101
|
Smith-Pearson PS, Greuber EK, Yogalingam G, Pendergast AM. Abl kinases are required for invadopodia formation and chemokine-induced invasion. J Biol Chem 2010; 285:40201-11. [PMID: 20937825 DOI: 10.1074/jbc.m110.147330] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Abl tyrosine kinases, Abl and Arg, play a role in the regulation of the actin cytoskeleton by modulating cell-cell adhesion and cell motility. Deregulation of both the actin cytoskeleton and Abl kinases have been implicated in cancers. Abl kinase activity is elevated in a number of metastatic cancers and these kinases are activated downstream of several oncogenic growth factor receptor signaling pathways. However, the role of Abl kinases in regulation of the actin cytoskeleton during tumor progression and invasion remains elusive. Here we identify the Abl kinases as essential regulators of invadopodia assembly and function. We show that Abl kinases are activated downstream of the chemokine receptor, CXCR4, and are required for cancer cell invasion and matrix degradation induced by SDF1α, serum growth factors, and activated Src kinase. Moreover, Abl kinases are readily detected at invadopodia assembly sites and their inhibition prevents the assembly of actin and cortactin into organized invadopodia structures. We show that active Abl kinases form complexes with membrane type-1 matrix metalloproteinase (MT1-MMP), a critical invadopodia component required for matrix degradation. Further, loss of Abl kinase signaling induces internalization of MT1-MMP from the cell surface, promotes its accumulation in the perinuclear compartment and inhibits MT1-MMP tyrosine phosphorylation. Our findings reveal that Abl kinase signaling plays a critical role in invadopodia formation and function, and have far-reaching implications for the treatment of metastatic carcinomas.
Collapse
Affiliation(s)
- Pameeka S Smith-Pearson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
102
|
DNA damage stress response in germ cells: role of c-Abl and clinical implications. Oncogene 2010; 29:6193-202. [PMID: 20818431 DOI: 10.1038/onc.2010.410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells experiencing DNA damage undergo a complex response entailing cell-cycle arrest, DNA repair and apoptosis, the relative importance of the three being modulated by the extent of the lesion. The observation that Abl interacts in the nucleus with several proteins involved in different aspects of DNA repair has led to the hypothesis that this kinase is part of the damage-sensing mechanism. However, the mechanistic details underlying the role of Abl in DNA repair remain unclear. Here, I will review the evidence supporting our current understanding of Abl activation following DNA insults, while focusing on the relevance of these mechanisms in protecting DNA-injured germ cells. Early studies have shown that Abl transcripts are highly expressed in the germ line. Abl-deficient mice exhibit multiple abnormalities, increased perinatal mortality and reduced fertility. Recent findings have implicated Abl in a cisplatin-induced signaling pathway eliciting death of immature oocytes. A p53-related protein, TAp63, is an important immediate downstream effector of this pathway. Of note, pharmacological inhibition of Abl protects the ovarian reserve from the toxic effects of cisplatin. This suggests that the extent of Abl catalytic outputs may shift the balance between survival (likely through DNA repair) and activation of a death response. Taken together, these observations are consistent with the evolutionary conserved relationship between DNA damage and activation of the p53 family of transcription factors, while shedding light on the key role of Abl in dictating the fate of germ cells upon genotoxic insults.
Collapse
|
103
|
Koos B, Jeibmann A, Lünenbürger H, Mertsch S, Nupponen NN, Roselli A, Leuschner I, Paulus W, Frühwald MC, Hasselblatt M. The tyrosine kinase c-Abl promotes proliferation and is expressed in atypical teratoid and malignant rhabdoid tumors. Cancer 2010; 116:5075-81. [DOI: 10.1002/cncr.25420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
104
|
Abl family tyrosine kinases regulate sialylated ganglioside receptors for polyomavirus. J Virol 2010; 84:4243-51. [PMID: 20181697 DOI: 10.1128/jvi.00129-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sialylated lipids serve as cellular receptors for polyomaviruses. Using pharmacological inhibitors and cell lines derived from knockout mice, we demonstrate that Abl family tyrosine kinases are required for replication of mouse polyomavirus and BK virus, a human polyomavirus associated with allograft failure following kidney transplantation. We show that decreasing Abl family kinase activity results in low levels of cell surface ganglioside receptors for mouse polyomavirus and that inhibition of sialidase activity promotes virion binding in the absence of Abl family kinase activity. These data provide evidence that Abl family kinases reduce ganglioside turnover in the plasma membrane by inhibiting host cell sialidase activity. Thus, Abl family kinases regulate the susceptibility of cells to polyomavirus infection by modulating gangliosides required for viral attachment.
Collapse
|
105
|
Abstract
Peroxiredoxins (Prdxs) are a family of small (22-27 kDa) nonseleno peroxidases currently known to possess six mammalian isoforms. Although their individual roles in cellular redox regulation and antioxidant protection are quite distinct, they all catalyze peroxide reduction of H(2)O(2), organic hydroperoxides and peroxynitrite. They are found to be expressed ubiquitously and in high levels, suggesting that they are both an ancient and important enzyme family. Prdxs can be divided into three major subclasses: typical 2-cysteine (2-Cys) Prdxs (Prdx1-4), atypical 2-Cys Prdx (Prdx 5) and 1-Cys Prdx (Prdx 6). Recent evidence suggests that 2-Cys peroxiredoxins are more than "just simple peroxidases". This hypothesis has been discussed elegantly in recent review articles, considering "over"-oxidation of the protonated thiolate peroxidatic cysteine and post-translational modification of Prdxs as processes initiating a mechanistic switch from peroxidase to chaperon function. The process of over-oxidation of the peroxidatic cysteine (C(P)) occurs during catalysis in the presence of thioredoxin (Trx), thus rendering the sulfenic moiety to sulfinic acid, which can be reduced by sulfiredoxin (Srx). However, further oxidation to sulfonic acid is believed to promote Prdx degradation or, as recently shown, the formation of oligomeric peroxidase-inactive chaperones with questionable H(2)O(2)-scavenging capacity. In the light of this and given that Prdx1 has recently been shown by us and by others to interact directly with signaling molecules, we will explore the possibility that H(2)O(2) regulates signaling in the cell in a temporal and spatial fashion via oxidizing Prdx1. Therefore, this review will focus on H(2)O(2) modulating cell signaling via Prdxs by discussing: (1) the activity of Prdxs towards H(2)O(2); (2) sub cellular localization and availability of other peroxidases, such as catalase or glutathione peroxidases; (3) the availability of Prdxs reducing systems, such as thioredoxin and sulfiredoxin and lastly, (4) Prdx1 interacting signaling molecules.
Collapse
Affiliation(s)
- Carola A Neumann
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
| | | | | |
Collapse
|
106
|
London CA. Tyrosine kinase inhibitors in veterinary medicine. Top Companion Anim Med 2009; 24:106-12. [PMID: 19732728 DOI: 10.1053/j.tcam.2009.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 01/31/2023]
Abstract
Substantial progress in the field of molecular biology has permitted the identification of key abnormalities in cancer cells involving cell proteins that regulate signal transduction, cell survival, and cell proliferation. Such abnormalities often involve a class of proteins called tyrosine kinases that act to phosphorylate other proteins in the cell, tightly regulating a variety of cellular processes. A variety of small molecule inhibitors that target specific tyrosine kinases (known as tyrosine kinase inhibitors [TKIs]) have now been approved for the treatment of human cancer, and it is likely many more will become available in the near future. In some instances these inhibitors have exhibited significant clinical efficacy, and it is likely their biologic activity will be further enhanced as combination regimens with standard treatment modalities are explored. Although TKIs have been used extensively in humans, their application to cancers in dogs and cats is relatively recent. The TKIs Palladia (toceranib), Kinavet (masitinib), and Gleevec (imatinib) have been successfully used in dogs, and more recently Gleevec in cats. This article will review the biology of tyrosine kinase dysfunction in human and animal cancers, and the application of specific TKIs to veterinary cancer patients.
Collapse
Affiliation(s)
- Cheryl A London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
107
|
Singleton PA, Pendyala S, Gorshkova IA, Mambetsariev N, Moitra J, Garcia JGN, Natarajan V. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium. J Biol Chem 2009; 284:34964-75. [PMID: 19833721 DOI: 10.1074/jbc.m109.013771] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) generation, particularly by the endothelial NADPH oxidase family of proteins, plays a major role in the pathophysiology associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. We examined potential regulators of ROS production and discovered that hyperoxia treatment of human pulmonary artery endothelial cells induced recruitment of the vesicular regulator, dynamin 2, the non-receptor tyrosine kinase, c-Abl, and the NADPH oxidase subunit, p47(phox), to caveolin-enriched microdomains (CEMs). Silencing caveolin-1 (which blocks CEM formation) and/or c-Abl expression with small interference RNA inhibited hyperoxia-mediated tyrosine phosphorylation and association of dynamin 2 with p47(phox) and ROS production. In addition, treatment of human pulmonary artery endothelial cells with dynamin 2 small interfering RNA or the dynamin GTPase inhibitor, Dynasore, attenuated hyperoxia-mediated ROS production and p47(phox) recruitment to CEMs. Using purified recombinant proteins, we observed that c-Abl tyrosine-phosphorylated dynamin 2, and this phosphorylation increased p47(phox)/dynamin 2 association (change in the dissociation constant (K(d)) from 85.8 to 6.9 nm). Furthermore, exposure of mice to hyperoxia increased ROS production, c-Abl activation, dynamin 2 association with p47(phox), and pulmonary leak, events that were attenuated in the caveolin-1 knock-out mouse confirming a role for CEMs in ROS generation. These results suggest that hyperoxia induces c-Abl-mediated dynamin 2 phosphorylation required for recruitment of p47(phox) to CEMs and subsequent ROS production in lung endothelium.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
|
109
|
Cdo binds Abl to promote p38alpha/beta mitogen-activated protein kinase activity and myogenic differentiation. Mol Cell Biol 2009; 29:4130-43. [PMID: 19470755 DOI: 10.1128/mcb.00199-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway is required for differentiation of skeletal myoblasts, but how the pathway is activated during this process is not well understood. One mechanism involves the cell surface receptor Cdo (also known as Cdon), which binds to Bnip-2 and JLP, scaffold proteins for Cdc42 and p38, respectively; formation of these complexes results in Bnip-2/Cdc42-dependent activation of p38. It has been reported that the tyrosine kinase Abl promotes myogenic differentiation in a manner dependent on its cytoplasmic localization, but the cytoplasmic signaling proteins with which it interacts to achieve this effect are unidentified. We report that Abl associates with both Cdo and JLP during myoblast differentiation. Abl binds a proline-rich motif in Cdo via its SH3 domain, and these regions of Abl and Cdo are required for their promyogenic effects. Cdo is important for full Abl kinase activity, and Abl is necessary for full activation of p38 MAPK, during myogenic differentiation. As seen with myoblasts depleted of Cdo, the diminished differentiation displayed by Abl-depleted cells is rescued by the expression of an activated form of the immediate upstream p38-activating kinase MAPK kinase 6. Abl's promyogenic effect is therefore linked to a multiprotein cell surface complex that regulates differentiation-dependent p38 activation.
Collapse
|
110
|
Sims JT, Ganguly S, Fiore LS, Holler CJ, Park ES, Plattner R. STI571 sensitizes breast cancer cells to 5-fluorouracil, cisplatin and camptothecin in a cell type-specific manner. Biochem Pharmacol 2009; 78:249-60. [PMID: 19427998 DOI: 10.1016/j.bcp.2009.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 01/28/2023]
Abstract
Previously, we demonstrated that Abl kinases are highly active in invasive breast cancer cell lines, and contribute to survival in response to nutrient deprivation, invasion and proliferation. To determine whether an Abl kinase inhibitor, STI571 (Gleevec; imatinib mesylate) sensitizes breast cancer cells to chemotherapeutic agents, we treated three breast cancer cell lines (BT-549, MDA-MB-231, and MDA-MB-468) that have active Abl kinases, with STI571 in combination with several conventional chemotherapeutic drugs frequently used to treat breast cancer, and assessed the effect on cell viability, proliferation, and apoptosis. We found that STI571 had synergistic effects with cisplatin in BT-549 and to some extent in MDA-MB-468 cells; synergized with camptothecin using an alternate dosing regimen in MDA-MB-231 cells; and STI571 synergistically sensitized MDA-MB-468 cells to paclitaxel and to high doses of 5-fluorouracil. Significantly, STI571 increased the ability of cisplatin to inhibit constitutive activation of PI3K/Akt in BT-549 cells, synergized with camptothecin to increase the stability of IkappaB in MDA-MB-231 cells, and in MDA-MB-468 cells, camptothecin and 5-fluorouracil inhibited STI571-dependent activation of STAT3. In other cell line/drug combinations, STI571 had additive or antagonistic effects, indicating that the ability of STI571 to sensitize breast cancer cells to chemotherapeutic agents is cell type-dependent. Significantly, unlike cisplatin, paclitaxel, and camptothecin, mechloroethamine was strongly antagonistic to STI571, and the effect was not cell line-dependent. Taken together, these data indicate that the cellular milieu governs the response of breast cancer cells to STI571/chemotherapeutic combination regimens, which suggests that treatment with these combinations requires individualization.
Collapse
Affiliation(s)
- Jonathan T Sims
- Department of Molecular and Biomedical Pharmacology, 209 Combs Research Building, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
111
|
Srinivasan D, Kaetzel DM, Plattner R. Reciprocal regulation of Abl and receptor tyrosine kinases. Cell Signal 2009; 21:1143-50. [PMID: 19275932 DOI: 10.1016/j.cellsig.2009.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/02/2009] [Indexed: 01/27/2023]
Abstract
Previously, we showed that Abl kinases (c-Abl, Arg) are activated downstream of PDGF in a manner dependent on Src kinases and PLC-gamma1, and promote PDGF-mediated proliferation and migration of fibroblasts. We additionally demonstrated that Abl kinases bind directly to PDGFR-beta via their SH2 domains.In this study, we extend these findings by demonstrating that Abl kinases also are activated downstream of aPDGF autocrine growth loop in glioblastoma cells, indicating that the PDGFR-Abl signaling pathway also is likely to be important in glioblastoma development and/or progression.We recently showed that Abl kinases are highly active in many breast cancer cell lines, and the Her-2 receptor tyrosine kinase contributes to c-Abl and Arg kinase activation. In this study, we show that Abl kinase SH2 domains bind directly to Her-2, and like PDGFR-beta , Her-2 directly phosphorylates c-Abl. Previously, we demonstrated that PDGFR-beta directly phosphorylates Abl kinases in vitro, and Abl kinases reciprocally phosphorylate PDGFR-beta . Here, we show that PDGFR-beta-phosphorylation of Abl kinases has functional consequences as PDGFR-beta phosphorylates Abl kinases on Y245 and Y412, sites known to be required for activation of Abl kinases. Moreover, PDGFR-beta phosphorylates Arg on two additional unique sites whose function is unknown. Importantly, we also show that Abl-dependent phosphorylation of PDGFR-beta has functional and biological significances. c-Abl phosphorylates three tyrosine residues on PDGFR-beta (Y686, Y934, Y970), while Arg only phosphorylatesY686. Y686 and Y934 reside in PDGFR-beta catalytic domains, while Y970 is in the C-terminal tail. Using site-directed mutagenesis, we show that Abl-dependent phosphorylation of PDGFR-beta activates PDGFR-beta activity, in vitro, but serves to downregulate PDGFR-mediated chemotaxis. These data are exciting as they indicate that Abl kinases not only are activated by PDGFR and promote PDGFR-mediated proliferation and migration,but also act in an intricate negative feedback loop to turn-off PDGFR-mediated chemotaxis.
Collapse
Affiliation(s)
- Divyamani Srinivasan
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, 800 Rose Street, Lexington, KY 40346, USA
| | | | | |
Collapse
|