101
|
Bai J, Zhang Y, Xi Z, Greenberg MM, Zhou C. Oxidation of 8-Oxo-7,8-dihydro-2'-deoxyguanosine Leads to Substantial DNA-Histone Cross-Links within Nucleosome Core Particles. Chem Res Toxicol 2018; 31:1364-1372. [PMID: 30412392 DOI: 10.1021/acs.chemrestox.8b00244] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine(8-oxodGuo) is a common primary product of cellular oxidative DNA damage. 8-OxodGuo is more readily oxidized than 2'-deoxyguanosine (dG); a two-electron oxidation generates a highly reactive intermediate (OGox), which forms covalent adducts with nucleophiles, including OH-, free amines, and the side chains of amino acids such as lysine. We determined here that K3Fe(CN)6 oxidation of 8-oxodGuo in nucleosome core particles (NCPs) produces high yields, quantitative (i.e., 100%) in some cases, of DNA-protein cross-links (DPCs). The efficiency of DPC formation was closely related to 8-oxodGuo base pairing and location within the NCP and was only slightly decreased by adding the DNA-protective polyamine spermine to the system. Using NCPs that contained histone mutants, we determined that DPCs result predominantly from OGox trapping by the N-terminal histone amine. The DPCs were stable under physiological conditions and therefore could have important biological consequences. For instance, the essentially quantitative yield of DPCs at some positions within NCPs would reduce the yield of the mutagenic DNA lesions spiroiminodihydantoin and guanidinohydantoin produced from the common intermediate OGox, which in turn would affect mutation signatures of oxidative stress in a position-dependent manner. In summary, our findings indicate that site-specific incorporation of 8-oxodGuo into NCPs, followed by its oxidation, leads to DPCs with an efficiency depending on 8-oxodGuo location and orientation. Given that 8-oxodGuo formation is widespread in genomic DNA and that DPC formation is highly efficient, DPCs may occur in eukaryotic cells and may affect several important biological processes.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yingqian Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , 3400 N. Charles Street , Baltimore , Maryland 21218 , United States
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
102
|
Adusumalli SR, Rawale DG, Singh U, Tripathi P, Paul R, Kalra N, Mishra RK, Shukla S, Rai V. Single-Site Labeling of Native Proteins Enabled by a Chemoselective and Site-Selective Chemical Technology. J Am Chem Soc 2018; 140:15114-15123. [PMID: 30336012 DOI: 10.1021/jacs.8b10490] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chemical biology research often requires precise covalent attachment of labels to the native proteins. Such methods are sought after to probe, design, and regulate the properties of proteins. At present, this demand is largely unmet due to the lack of empowering chemical technology. Here, we report a chemical platform that enables site-selective labeling of native proteins. Initially, a reversible intermolecular reaction places the "chemical linchpins" globally on all the accessible Lys residues. These linchpins have the capability to drive site-selective covalent labeling of proteins. The linchpin detaches within physiological conditions and capacitates the late-stage installation of various tags. The chemical platform is modular, and the reagent design regulates the site of modification. The linchpin is a multitasking group and facilitates purification of the labeled protein eliminating the requirement of additional chromatography tag. The methodology allows the labeling of a single protein in a mixture of proteins. The precise modification of an accessible residue in protein ensures that their structure remains unaltered. The enzymatic activity of myoglobin, cytochrome C, aldolase, and lysozyme C remains conserved after labeling. Also, the cellular uptake of modified insulin and its downstream signaling process remain unperturbed. The linchpin directed modification (LDM) provides a convenient route for the conjugation of a fluorophore and drug to a Fab and monoclonal antibody. It delivers trastuzumab-doxorubicin and trastuzumab-emtansine conjugates with selective antiproliferative activity toward Her-2 positive SKBR-3 breast cancer cells.
Collapse
|
103
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
104
|
Martos-Maldonado MC, Hjuler CT, Sørensen KK, Thygesen MB, Rasmussen JE, Villadsen K, Midtgaard SR, Kol S, Schoffelen S, Jensen KJ. Selective N-terminal acylation of peptides and proteins with a Gly-His tag sequence. Nat Commun 2018; 9:3307. [PMID: 30120230 PMCID: PMC6098153 DOI: 10.1038/s41467-018-05695-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/17/2018] [Indexed: 02/08/2023] Open
Abstract
Methods for site-selective chemistry on proteins are in high demand for the synthesis of chemically modified biopharmaceuticals, as well as for applications in chemical biology, biosensors and more. Inadvertent N-terminal gluconoylation has been reported during expression of proteins with an N-terminal His tag. Here we report the development of this side-reaction into a general method for highly selective N-terminal acylation of proteins to introduce functional groups. We identify an optimized N-terminal sequence, GHHHn- for the reaction with gluconolactone and 4-methoxyphenyl esters as acylating agents, facilitating the introduction of functionalities in a highly selective and efficient manner. Azides, biotin or a fluorophore are introduced at the N-termini of four unrelated proteins by effective and selective acylation with the 4-methoxyphenyl esters. This Gly-Hisn tag adds the unique capability for highly selective N-terminal chemical acylation of expressed proteins. We anticipate that it can find wide application in chemical biology and for biopharmaceuticals.
Collapse
Affiliation(s)
- Manuel C Martos-Maldonado
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian T Hjuler
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kasper K Sørensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jakob E Rasmussen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Klaus Villadsen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Søren R Midtgaard
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Stefan Kol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark. .,Center for Evolutionary Chemical Biology, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark. .,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
105
|
Synthesis of disulfide-rich heterodimeric peptides through an auxiliary N, N-crosslink. Commun Chem 2018. [DOI: 10.1038/s42004-018-0036-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
106
|
Qin LH, Hu W, Long YQ. Bioorthogonal chemistry: Optimization and application updates during 2013–2017. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
107
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
108
|
N
-Phenyl-N
-aceto-vinylsulfonamides as Efficient and Chemoselective Handles for N-Terminal Modification of Peptides and Proteins. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
109
|
Brabham RL, Spears RJ, Walton J, Tyagi S, Lemke EA, Fascione MA. Palladium-unleashed proteins: gentle aldehyde decaging for site-selective protein modification. Chem Commun (Camb) 2018; 54:1501-1504. [DOI: 10.1039/c7cc07740h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A bioorthogonal decaging strategy has been developed to expose protein aldehydes using one equivalent of palladium, allowing site-selective protein labelling.
Collapse
Affiliation(s)
| | | | - Julia Walton
- Department of Chemistry
- University of York
- Heslington Road
- UK
| | - Swati Tyagi
- EMBL
- Meyerhofstrasse 1
- 69117 Heidelberg
- Germany
| | | | | |
Collapse
|
110
|
Adusumalli SR, Rawale DG, Rai V. Aldehydes can switch the chemoselectivity of electrophiles in protein labeling. Org Biomol Chem 2018; 16:9377-9381. [DOI: 10.1039/c8ob02897d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The derivatization of an electrophile can switch its chemoselectivity. The aldehyde-conjugated epoxide and sulfonate ester provide the proof of principle and deliver N-terminus tagged proteins.
Collapse
Affiliation(s)
- Srinivasa Rao Adusumalli
- Organic and Bioconjugate Chemistry Laboratory
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Dattatraya Gautam Rawale
- Organic and Bioconjugate Chemistry Laboratory
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Vishal Rai
- Organic and Bioconjugate Chemistry Laboratory
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| |
Collapse
|
111
|
Fukunaga K, Watanabe T, Novitasari D, Ohashi H, Abe R, Hohsaka T. Antigen-responsive fluorescent antibody probes generated by selective N-terminal modification of IgGs. Chem Commun (Camb) 2018; 54:12734-12737. [DOI: 10.1039/c8cc07827k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent antibody probes showing antigen-dependent fluorescence responses were developed by N-terminal-selective reductive alkylation of IgGs.
Collapse
Affiliation(s)
- Keisuke Fukunaga
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | - Takayoshi Watanabe
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | - Dian Novitasari
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | | | - Ryoji Abe
- Ushio Incorporated
- Yokohama 225-0004
- Japan
| | - Takahiro Hohsaka
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| |
Collapse
|
112
|
Wang C, Jiang YY, Qi CZ. Mechanism and Origin of Chemical Selectivity in Oxaziridine-Based Methionine Modification: A Computational Study. J Org Chem 2017; 82:9765-9772. [DOI: 10.1021/acs.joc.7b02026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chen Wang
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yuan-Ye Jiang
- School
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Chen-Ze Qi
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
113
|
Chen H, Huang R, Li Z, Zhu W, Chen J, Zhan Y, Jiang B. Selective lysine modification of native peptides via aza-Michael addition. Org Biomol Chem 2017; 15:7339-7345. [DOI: 10.1039/c7ob01866e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Phenylvinylsulfonamides were developed as applicable reagents for site-selective lysine functionalization in native peptides with a free N-terminus.
Collapse
Affiliation(s)
- Hongli Chen
- The institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- P.R. China
| | - Rong Huang
- The institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- P.R. China
| | - Zhihong Li
- The institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- P.R. China
| | - Wei Zhu
- The institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- P.R. China
| | - Jiakang Chen
- The institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- P.R. China
| | - Yuexiong Zhan
- The institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- P.R. China
| | - Biao Jiang
- The institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- P.R. China
| |
Collapse
|