101
|
Takizawa N, Tanaka S, Oe S, Koike T, Yoshida T, Hirahara Y, Matsuda T, Yamada H. Involvement of DHH and GLI1 in adrenocortical autograft regeneration in rats. Sci Rep 2018; 8:14542. [PMID: 30266964 PMCID: PMC6162278 DOI: 10.1038/s41598-018-32870-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/14/2018] [Indexed: 01/20/2023] Open
Abstract
Bilateral adrenalectomy forces the patient to undergo glucocorticoid replacement therapy and bear a lifetime risk of adrenal crisis. Adrenal autotransplantation is considered useful to avoid adrenal crisis and glucocorticoid replacement therapy. However, the basic process of regeneration in adrenal autografts is poorly understood. Here, we investigated the essential regeneration factors in rat adrenocortical autografts, with a focus on the factors involved in adrenal development and steroidogenesis, such as Hh signalling. A remarkable renewal in cell proliferation and increase in Cyp11b1, which encodes 11-beta-hydroxylase, occurred in adrenocortical autografts from 2-3 weeks after autotransplantation. Serum corticosterone and adrenocorticotropic hormone levels were almost recovered to sham level at 4 weeks after autotransplantation. The adrenocortical autografts showed increased Dhh expression at 3 weeks after autotransplantation, but not Shh, which is the only Hh family member to have been reported to be expressed in the adrenal gland. Increased Gli1 expression was also found in the regenerated capsule at 3 weeks after autotransplantation. Dhh and Gli1 might function in concert to regenerate adrenocortical autografts. This is the first report to clearly show Dhh expression and its elevation in the adrenal gland.
Collapse
Affiliation(s)
- Nae Takizawa
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Susumu Tanaka
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan.
| | - Souichi Oe
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Taro Koike
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Yukie Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Tadashi Matsuda
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Hisao Yamada
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
102
|
Yuan Z, Gui L, Zheng J, Chen Y, Qu S, Shen Y, Wang F, Er M, Gu Y, Chen H. GSH-Activated Light-Up Near-Infrared Fluorescent Probe with High Affinity to α vβ 3 Integrin for Precise Early Tumor Identification. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30994-31007. [PMID: 30141897 DOI: 10.1021/acsami.8b09841] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of tumor-associated, stimuli-driven, turn-on near-infrared (NIR) fluorophores requires urgent attention because of their potential in selective and precise tumor diagnosis. Herein, we describe a NIR fluorescent probe (CyA-cRGD) comprised of a fluorescence reporting unit (a cyanine dye) linked with a GSH-responsive unit (nitroazo aryl ether group) and a tumor-targeting unit (cRGD). The NIR fluorescence of CyA-cRGD with sensitive and selective response to GSH can act as a direct off-on signal reporter for GSH monitoring. Notably, CyA-cRGD possesses improved biocompatibility compared with CyA, which is highly desirable for in vivo fluorescence tracking of cancer. Confocal fluorescence imaging confirmed the tumor-targeting capability and GSH detection ability of CyA-cRGD in tumor cells, normal cells, and coincubated tumor /normal cells and in the three-dimensional multicellular tumor spheroid. Furthermore, it was validated that CyA-cRGD could detect tumor precisely in GSH and integrin αvβ 3 high-expressed tumor-bearing mouse models. Importantly, it was confirmed that CyA-cRGD possessed high efficiency for early-stage tumor imaging in mouse models with tumor cells implanted within 72 h. This method provided significant advances toward more in-depth understanding and exploration of tumor imaging, which may potentially be applied for clinical early tumor diagnosis.
Collapse
Affiliation(s)
- Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Jinrong Zheng
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Yisha Chen
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Sisi Qu
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Yuanzhi Shen
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Fei Wang
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Murat Er
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| |
Collapse
|
103
|
Xie X, Tang F, Liu G, Li Y, Su X, Jiao X, Wang X, Tang B. Mitochondrial Peroxynitrite Mediation of Anthracycline-Induced Cardiotoxicity as Visualized by a Two-Photon Near-Infrared Fluorescent Probe. Anal Chem 2018; 90:11629-11635. [DOI: 10.1021/acs.analchem.8b03207] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Fuyan Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Guangzhao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Xingxing Su
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
104
|
Hou J, Qian M, Zhao H, Li Y, Liao Y, Han G, Xu Z, Wang F, Song Y, Liu Y. A near-infrared ratiometric/turn-on fluorescent probe for in vivo imaging of hydrogen peroxide in a murine model of acute inflammation. Anal Chim Acta 2018; 1024:169-176. [DOI: 10.1016/j.aca.2018.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
|
105
|
Ro JJ, Lee HJ, Kim BH. PyA-cluster system for the detection and imaging of miRNAs in living cells through double-three-way junction formation. Chem Commun (Camb) 2018; 54:7471-7474. [PMID: 29915829 DOI: 10.1039/c8cc03982h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we describe an extended version of a fluorescence probe for detecting miRNAs through the novel application of a PyA-cluster system. By testing various (CG)n sequences in the middle of the oligonucleotide strand of the probe, we obtained an optimal sequence that formed a double-three-way-junction structure, with two PyA units positioned close together, in the presence of the target miRNA. This system readily detected the locations of target miRNAs in living cells and allowed visualization of structural changes through variations in the color of the fluorescence.
Collapse
Affiliation(s)
- Jong Jin Ro
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
106
|
Ryu HG, Singha S, Jun YW, Reo YJ, Ahn KH. Two-photon fluorescent probe for hydrogen sulfide based on a red-emitting benzocoumarin dye. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
107
|
Kielesiński Ł, Gryko DT, Sobolewski AL, Morawski OW. Effect of conformational flexibility on photophysics of bis-coumarins. Phys Chem Chem Phys 2018; 20:14491-14503. [DOI: 10.1039/c8cp01084f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The fluorescence of bis-coumarins linked via CONH and COO functionalities is strongly dependant on solvent polarity.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
- Institute of Physics
| | - Daniel T. Gryko
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | - Olaf W. Morawski
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
| |
Collapse
|
108
|
Jung Y, Jung J, Huh Y, Kim D. Benzo[ g]coumarin-Based Fluorescent Probes for Bioimaging Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5249765. [PMID: 30013807 PMCID: PMC6022312 DOI: 10.1155/2018/5249765] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/22/2018] [Indexed: 05/12/2023]
Abstract
Benzo[g]coumarins, which consist of coumarins fused with other aromatic units in the linear shape, have recently emerged as an interesting fluorophore in the bioimaging research. The pi-extended skeleton with the presence of electron-donating and electron-withdrawing substituents from the parent coumarins changes the basic photophysical parameters such as absorption and fluorescence emission significantly. Most of the benzo[g]coumarin analogues show red/far-red fluorescence emission with high two-photon absorbing property that can be applicable for the two-photon microscopy (TPM) imaging. In this review, we summarized the recently developed benzo[g]coumarin analogues including photophysical properties, synthesis, and applications for molecular probes that can sense biologically important species such as metal ions, cell organs, reactive species, and disease biomarkers.
Collapse
Affiliation(s)
- Yuna Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Youngbuhm Huh
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| |
Collapse
|