nanoscale topography outperform conventional smooth or micro-rough surfaces in terms of achieving desirable bonding with bone (i.e. enhanced bioactivity). Among these nanoscale topographical modifications, ordered nanostructures fabricated via electrochemical anodization, especially titania nanotubes (TNTs), are particularly attractive. This is due to their ability to augment bioactivity, deliver drugs and the potential for easy/cost-effective translation into the current implant market. However, the potential of TNT-modified implants to modulate the host immune-inflammatory response, which is critical for achieving timely osseointegration, remains relatively unexplored. Such immunomodulatory effects may be achieved by modifying the physical and chemical properties of the TNTs. Furthermore, therapeutic/bioactive enhancements performed on these nano-engineered implants (such as antibacterial or osteogenic functions) are likely to illicit an immune response which needs to be appropriately controlled. The lack of sufficient in-depth studies with respect to immune cell responses to TNTs has created research gaps that must be addressed in order to facilitate the design of the next generation of immuno-modulatory titanium implants. This review article focuses on the chemical, topographical and mechanical features of TNT-modified implants that can be manipulated in order to achieve immuno-modulation, as well as providing an insight into how modulating the immune response can augment implant performance.
Collapse
Affiliation(s)
- Karan Gulati
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| | | | | |
Collapse
|
110
|
Guo J, Zhou H, Wang J, Liu W, Cheng M, Peng X, Qin H, Wei J, Jin P, Li J, Zhang X. Nano vanadium dioxide films deposited on biomedical titanium: a novel approach for simultaneously enhanced osteogenic and antibacterial effects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:58-74. [PMID: 29560740 DOI: 10.1080/21691401.2018.1452020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vanadium is a trace element in the human body, and vanadium compounds have a promising future in biological and medical applications due to their various biological activities and low toxicity. Herein, a novel pure vanadium dioxide (VO2) nanofilm was deposited on a substrate of biomedical titanium by magnetron sputtering. The antibacterial effect of VO2 against the methicillin-resistant Staphylococcus aureus (MRSA) was validated in vitro and in vivo. Moreover, the biocompatibility of VO2 and its osteogenic effects were systematically illustrated. A possible osteogenic mechanism involving the amelioration of highly reactive oxygen species (ROS) levels were investigated. According to the results of our present and previous studies, the simultaneous antibacterial and osteogenic effects of VO2 are attributed to its differential regulation of ROS levels in rat bone marrow mesenchymal stem cells (rBMSCs) and bacteria. This study is the first to report the simultaneous effects of VO2 on bactericidal and osteogenic activities through its differential modification of ROS activity in eukaryotic (rBMSCs) and prokaryotic (MRSA) cells. The findings in this work may yield a deeper understanding of the biological activities of vanadium compounds while also paving the way for the further investigation and application of VO2 in biological and medical materials.
Collapse
Affiliation(s)
- Jinxiao Guo
- a Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Huaijuan Zhou
- b State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , China
| | - Jiaxing Wang
- a Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Wei Liu
- a Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Mengqi Cheng
- a Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Xiaochun Peng
- a Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Hui Qin
- a Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Jianfeng Wei
- c Department of Histology and Embryology, School of Basic Medical Sciences , Xuzhou Medical University , Xuzhou , China
| | - Ping Jin
- b State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , China
| | - Jinhua Li
- d Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Pok Fu Lam , Hong Kong, China
| | - Xianlong Zhang
- a Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
111
|
Mussano F, Genova T, Serra FG, Carossa M, Munaron L, Carossa S. Nano-Pore Size of Alumina Affects Osteoblastic Response. Int J Mol Sci 2018; 19:E528. [PMID: 29425177 PMCID: PMC5855750 DOI: 10.3390/ijms19020528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 01/31/2023] Open
Abstract
The rapid development and application of nanotechnology to biological interfaces has impacted the bone implant field, allowing researchers to finely modulate the interface between biomaterials and recipient tissues. In the present study, oxidative anodization was exploited to generate two alumina surfaces with different pore diameters. The former displayed surface pores in the mean range of 16-30 nm, while in the latter pores varied from to 65 to 89 nm. The samples were characterized by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray spectroscopy (EDX) analysis prior to being tested with pre-osteoblastic MC3T3-E1 cells. In vitro cell response was studied in terms of early cell adhesion, viability, and morphology, including focal adhesion quantification. Both the alumina samples promoted higher cell adhesion and viability than the control condition represented by the standard culture dish plastic. Osteogenic differentiation was assessed through alkaline phosphatase activity and extracellular calcium deposition, and it was found that of the two nano-surfaces, one was more efficient than the other. By comparing for the first time two nano-porous alumina surfaces with different pore diameters, our data supported the role of nano-topography in inducing cell response. Modulating a simple aspect of surface texture may become an attractive route for guiding bone healing and regeneration around implantable metals.
Collapse
Affiliation(s)
- Federico Mussano
- CIR Dental School, Department of Surgical Sciences, University of Turin, via Nizza 230, 10126 Turin, Italy.
| | - Tullio Genova
- CIR Dental School, Department of Surgical Sciences, University of Turin, via Nizza 230, 10126 Turin, Italy.
- Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123 Turin, Italy.
| | - Francesca Giulia Serra
- Department of Mechanical and Aerospatial Engineering (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Massimo Carossa
- CIR Dental School, Department of Surgical Sciences, University of Turin, via Nizza 230, 10126 Turin, Italy.
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123 Turin, Italy.
- Centre for Nanostructured Interfaces and Surfaces (NIS), via Quarello 11/A, 10135 Turin, Italy.
| | - Stefano Carossa
- CIR Dental School, Department of Surgical Sciences, University of Turin, via Nizza 230, 10126 Turin, Italy.
| |
Collapse
|
112
|
Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surf B Biointerfaces 2018; 164:58-69. [PMID: 29413621 DOI: 10.1016/j.colsurfb.2018.01.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 11/21/2022]
Abstract
Osteoblast cell adhesion is the initial step of early osseointegration responding to bone material implants. Enhancing the osteoblastic cell adhesion has become one of the prime aims when optimizing the surface properties of bone biomaterials. The traditional strategy focuses in improving the physical attachment of osteoblastic cells onto the surfaces of biomaterials. However, instead of a simple cell physical attachment, the osteoblastic cell adhesion has been revealed to be a sophisticated system. Despite the well-documented effect of bone biomaterial surface modifications on adhesion, few studies have focused on the underlying molecular mechanisms. Physicochemical signals from biomaterials can be transduced into intracellular signaling network and further initiate the early response cascade towards the implants, which includes cell survival, migration, proliferation, and differentiation. Adhesion is vital in determining the early osseointegration between host bone tissue and implanted bone biomaterials via regulating involving signaling pathways. Therefore, the modulation of early adhesion behavior should not simply target in physical attachment, but emphasize in the manipulation of downstream signaling pathways, to regulate early osseointegration. This review firstly summarized the basic biological principles of osteoblastic cell adhesion process and the activated downstream cell signaling pathways. The effects of different biomaterial physicochemical properties on osteoblastic cell adhesion were then reviewed. This review provided up-to-date research outcomes in the adhesion behavior of osteoblastic cells on bone biomaterials with different physicochemical properties. The strategy is optimised from traditionally focusing in physical cell adhesion to the proposed strategy that manipulating cell adhesion and the downstream signaling network for the enhancement of early osseointegration.
Collapse
|
113
|
Wei F, Xiao Y. Modulation of the Osteoimmune Environment in the Development of Biomaterials for Osteogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:69-86. [DOI: 10.1007/978-981-13-0947-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
114
|
Lin J, Cai R, Sun B, Dong J, Zhao Y, Miao Q, Chen C. Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. J Mater Chem B 2018; 6:5802-5811. [DOI: 10.1039/c8tb01097h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gd@C82(OH)22 dose-dependently manipulates osteogenesis of MSCs in inflammatory microenvironment, which is capable for bone tissue engineering as an immunomodulatory nanoparticle.
Collapse
Affiliation(s)
- Jiao Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Baoyun Sun
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Key Laboratory for Nuclear Techniques, Institute of High Energy Physics
- Beijing
| | - Jinquan Dong
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Key Laboratory for Nuclear Techniques, Institute of High Energy Physics
- Beijing
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| |
Collapse
|
115
|
Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. NANOSCALE 2017; 9:18129-18152. [PMID: 29143002 DOI: 10.1039/c7nr05913b] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immune cells play vital roles in regulating bone dynamics. Successful bone regeneration requires a favourable osteo-immune environment. The high plasticity and diversity of immune cells make it possible to manipulate the osteo-immune response of immune cells, thus modulating the osteoimmune environment and regulating bone regeneration. With the advancement in nanotechnology, nanotopographies with different controlled surface properties can be fabricated. On tuning the surface properties, the osteo-immune response can be precisely modulated. This highly tunable characteristic and immunomodulatory effects make nanotopography a promising strategy to precisely manipulate osteoimmunomdulation for bone tissue engineering applications. This review first summarises the effects of the immune response during bone healing to show the importance of regulating the immune response for the bone response. The plasticity of immune cells is then reviewed to provide rationales for manipulation of the osteoimmune response. Subsequently, we highlight the current types of nanotopographies applied in bone biomaterials and their fabrication techniques, and explain how these nanotopographies modulate the immune response and the possible underlying mechanisms. The effects of immune cells on nanotopography-mediated osteogenesis are emphasized, and we propose the concept of "nano-osteoimmunomodulation" to provide a valuable strategy for the development of nanotopographies with osteoimmunomodulatory properties that can precisely regulate bone dynamics.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Bone diseases/injuries have been driving an urgent quest for bone substitutes for bone regeneration. Nanoscaled materials with bone-mimicking characteristics may create suitable microenvironments to guide effective bone regeneration. In this review, the natural hierarchical architecture of bone and its regeneration mechanisms are elucidated. Recent progress in the development of nanomaterials which can promote bone regeneration through bone-healing mimicry (e.g., compositional, nanocrystal formation, structural, and growth factor-related mimicking) is summarized. The nanoeffects of nanomaterials on the regulation of bone-related biological functions are highlighted. How to prepare nanomaterials with combinative bone-biomimicry features according to the bone healing process is prospected in order to achieve rapid bone regeneration in situ.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | |
Collapse
|