101
|
Prominin-1 Modulates Rho/ROCK-Mediated Membrane Morphology and Calcium-Dependent Intracellular Chloride Flux. Sci Rep 2019; 9:15911. [PMID: 31685837 PMCID: PMC6828804 DOI: 10.1038/s41598-019-52040-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/12/2019] [Indexed: 01/18/2023] Open
Abstract
Membrane morphology is an important structural determinant as it reflects cellular functions. The pentaspan membrane protein Prominin-1 (Prom1/CD133) is known to be localised to protrusions and plays a pivotal role in migration and the determination of cellular morphology; however, the underlying mechanism of its action have been elusive. Here, we performed molecular characterisation of Prom1, focussing primarily on its effects on cell morphology. Overexpression of Prom1 in RPE-1 cells triggers multiple, long, cholesterol-enriched fibres, independently of actin and microtubule polymerisation. A five amino acid stretch located at the carboxyl cytosolic region is essential for fibre formation. The small GTPase Rho and its downstream Rho-associated coiled-coil-containing protein kinase (ROCK) are also essential for this process, and active Rho colocalises with Prom1 at the site of initialisation of fibre formation. In mouse embryonic fibroblast (MEF) cells we show that Prom1 is required for chloride ion efflux induced by calcium ion uptake, and demonstrate that fibre formation is closely associated with chloride efflux activity. Collectively, these findings suggest that Prom1 affects cell morphology and contributes to chloride conductance.
Collapse
|
102
|
Duarte A, Silveira GG, Soave DF, Costa JPO, Silva AR. The Role of the LY294002 - A Non-Selective Inhibitor of Phosphatidylinositol 3-Kinase (PI3K) Pathway- in Cell Survival and Proliferation in Cell Line SCC-25. Asian Pac J Cancer Prev 2019; 20:3377-3383. [PMID: 31759362 PMCID: PMC7063005 DOI: 10.31557/apjcp.2019.20.11.3377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
The activation of PI3K further activates subsequent regulatory pathways, which are activated via AKT phosphorylation. AKT is closely related to the Bcl-2 family, a protein known to be involved in cell survival. AKT also has a relationship with inflammatory and glycolytic mediators. The present work aimed to evaluate the relationship between the PI3K/AKT pathway, cell survival/proliferation, inflammatory mediators and the glycolytic pathway in oral squamous cell carcinoma. All experiments were performed in the SCC25 oral squamous cell carcinoma cell line. In the presence or absence of PI3K pathway inhibitors, we analyzed the protein expression of pAKT and AKT; X-linked inhibitor of apoptosis protein; Bcl-2-associated death promoter; Bcl-2-like protein two inhibitor; cyclooxygenase 1; cyclooxygenase-2; and glycoprotein-associated glucose transporter 1. For the functional characterization of treated or untreated cells, we also performed matrix invasion assays, cell migration assays, and cell proliferation assays. Our results demonstrated that activation of the PI3K/AKT pathway is directly related to members of the Bcl-2 family and GLUT1, but not the inflammatory mediators COX1 and COX2. Our data suggest that the PI3K/AKT pathway is related to cell survival and proliferation in oral squamous cell carcinoma through its interaction with Bcl-2 family members.<br />.
Collapse
Affiliation(s)
- Andressa Duarte
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Giórgia Gobbi Silveira
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil.,Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Danilo Figueiredo Soave
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil.,Department of Stomatology (Oral Pathology), Dental School Federal University of Goiás Goiânia, Brazil
| | - João Paulo Oliveira Costa
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil.,Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alfredo Ribeiro Silva
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
103
|
Anticonvulsant action of a selective phosphatidylinositol-3-kinase inhibitor LY294002 in pentylenetetrazole-mediated convulsions in zebrafish. Epilepsy Res 2019; 157:106207. [DOI: 10.1016/j.eplepsyres.2019.106207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/18/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
|
104
|
O’Hanlon R, Leyva-Grado VH, Sourisseau M, Evans MJ, Shaw ML. An Influenza Virus Entry Inhibitor Targets Class II PI3 Kinase and Synergizes with Oseltamivir. ACS Infect Dis 2019; 5:1779-1793. [PMID: 31448902 DOI: 10.1021/acsinfecdis.9b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two classes of antivirals targeting the viral neuraminidase (NA) and endonuclease are currently the only clinically useful drugs for the treatment of influenza. However, resistance to both antivirals has been observed in clinical isolates, and there was widespread resistance to oseltamivir (an NA inhibitor) among H1N1 viruses prior to 2009. This potential for resistance and lack of diversity for antiviral targets highlights the need for new influenza antivirals with a higher barrier to resistance. In this study, we identified an antiviral compound, M85, that targets host kinases, epidermal growth factor receptor (EGFR), and phosphoinositide 3 class II β (PIK3C2β) and is not susceptible to resistance by viral mutations. M85 blocks endocytosis of influenza viruses and inhibits a broad-spectrum of viruses with minimal cytotoxicity. In vitro, we found that combinations of M85 and oseltamivir have strong synergism. In the mouse model for influenza, treatment with the combination therapy was more protective against a lethal viral challenge than oseltamivir alone, indicating that development of M85 could lead to combination therapies for influenza. Finally, through this discovery of M85 and its antiviral mechanism, we present the first description of PIK3C2β as a necessary host factor for influenza virus entry.
Collapse
|
105
|
Kourounakis AP, Xanthopoulos D, Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med Res Rev 2019; 40:709-752. [PMID: 31512284 DOI: 10.1002/med.21634] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Morpholine is a heterocycle featured in numerous approved and experimental drugs as well as bioactive molecules. It is often employed in the field of medicinal chemistry for its advantageous physicochemical, biological, and metabolic properties, as well as its facile synthetic routes. The morpholine ring is a versatile and readily accessible synthetic building block, it is easily introduced as an amine reagent or can be built according to a variety of available synthetic methodologies. This versatile scaffold, appropriately substituted, possesses a wide range of biological activities. There are many examples of molecular targets of morpholine bioactive in which the significant contribution of the morpholine moiety has been demonstrated; it is an integral component of the pharmacophore for certain enzyme active-site inhibitors whereas it bestows selective affinity for a wide range of receptors. A large body of in vivo studies has demonstrated morpholine's potential to not only increase potency but also provide compounds with desirable drug-like properties and improved pharamacokinetics. In this review we describe the medicinal chemistry/pharmacological activity of morpholine derivatives on various therapeutically related molecular targets, attempting to highlight the importance of the morpholine ring in drug design and development as well as to justify its classification as a privileged structure.
Collapse
Affiliation(s)
- Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Xanthopoulos
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
106
|
Das CK, Banerjee I, Mandal M. Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer. Semin Cancer Biol 2019; 66:59-74. [PMID: 31430557 DOI: 10.1016/j.semcancer.2019.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that regulates the cellular homeostasis by targeting damaged cellular contents and organelles for lysosomal degradation and sustains genomic integrity, cellular metabolism, and cell survival during diverse stress and adverse conditions. Recently, the role of autophagy is extremely debated in the regulation of cancer initiation and progression. Although autophagy has a dichotomous role in the regulation of cancer, growing numbers of studies largely indicate the pro-survival role of autophagy in cancer progression and metastasis. In this review, we discuss the detailed mechanisms of autophagy, the role of pro-survival autophagy that positively drives several classical as well as emerging hallmarks of cancer for tumorigenic progression, and also we address various autophagy inhibitors that could be harnessed against pro-survival autophagy for effective cancer therapeutics. Finally, we highlight some outstanding problems that need to be deciphered extensively in the future to unravel the role of autophagy in tumor progression.
Collapse
Affiliation(s)
- Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
107
|
Zhou H, Jiao G, Dong M, Chi H, Wang H, Wu W, Liu H, Ren S, Kong M, Li C, Zhang L, Chen Y. Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K-Akt-mTOR Pathway. Biol Trace Elem Res 2019; 190:327-335. [PMID: 30421162 DOI: 10.1007/s12011-018-1574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and N-terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K-Akt-mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K-Akt-mTOR pathway played a positive regulatory role in the process of orthosilicic acid-mediated osteogenesis in vitro.
Collapse
Affiliation(s)
- Hongming Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
- Department of Emergency Trauma Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Meng Dong
- Department of Orthopedics, Zibo Central Hospital, Zibo, Shandong Province, China
| | - Hai Chi
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Wenliang Wu
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Haichun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Shanwu Ren
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Meng Kong
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Ci Li
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China.
- Department of Orthopedics, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Ji'nan, 250012, Shandong Province, China.
| |
Collapse
|
108
|
Elliott S. Impact of Inadequate Methods and Data Analysis on Reproducibility. J Pharm Sci 2019; 109:1211-1219. [PMID: 31351867 DOI: 10.1016/j.xphs.2019.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
Failure to reproduce results of articles is recognized, but the causes, and therefore solutions, are not. One possibility is that deficits in quality of the work result in varying or inconclusive results. Erythropoiesis-stimulating agents have been used to treat anemia in patients with cancer, but there are concerns that erythropoiesis-stimulating agents might stimulate Epo receptors on tumor cells (Epo receptor-cancer hypothesis). Articles have been published on the topic, but the data and conclusions conflict, making them suitable for examination of a relationship between quality and reproducibility. Comprehensive literature searches were performed, and 280 relevant articles were identified. Numerous conflicts between and within these articles were apparent. The incidence of faults in quality parameters was high, including absence of adequate controls (90% of articles), inadequate validation of reagents and methods (87% of articles), and inadequate or improper statistical methods (84% of articles) with questionable interpretation of the data (81% of articles). This resulted in false-positive/negative data that varied with the reagents and methods used. The low quality of evidence may explain the poor reproducibility of Epo receptor-cancer articles.
Collapse
|
109
|
Hobbs H, Bravi G, Campbell I, Convery M, Davies H, Inglis G, Pal S, Peace S, Redmond J, Summers D. Discovery of 3-Oxabicyclo[4.1.0]heptane, a Non-nitrogen Containing Morpholine Isostere, and Its Application in Novel Inhibitors of the PI3K-AKT-mTOR Pathway. J Med Chem 2019; 62:6972-6984. [PMID: 31283227 DOI: 10.1021/acs.jmedchem.9b00348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
4-(Pyrimidin-4-yl)morpholines are privileged pharmacophores for PI3K and PIKKs inhibition by virtue of the morpholine oxygen, both forming the key hydrogen bonding interaction and conveying selectivity over the broader kinome. Key to the morpholine utility as a kinase hinge binder is its ability to adopt a coplanar conformation with an adjacent aromatic core favored by the morpholine nitrogen nonbonding pair of electrons interacting with the electron deficient pyrimidine π-system. Few selective morpholine replacements have been identified to date. Herein we describe the discovery of a potent non-nitrogen containing morpholine isostere with the ability to mimic this conformation and its application in a potent selective dual inhibitor of mTORC1 and mTORC2 (29b).
Collapse
Affiliation(s)
- Heather Hobbs
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Gianpaolo Bravi
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Ian Campbell
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Maire Convery
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Hannah Davies
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Graham Inglis
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Sandeep Pal
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Simon Peace
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Joanna Redmond
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Declan Summers
- GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| |
Collapse
|
110
|
AXL Is a Novel Predictive Factor and Therapeutic Target for Radioactive Iodine Refractory Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11060785. [PMID: 31181609 PMCID: PMC6628138 DOI: 10.3390/cancers11060785] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Papillary thyroid carcinomas (PTCs) have an excellent prognosis, but a fraction of them show aggressive behavior, becoming radioiodine (RAI)-resistant and/or metastatic. AXL (Anexelekto) is a tyrosine kinase receptor regulating viability, invasiveness and chemoresistance in various human cancers, including PTCs. Here, we analyze the role of AXL in PTC prognosis and as a marker of RAI refractoriness. Immunohistochemistry was used to assess AXL positivity in a cohort of human PTC samples. Normal and cancerous thyroid cell lines were used in vitro for signaling, survival and RAI uptake evaluations. 38.2% of human PTCs displayed high expression of AXL that positively correlated with RAI-refractoriness and disease persistence or recurrence, especially when combined with v-raf murine sarcoma viral oncogene homolog B(BRAF) V600E mutation. In human PTC samples, AXL expression correlated with V-akt murine thymoma viral oncogene homolog 1 (AKT1) and p65 nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation levels. Consistently, AXL stimulation with its ligand growth arrest-specific gene 6 (GAS6) increased AKT1- and p65 NF-kB-phosphorylation and promoted survival of thyroid cancer cell lines in culture. Enforced expression or activation of AXL in normal rat thyroid cells significantly reduced the expression of the sodium/iodide symporter (NIS) and the radioiodine uptake. These data indicate that AXL expression levels could be used as predictor of RAI refractoriness and as a possible novel therapeutic target of RAI resistant PTCs.
Collapse
|
111
|
Zhang B, Dai Q, Jin X, Liang D, Li X, Lu H, Liu Y, Ding J, Gao Q, Wen Y. Phosphoinositide 3-kinase/protein kinase B inhibition restores regulatory T cell's function in pulmonary sarcoidosis. J Cell Physiol 2019; 234:19911-19920. [PMID: 30945303 DOI: 10.1002/jcp.28589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Sarcoidosis is a systemic granulomatous disease associated with Th1/ regulatory T cells (Treg) paradigm. PI3K/Akt signaling, critical for maintaining Treg's homeostasis, is aberrantly activated in sarcoidosis patients. Here we tested the role of the PI3K inhibitors, LY294002 and BKM120, in immune modulation in experimental pulmonary sarcoidosis, concerning Th1/Th17/Treg immune profile detected by fluorescence-activated cell sorting analysis or quantitative polymerase chain reaction, as well as the effect on Treg's suppressive functions. Our investigation showed abnormal activation of PI3K/Akt signaling both in lung and Treg in pulmonary sarcoidosis, along with decreased frequency and damaged function of Treg. Blockage of PI3K suppressed this signaling in Treg, rebalanced Th1/Treg, inhibited the production of inflammatory cytokines, and enhanced Treg's function. These results demonstrate the key role of the PI3K/Akt signaling in regulating Th1/Th2 rebalances and indicates that PI3K/Akt signaling is critical for the optimal Treg responses in pulmonary sarcoidosis. Thus, PI3K inhibitors have potential for therapeutic translation, and can be candidate for add-on drugs to treat pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Qianqian Dai
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xuguang Jin
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Dongmei Liang
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xiaojie Li
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Haiyan Lu
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Yu Liu
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Jingjing Ding
- Department of Respiratory Medicine, Jiangsu Key Laboratory of Molecular Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Gao
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Yanting Wen
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
112
|
Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. mBio 2019; 10:mBio.02323-18. [PMID: 30755508 PMCID: PMC6372795 DOI: 10.1128/mbio.02323-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells. Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia.
Collapse
|
113
|
Yao Y, Wang Y, Kong L, Chen Y, Yang J. RETRACTED: Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer's disease. Life Sci 2019; 217:16-24. [PMID: 30471283 DOI: 10.1016/j.lfs.2018.11.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/10/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of Editor-in-Chief. The corresponding author notified the journal of image duplications within the published article and requested a corrigendum. Specifically, the ‘APP/PS1’ plot in Figure 1A had appeared in a previous publication [Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells, Life Sciences (DOI: 10.1016/j.lfs.2019.03.070)], as the ‘TG’ plot in Figure 2A. In addition, several image duplications were identified within the panels of Figure 2. These issues, and others relating to unusual characteristics within the western blots, have been detailed here: https://pubpeer.com/publications/892AF7E4913255548C1446247FC65A#. As per journal policy when considering corrigendum requests, the journal requested the authors to provide explanations and source data relating to these affected figures. Upon receipt of additional source data, the editorial team noticed additional suspected image duplications. In relation to Figure 1A, the corresponding author stated that “…we mistakenly used the same Morris Water Maze data”, and a corrected figure was submitted. In relation to the image duplications within Figure 2, the corresponding author stated “…we mistakenly used the copy-and-paste tool instead of a color adjustment tool” during image post-processing. The corresponding author was unable to produce original unaltered and uncropped western blot source data. The editorial team have concerns about the provenance of the data and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yingjia Yao
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yameng Wang
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yuqing Chen
- Dalian University of Technology, Dalian 116024, China
| | - Jingxian Yang
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
114
|
Hashemzadeh K, Jokar MH, Sedighi S, Moradzadeh M. Therapeutic Potency of PI3K Pharmacological Inhibitors of Gastrointestinal Cancer. Middle East J Dig Dis 2018; 11:5-16. [PMID: 31049177 PMCID: PMC6488499 DOI: 10.15171/mejdd.2018.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of phosphatidyl-inositol 3-kinase (PI3K) is considered as a possible strategy in several types of cancer, including gastrointestinal ones. In vitro and in vivo studies indicated the significance of proapoptotic and antiproliferative inhibition of PI3K. Although there are many phase 1 and 2 clinical trials on PI3K inhibitors in patients with gastrointestinal cancer, the molecular mechanism of PI3K targeting PI3K/ mTOR pathway is not clear. Panclass I, isoformselective, and dual PI3K/mTOR inhibitors are under investigation. This review aimed to indicate PI3K-dependent targeting mechanisms in gastrointestinal cancer and the evaluation of related clinical data.
Collapse
Affiliation(s)
- Kamelia Hashemzadeh
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hassan Jokar
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maliheh Moradzadeh
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
115
|
Md Mokhtar AH, Malik IA, Abd Aziz NAA, Almabhouh FA, Durairajanayagam D, Singh HJ. LY294002, a PI3K pathway inhibitor, prevents leptin-induced adverse effects on spermatozoa in Sprague-Dawley rats. Andrologia 2018; 51:e13196. [DOI: 10.1111/and.13196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 01/14/2023] Open
Affiliation(s)
| | - Ifrah Alam Malik
- Faculty of Medicine; Universiti Teknologi MARA; Sg Buloh Selangor Malaysia
| | | | - Fayez A. Almabhouh
- Faculty of Medicine; Universiti Teknologi MARA; Sg Buloh Selangor Malaysia
| | | | - Harbindar Jeet Singh
- Faculty of Medicine; Universiti Teknologi MARA; Sg Buloh Selangor Malaysia
- I-PPerForM , Faculty of Medicine; Universiti Teknologi MARA; Sg Buloh Selangor Malaysia
| |
Collapse
|
116
|
The Human Cytomegalovirus US27 Gene Product Constitutively Activates Antioxidant Response Element-Mediated Transcription through G βγ, Phosphoinositide 3-Kinase, and Nuclear Respiratory Factor 1. J Virol 2018; 92:JVI.00644-18. [PMID: 30209167 DOI: 10.1128/jvi.00644-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/28/2018] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that modulates host chemokine signaling during persistent infection in the host. HCMV encodes four proteins with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs): US27, US28, UL33, and UL78. Each of the four receptors modulates host CXCR4 signaling. US28, UL33, and UL78 impair CXCR4 signaling outcomes, while US27 enhances signaling, as evidenced by increased calcium mobilization and cell migration to CXCL12. To investigate the effects of US27 on CXCR4 during virus infection, fibroblasts were infected with bacterial artificial chromosome-derived clinical strain HCMV TB40/E-mCherry (wild type [WT]), mutants lacking US27 (TB40/E-mCherry-US27Δ [US27Δ]) or all four GPCRs (TB40 E-mCherry-allΔ), or mutants expressing only US27 but not US28, UL33, or UL78 (TB40/E-mCherry-US27wt [US27wt]). CXCR4 gene expression was significantly higher in WT- and US27wt-infected fibroblasts. This effect was evident at 3 h postinfection, suggesting that US27 derived from the parental virion enhanced CXCR4 expression. Reporter gene assays demonstrated that US27 increased transcriptional activity regulated by the antioxidant response element (ARE), and small interfering RNA treatment indicated that this effect was mediated by NRF-1, the primary transcription factor for CXCR4. Increased translocation of NRF-1 into the nucleus of WT-infected cells compared to mock- or US27Δ-infected cells was confirmed by immunofluorescence microscopy. Chemical inhibitors targeting Gβγ and phosphoinositide 3-kinase (PI3K) ablated the increase in ARE-driven transcription, implicating these proteins as mediators of US27-stimulated gene transcription. This work identifies the first signaling pathway activated by HCMV US27 and may reveal a novel regulatory function for this orphan viral receptor in stimulating stress response genes during infection.IMPORTANCE Human cytomegalovirus (HCMV) is the most common congenital infection worldwide, causing deafness, blindness, and other serious birth defects. CXCR4 is a human chemokine receptor that is crucial for both fetal development and immune responses. We found that the HCMV protein US27 stimulates increased expression of CXCR4 through activation of the transcription factor nuclear respiratory factor 1 (NRF-1). NRF-1 regulates stress response genes that contain the antioxidant response element (ARE), and HCMV infection is associated with increased expression of many stress response genes when US27 is present. Our results show that the US27 protein activates the NRF-1/ARE pathway, stimulating higher expression of CXCR4 and other stress response genes, which is likely to be beneficial for virus replication and/or immune evasion.
Collapse
|
117
|
Wang X, Chen J, Rong C, Pan F, Zhao X, Hu Y. GLP-1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells via the PI3K-AKT-mTOR signaling pathway. Biochem Biophys Res Commun 2018; 506:976-982. [PMID: 30404729 DOI: 10.1016/j.bbrc.2018.10.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE In this study, we investigated whether the GLP-1RA, liraglutide, affected differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to mature brown adipocytes and involvement of PI3K/AKT/mTOR signaling pathway in this process. METHODS C3H10T1/2 MSCs were induced to differentiate into brown adipocytes and treated with liraglutide (10 nM and 100 nM) for 0, 2, 4, 6 and 8 days with or without PI3K inhibitor LY294002. Oil red O staining was used for lipid droplet staining and cell proliferation was determined by cell counts. Quantitative realtime PCR was employed to determine the expression of adipogenic and mitochondrial genes, mitochondrial DNA (mtDNA). Western blot analyses were used for quantification of protein levels in PI3K/AKT/mTOR signaling pathway. RESULTS Liraglutide increased proliferation of C3H10T1/2 MSCs and formation of multilocular lipid droplets during differentiation. Adipogenic and mitochondrial genes, mtDNA were promoted by liraglutide. Moreover, liraglutide treatment increased the levels of phosphorylated AKT and mTOR. LY294002 not only attenuated differentiation of C3H10T1/2 MSCs into brown adipocytes, but also reduced phosphorylated AKT and mTOR levels. However, co-treatment with liraglutide and LY294002 decreased the expression of adipogenic and mitochondrial genes, mtDNA, and phosphorylated AKT and mTOR levels compared to C3H10T1/2 MSCs treated with liraglutide 100 nM. CONCLUSION GLP-1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells, and PI3K/AKT/mTOR signaling pathway is involved in GLP-1RA-mediated promotion of differentiation.
Collapse
Affiliation(s)
- Xinlei Wang
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Chen
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Can Rong
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; The Department of Clinical Medicine, Jiangsu Health Vacational College, Nanjing, China
| | - Fenghui Pan
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaoqin Zhao
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Hu
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
118
|
Cutting Edge Therapeutic Insights Derived from Molecular Biology of Pediatric High-Grade Glioma and Diffuse Intrinsic Pontine Glioma (DIPG). Bioengineering (Basel) 2018; 5:bioengineering5040088. [PMID: 30340362 PMCID: PMC6315414 DOI: 10.3390/bioengineering5040088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) and brainstem gliomas are some of the most challenging cancers to treat in children, with no effective therapies and 5-year survival at ~2% for diffuse intrinsic pontine glioma (DIPG) patients. The standard of care for pHGG as a whole remains surgery and radiation combined with chemotherapy, while radiation alone is standard treatment for DIPG. Unfortunately, these therapies lack specificity for malignant glioma cells and have few to no reliable biomarkers of efficacy. Recent discoveries have revealed that epigenetic disruption by highly conserved mutations in DNA-packaging histone proteins in pHGG, especially DIPG, contribute to the aggressive nature of these cancers. In this review we pose unanswered questions and address unexplored mechanisms in pre-clinical models and clinical trial data from pHGG patients. Particular focus will be paid towards therapeutics targeting chromatin modifiers and other epigenetic vulnerabilities that can be exploited for pHGG therapy. Further delineation of rational therapeutic combinations has strong potential to drive development of safe and efficacious treatments for pHGG patients.
Collapse
|
119
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
120
|
Li X, Tang Y, Yu F, Sun Y, Huang F, Chen Y, Yang Z, Ding G. Inhibition of Prostate Cancer DU-145 Cells Proliferation by Anthopleura anjunae Oligopeptide (YVPGP) via PI3K/AKT/mTOR Signaling Pathway. Mar Drugs 2018; 16:E325. [PMID: 30208576 PMCID: PMC6165336 DOI: 10.3390/md16090325] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.
Collapse
Affiliation(s)
- Xiaojuan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu Sun
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University Donghai Science and Technology College, Zhoushan 316000, China.
| | - Fangfang Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
- Zhejiang Marine Fisheries Research Institution, Zhoushan 316021, China.
| |
Collapse
|
121
|
Ko J, Kim JY, Lee EJ, Yoon JS. Inhibitory Effect of Idelalisib, a Selective Phosphatidylinositol 3-Kinase δ Inhibitor, on Adipogenesis in an In Vitro Model of Graves' Orbitopathy. ACTA ACUST UNITED AC 2018; 59:4477-4485. [DOI: 10.1167/iovs.18-24509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
122
|
Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH, Hu JS, Li B. Titanium nanoparticles influence the Akt/Tor signal pathway in the silkworm, Bombyx mori, silk gland. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21470. [PMID: 29709078 DOI: 10.1002/arch.21470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various nanoparticles, such as silver nanoparticles (AgNPs) and titanium nanoparticles (TiO2 NPs) are increasingly used in industrial processes. Because they are released into the environment, research into their influence on the biosphere is necessary. Among its other effects, dietary TiO2 NPs promotes silk protein synthesis in silkworms, which prompted our hypothesis that TiO2 NPs influence protein kinase B (Akt)/Target of rapamycin (Tor) signaling pathway (Akt/Tor) signaling in their silk glands. The Akt/Tor signaling pathway is a principle connector integrating cellular reactions to growth factors, metabolites, nutrients, protein synthesis, and stress. We tested our hypothesis by determining the influence of dietary TiO2 NPs (for 72 h) and, separately, of two Akt/Tor pathway inhibitors (LY294002 and rapamycin) on expression of Akt/Tor signaling pathway genes and proteins in the silk glands. TiO2 NPs treatments led to increased accumulation of mRNAs for Akt, Tor1 and Tor2 by 1.6-, 12.1-, and 4.8-fold. Dietary inhibitors led to 2.6- to 4-fold increases in mRNAs encoding Akt and substantial decreases in mRNAs encoding Tor1 and Tor2. Western blot analysis showed that dietary TiO2 NPs increased the phosphorylation of Akt and its downstream proteins. LY294002 treatments led to inhibition of Akt phosphorylation and its downstream proteins and rapamycin treatments similarly inhibited the phosphorylation of Tor-linked downstream proteins. These findings support our hypothesis that TiO2 NPs influence Akt/Tor signaling in silk glands. The significance of this work is identification of specific sites of TiO2 NPs actions.
Collapse
Affiliation(s)
- Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jiang-Hai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jin-Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Xiao-Yu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jia-Huan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jing-Sheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P.R. China
| |
Collapse
|
123
|
Dambournet D, Sochacki KA, Cheng AT, Akamatsu M, Taraska JW, Hockemeyer D, Drubin DG. Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation. J Cell Biol 2018; 217:3301-3311. [PMID: 29980624 PMCID: PMC6123002 DOI: 10.1083/jcb.201710084] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/05/2017] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
We developed a general approach for investigation of how cellular processes become adapted for specific cell types during differentiation. Previous studies reported substantial differences in the morphology and dynamics of clathrin-mediated endocytosis (CME) sites. However, associating specific CME properties with distinct differentiated cell types and determining how these properties are developmentally specified during differentiation have been elusive. Using genome-edited human embryonic stem cells, and isogenic fibroblasts and neuronal progenitor cells derived from them, we established by live-cell imaging and platinum replica transmission electron microscopy that CME site dynamics and ultrastructure on the plasma membrane are precisely reprogrammed during differentiation. Expression levels for the endocytic adaptor protein AP2μ2 were found to underlie dramatic changes in CME dynamics and structure. Additionally, CME dependency on actin assembly and phosphoinositide-3 kinase activity are distinct for each cell type. Collectively, our results demonstrate that key CME properties are reprogrammed during differentiation at least in part through AP2μ2 expression regulation.
Collapse
Affiliation(s)
- Daphné Dambournet
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Kem A Sochacki
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
124
|
Dong J, Zhang Q, Wang Z, Huang G, Li S. Recent Advances in the Development of Indazole-based Anticancer Agents. ChemMedChem 2018; 13:1490-1507. [PMID: 29863292 DOI: 10.1002/cmdc.201800253] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Cancer is one of the leading causes of human mortality globally; therefore, intensive efforts have been made to seek new active drugs with improved anticancer efficacy. Indazole-containing derivatives are endowed with a broad range of biological properties, including anti-inflammatory, antimicrobial, anti-HIV, antihypertensive, and anticancer activities. In recent years, the development of anticancer drugs has given rise to a wide range of indazole derivatives, some of which exhibit outstanding activity against various tumor types. The aim of this review is to outline recent developments concerning the anticancer activity of indazole derivatives, as well as to summarize the design strategies and structure-activity relationships of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Qijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Guang Huang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| |
Collapse
|
125
|
Nakashima Y, Miyagi-Shiohira C, Noguchi H, Omasa T. Atorvastatin Inhibits the HIF1α-PPAR Axis, Which Is Essential for Maintaining the Function of Human Induced Pluripotent Stem Cells. Mol Ther 2018; 26:1715-1734. [PMID: 29929789 PMCID: PMC6036234 DOI: 10.1016/j.ymthe.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
We herein report a novel mechanism of action of statin preparations using a new drug discovery method. Milk fat globule-EGF factor 8 protein (MFG-E8) was identified from the secretory component of mouse embryonic fibroblast (MEF) as a cell adhesion-promoting factor effective for screening active cellular agents of human induced pluripotent stem cells (hiPSCs) in vitro using electrochemical impedance. Our analyses showed that atorvastatin did not cause death in myocardial cells differentiated from hiPSCs but reduced the pluripotent cell survival in vitro when using serum- and albumin-free media, and inhibited the ability to form teratomas in mice. This result could have been already the cytopathic effect of atorvastatin, and complete elimination of hiPSCs was confirmed in the xenotransplantation assay. The administration of atorvastatin to hiPSCs caused the expression of hypoxia inducible factor (HIF)1α mRNA to be unchanged at 6 hr and downregulated at 24 hr. In addition, the inhibition of the survival of hiPSCs was confirmed by HIF1α-peroxisome proliferator-activated receptor (PPAR) axis inhibition. These results suggest that the addition of atorvastatin to hiPSC cultures reduces the survival of pluripotent cells by suppressing the HIF1α-PPAR axis. In summary, the HIF1α-PPAR axis has an important role in maintaining the survival of pluripotent hiPSCs.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8506, Japan; Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan.
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Takeshi Omasa
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8506, Japan; Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
126
|
Bobade D, Khandare AV, Deval M, Shastry P, Deshpande P. Hemozoin-induced activation of human monocytes toward M2-like phenotype is partially reversed by antimalarial drugs-chloroquine and artemisinin. Microbiologyopen 2018; 8:e00651. [PMID: 29877619 PMCID: PMC6436431 DOI: 10.1002/mbo3.651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum malaria is the most severe form of malaria with several complications. The malaria pigment‐hemozoin (Hz) is associated with severe anemia, cytokine dysfunction, and immunosuppression, thus making it an interesting target for developing new strategies for antimalarial therapy. Monocytes (MO) in circulation actively ingest Hz released by Plasmodium parasites and secrete pro‐ and anti‐inflammatory cytokines. M1 and M2 types represent the two major forms of MO/macrophages (MQ) with distinct phenotypes and opposing functions. Imbalance in the polarization of these types is reported in many infectious diseases. Though the association of Hz with immunosuppression is well documented, its role in activation of MO in context of M1/M2 phenotypes remains to be addressed. We report here that natural Hz drives human MO toward M2‐like phenotype as evidenced by the expression of M2 signature markers. Hz‐fed MO showed elevated transcript and secreted level of IL‐10, CCL17, CCL1, expression of mannose‐binding lectin receptor (CD206), and arginase activity. Hz attenuated HLA‐DR expression, nitric oxide, and reactive oxygen species production, which are the features of M1 phenotype. Our data also implicate the involvement of p38 MAPK, PI3K/AKT, and NF‐κB signaling pathways in skewing of Hz‐fed MO toward M2‐like type and suppression of mitogen‐stimulated lymphocyte proliferation. Importantly, antimalarial drugs—chloroquine and artemisinin—partially reversed activation of Hz‐induced MO toward M2‐like phenotype. Considering the limitations in the current therapeutic options for malaria, we propose that these drugs may be re‐examined for their potential as immunomodulators and candidates for adjunctive treatment in malaria.
Collapse
Affiliation(s)
| | | | - Mangesh Deval
- National Centre for Cell Science (NCCS), Pune, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Pune, India
| | | |
Collapse
|
127
|
Andéol Y, Bonneau J, M Gagné L, Jacquet K, Rivest V, Huot MÉ, Séguin C. The phosphoinositide 3-kinase pathway and glycogen synthase kinase-3 positively regulate the activity of metal-responsive transcription factor-1 in response to zinc ions. Biochem Cell Biol 2018; 96:1-8. [PMID: 29707960 DOI: 10.1139/bcb-2018-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a metal-regulatory transcription factor essential for induction of the genes encoding metallothioneins (MTs) in response to transition metal ions. Activation of MTF-1 is dependent on the interaction of zinc with the zinc fingers of the protein. In addition, phosphorylation is essential for MTF-1 transactivation. We previously showed that inhibition of phosphoinositide 3-kinase (PI3K) abrogated Mt expression and metal-induced MTF-1 activation in human hepatocellular carcinoma (HCC) HepG2 and mouse L cells, thus showing that the PI3K signaling pathway positively regulates MTF-1 activity and Mt gene expression. However, it has also been reported that inhibition of PI3K has no significant effects on Mt expression in immortalized epithelial cells and increases Mt expression in HCC cells. To further characterize the role of the PI3K pathway on the activity of MTF-1, transfection experiments were performed in HEK293 and HepG2 cells in presence of glycogen synthase kinase-3 (GSK-3), mTOR-C1, and mTOR-C2 inhibitors, as well as of siRNAs targeting Phosphatase and TENsin homolog (PTEN). We showed that inhibition of the mTOR-C2 complex inhibits the activity of MTF-1 in HepG2 and HEK293 cells, while inhibition of the mTOR-C1 complex or of PTEN stimulates MTF-1 activity in HEK293 cells. These results confirm that the PI3K pathway positively regulates MTF-1 activity. Finally, we showed that GSK-3 is required for MTF-1 activation in response to zinc ions.
Collapse
Affiliation(s)
- Yannick Andéol
- a Équipe Enzymologie de l'ARN, ER6, 9 quai St Bernard, Faculté des Sciences et Technologies, Sorbonne-Université, 75252 Paris, Cedex 05, France
| | - Jessica Bonneau
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Laurence M Gagné
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Kevin Jacquet
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Véronique Rivest
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Marc-Étienne Huot
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Carl Séguin
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| |
Collapse
|
128
|
Mabeta P. Oncosuppressors and Oncogenes: Role in Haemangioma Genesis and Potential for Therapeutic Targeting. Int J Mol Sci 2018; 19:E1192. [PMID: 29652858 PMCID: PMC5979526 DOI: 10.3390/ijms19041192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023] Open
Abstract
Genetic lesions in proto-oncogenes result in the perturbation of angiogenesis, the formation of neovessels from a pre-existing microvasculature. Similarly, the subversion of tumor suppressor genes promotes tumor vascularization. Excessive neovessel formation is associated with various neoplasms such as infantile hemangiomas (IH). Hemangiomas are the most common tumors in pediatric patients and at present have no definitive treatment. The pathogenesis of IH is not well understood; however, both vasculogenesis and angiogenesis are associated with hemangioma genesis. A number of factors that modulate angiogenesis and vasculogenesis have been shown to be dysregulated in IH. Several of the oncogenes and tumor suppressors linked to the promotion of angiogenesis are also altered in infantile hemangioma. In this review, the roles of oncogenes and tumor suppressor genes during neovascularization and hemangioma genesis are explored. In addition, the potential for targeting these genes in IH therapy is discussed.
Collapse
Affiliation(s)
- Peace Mabeta
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, 9 Botshelo Road, Pretoria 0007, South Africa.
| |
Collapse
|
129
|
Li H, Xu W, Ma Y, Zhou S, Xiao R. Milk fat globule membrane protein promotes C 2C 12 cell proliferation through the PI3K/Akt signaling pathway. Int J Biol Macromol 2018; 114:1305-1314. [PMID: 29634969 DOI: 10.1016/j.ijbiomac.2018.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022]
Abstract
Milk fat globule membrane (MFGM) protein is known to have several health benefits, including an anti-sarcopenia effect; however, its mechanism is unclear. The aim of this study was to investigate the potential mechanism of action of the MFGM protein. The MFGM protein was extracted and separated into 4 fractions, and Fraction 2 (57% of total MFGM) demonstrated the greatest effect on C2C12 cell proliferation. Milk fat globule-EGF factor 8 (MFG-E8) accounted for 82.35% of the MFGM protein. The effects of whole Fraction 2 (100μg/mL, 200μg/mL and 300μg/mL) on cell proliferation and morphology were measured. Using qRT-PCR or a Western blot assay, several regulatory factors, e.g., PI3K P85α, p-pI3K p85α (Tyr 508), Akt, p-Akt (Ser 473), mTOR and p-mTOR (Ser 2448), were measured in cells incubated with 200μg/mL of Fraction 2 with or without wortmannin. The results demonstrated that Fraction 2 induced C2C12 cell proliferation in a dose-dependent manner, upregulated the mRNA expression of mTOR and p70S6K, and activated PI3K, Akt, mTOR and P70S6K phosphorylation; however, Fraction 2 inhibited FOXO3a and 4E-BP. The results demonstrate that the MFGM protein, predominantly MFG-E8, promotes cell proliferation through the PI3K/Akt/mTOR signaling pathway. This study elucidated the molecular mechanism of the MFGM protein, primarily MFG-E8, in promoting C2C12 cell proliferation via the PI3K/Akt/mTOR/P70S6K signal pathway.
Collapse
Affiliation(s)
- He Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Weili Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK.
| | - Ran Xiao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| |
Collapse
|
130
|
Castejón-Griñán M, Herraiz C, Olivares C, Jiménez-Cervantes C, García-Borrón JC. cAMP-independent non-pigmentary actions of variant melanocortin 1 receptor: AKT-mediated activation of protective responses to oxidative DNA damage. Oncogene 2018; 37:3631-3646. [PMID: 29622793 DOI: 10.1038/s41388-018-0216-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
The melanocortin 1 receptor gene (MC1R), a well-established melanoma susceptibility gene, regulates the amount and type of melanin pigments formed within epidermal melanocytes. MC1R variants associated with increased melanoma risk promote the production of photosensitizing pheomelanins as opposed to photoprotective eumelanins. Wild-type (WT) MC1R activates DNA repair and antioxidant defenses in a cAMP-dependent fashion. Since melanoma-associated MC1R variants are hypomorphic in cAMP signaling, these non-pigmentary actions are thought to be defective in MC1R-variant human melanoma cells and epidermal melanocytes, consistent with a higher mutation load in MC1R-variant melanomas. We compared induction of antioxidant enzymes and DNA damage responses in melanocytic cells of defined MC1R genotype. Increased expression of catalase (CAT) and superoxide dismutase (SOD) genes following MC1R activation was cAMP-dependent and required a WT MC1R genotype. Conversely, pretreatment of melanocytic cells with an MC1R agonist before an oxidative challenge with Luperox decreased (i) accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanine, a major product of oxidative DNA damage, (ii) phosphorylation of histone H2AX, a marker of DNA double-strand breaks, and (iii) formation of DNA breaks. These responses were comparable in cells WT for MC1R or harboring hypomorphic MC1R variants without detectable cAMP signaling. In MC1R-variant melanocytic cells, the DNA-protective responses were mediated by AKT. Conversely, in MC1R-WT melanocytic cells, high cAMP production downstream of MC1R blocked AKT activation and was responsible for inducing DNA repair. Accordingly, MC1R activation could promote repair of oxidative DNA damage by a cAMP-dependent pathway downstream of WT receptor, or via AKT in cells of variant MC1R genotype.
Collapse
Affiliation(s)
- María Castejón-Griñán
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| | - Cecilia Herraiz
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain.
| | - Conchi Olivares
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| | - Celia Jiménez-Cervantes
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| | - Jose Carlos García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| |
Collapse
|
131
|
Law KB, Bronte-Tinkew D, Di Pietro E, Snowden A, Jones RO, Moser A, Brumell JH, Braverman N, Kim PK. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy 2018; 13:868-884. [PMID: 28521612 PMCID: PMC5446072 DOI: 10.1080/15548627.2017.1291470] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.
Collapse
Affiliation(s)
- Kelsey B Law
- a Cell Biology Program , Hospital for Sick Children, Peter Gilgan Centre for Research and Learning , Toronto , ON , Canada.,b Department of Biochemistry , University of Toronto , Toronto , ON , Canada
| | - Dana Bronte-Tinkew
- a Cell Biology Program , Hospital for Sick Children, Peter Gilgan Centre for Research and Learning , Toronto , ON , Canada
| | - Erminia Di Pietro
- c Research Institute of the MUHC and McGill University , Montreal , QC , Canada
| | - Ann Snowden
- d Kennedy Krieger Institute , Baltimore , MD , USA
| | | | - Ann Moser
- d Kennedy Krieger Institute , Baltimore , MD , USA
| | - John H Brumell
- a Cell Biology Program , Hospital for Sick Children, Peter Gilgan Centre for Research and Learning , Toronto , ON , Canada.,e Department of Molecular Genetics , University of Toronto , Toronto , ON , Canada.,f Institute of Medical Science, University of Toronto , Toronto , ON , Canada.,g SickKids IBD Centre , Hospital for Sick Children , Toronto , ON , Canada
| | - Nancy Braverman
- c Research Institute of the MUHC and McGill University , Montreal , QC , Canada
| | - Peter K Kim
- a Cell Biology Program , Hospital for Sick Children, Peter Gilgan Centre for Research and Learning , Toronto , ON , Canada.,b Department of Biochemistry , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
132
|
Kunova Bosakova M, Varecha M, Hampl M, Duran I, Nita A, Buchtova M, Dosedelova H, Machat R, Xie Y, Ni Z, Martin JH, Chen L, Jansen G, Krakow D, Krejci P. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum Mol Genet 2018; 27:1093-1105. [PMID: 29360984 PMCID: PMC5886260 DOI: 10.1093/hmg/ddy031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Cilia project from almost every cell integrating extracellular cues with signaling pathways. Constitutive activation of FGFR3 signaling produces the skeletal disorders achondroplasia (ACH) and thanatophoric dysplasia (TD), but many of the molecular mechanisms underlying these phenotypes remain unresolved. Here, we report in vivo evidence for significantly shortened primary cilia in ACH and TD cartilage growth plates. Using in vivo and in vitro methodologies, our data demonstrate that transient versus sustained activation of FGF signaling correlated with different cilia consequences. Transient FGF pathway activation elongated cilia, while sustained activity shortened cilia. FGF signaling extended primary cilia via ERK MAP kinase and mTORC2 signaling, but not through mTORC1. Employing a GFP-tagged IFT20 construct to measure intraflagellar (IFT) speed in cilia, we showed that FGF signaling affected IFT velocities, as well as modulating cilia-based Hedgehog signaling. Our data integrate primary cilia into canonical FGF signal transduction and uncover a FGF-cilia pathway that needs consideration when elucidating the mechanisms of physiological and pathological FGFR function, or in the development of FGFR therapeutics.
Collapse
Affiliation(s)
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Marek Hampl
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Hana Dosedelova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Radek Machat
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Yangli Xie
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing 400042, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing 400042, China
| | - Jorge H Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Lin Chen
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing 400042, China
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
133
|
Gong G, Yin L, Yuan L, Sui D, Sun Y, Fu H, Chen L, Wang X. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway. Mol Immunol 2018; 95:91-98. [PMID: 29428576 DOI: 10.1016/j.molimm.2018.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
High altitude cerebral edema (HACE) is a severe type of acute mountain sickness (AMS) that occurs in response to a high altitude hypobaric hypoxic (HH) environment. GM1 monosialoganglioside can alleviate brain injury under adverse conditions including amyloid-β-peptide, ischemia and trauma. However, its role in HACE-induced brain damage remains poorly elucidated. In this study, GM1 supplementation dose-dependently attenuated increase in rat brain water content (BWC) induced by hypobaric chamber (7600 m) exposurefor 24 h. Compared with the HH-treated group, rats injected with GM1 exhibited less brain vascular leakage, lower aquaporin-4 and higher occludin expression, but they also showed increase in Na+/K+-ATPase pump activities. Importantly, HH-incurred consciousness impairment and coordination loss also were ameliorated following GM1 administration. Furthermore, the increased oxidative stress and decrease in anti-oxidant stress system under the HH condition were also reversely abrogated by GM1 treatment via suppressing accumulation of ROS, MDA and elevating the levels of SOD and GSH. Simultaneously, GM1 administration also counteracted the enhanced inflammation in HH-exposed rats by muting pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 levels in serum and brain tissues. Subsequently, GM1 potentiated the activation of the PI3K/AKT-Nrf2 pathway. Cessation of this pathway by LY294002 reversed GM1-mediated inhibitory effects on oxidative stress and inflammation, and ultimately abrogated the protective role of GM1 in abating brain edema, cognitive and motor dysfunction. Overall, GM1 may afford a protective intervention in HACE by suppressing oxidative stress and inflammatory response via activating the PI3K/AKT-Nrf2 pathway, implying a promising agent for the treatment of HACE.
Collapse
Affiliation(s)
- Gu Gong
- Department of Anesthesiology, General Hospital of Chengdu Military Region of PLA, Chengdu, 610083, PR China
| | - Liang Yin
- Department of Anesthesiology, General Hospital of Chengdu Military Region of PLA, Chengdu, 610083, PR China
| | - Libang Yuan
- Department of Anesthesiology, General Hospital of Chengdu Military Region of PLA, Chengdu, 610083, PR China
| | - Daming Sui
- Department of Anesthesiology, General Hospital of Chengdu Military Region of PLA, Chengdu, 610083, PR China
| | - Yangyang Sun
- Department of Anesthesiology, General Hospital of Chengdu Military Region of PLA, Chengdu, 610083, PR China
| | - Haiyu Fu
- Department of Anesthesiology, General Hospital of Chengdu Military Region of PLA, Chengdu, 610083, PR China
| | - Liang Chen
- Department of Anesthesiology, General Hospital of Chengdu Military Region of PLA, Chengdu, 610083, PR China
| | - Xiaowu Wang
- Center of Cardiovascular Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, PR China.
| |
Collapse
|
134
|
Cho JA, Kim TJ, Moon HJ, Kim YJ, Yoon HK, Seong SY. Cardiolipin activates antigen-presenting cells via TLR2-PI3K-PKN1-AKT/p38-NF-kB signaling to prime antigen-specific naïve T cells in mice. Eur J Immunol 2018; 48:777-790. [PMID: 29313959 DOI: 10.1002/eji.201747222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial defects and antimitochondrial cardiolipin (CL) antibodies are frequently detected in autoimmune disease patients. CL from dysregulated mitochondria activates various pattern recognition receptors, such as NLRP3. However, the mechanism by which mitochondrial CL activates APCs as a damage-associated molecular pattern to prime antigen-specific naïve T cells, which is crucial for T-cell-dependent anticardiolipin IgG antibody production in autoimmune diseases is unelucidated. Here, we show that CL increases the expression of costimulatory molecules in CD11c+ APCs both in vitro and in vivo. CL activates CD11c+ APCs via TLR2-PI3K-PKN1-AKT/p38MAPK-NF-κB signaling. CD11c+ APCs that have been activated by CL are sufficient to prime H-Y peptide-specific naïve CD4+ T cells and OVA-specific naïve CD8+ T cells. TLR2 is necessary for anti-CL IgG antibody responses in vivo. Intraperitoneal injection of CL does not activate CD11c+ APCs in CD14 KO mice to the same extent as in wild-type mice. CL binds to CD14 (Kd = 7 × 10-7 M). CD14, but not MD2, plays a role in NF-kB activation by CL, suggesting that CD14+ macrophages contribute to recognizing CL. In summary, CL activates signaling pathways in CD11c+ APCs through a mechanism similar to gram (+) bacteria and plays a crucial role in priming antigen-specific naïve T cells.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Tae-Joo Kim
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Hye-Jung Moon
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Young-Joo Kim
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Hye-Kyung Yoon
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Seung-Yong Seong
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
135
|
Protein kinase D-dependent CXCR4 down-regulation upon BCR triggering is linked to lymphadenopathy in chronic lymphocytic leukaemia. Oncotarget 2018; 7:41031-41046. [PMID: 27127886 PMCID: PMC5173040 DOI: 10.18632/oncotarget.9031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/16/2016] [Indexed: 02/07/2023] Open
Abstract
In Chronic Lymphocytic Leukemia (CLL), infiltration of lymph nodes by leukemic cells is observed in patients with progressive disease and adverse outcome. We have previously demonstrated that B-cell receptor (BCR) engagement resulted in CXCR4 down-regulation in CLL cells, correlating with a shorter progression-free survival in patients. In this study, we show a simultaneous down-regulation of CXCR4, CXCR5 and CD62L upon BCR triggering. While concomitant CXCR4 and CXCR5 down-regulation involves PKDs, CD62L release relies on PKC activation. BCR engagement induces PI3K-δ-dependent phosphorylation of PKD2 and 3, which in turn phosphorylate CXCR4 Ser324/325. Moreover, upon BCR triggering, PKD phosphorylation levels correlate with the extent of membrane CXCR4 decrease. Inhibition of PKD activity restores membrane expression of CXCR4 and migration towards CXCL12 in BCR-responsive cells in vitro. In terms of pathophysiology, BCR-dependent CXCR4 down-regulation is observed in leukemic cells from patients with enlarged lymph nodes, irrespective of their IGHV mutational status. Taken together, our results demonstrate that PKD-mediated CXCR4 internalization induced by BCR engagement in B-CLL is associated with lymph node enlargement and suggest PKD as a potential druggable target for CLL therapeutics.
Collapse
|
136
|
Wu CC, Hou S, Orr BA, Kuo BR, Youn YH, Ong T, Roth F, Eberhart CG, Robinson GW, Solecki DJ, Taketo MM, Gilbertson RJ, Roussel MF, Han YG. mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma. Dev Cell 2017; 43:673-688.e5. [PMID: 29103956 PMCID: PMC5736446 DOI: 10.1016/j.devcel.2017.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/29/2017] [Accepted: 10/07/2017] [Indexed: 12/13/2022]
Abstract
Mechanistic target of rapamycin (MTOR) cooperates with Hedgehog (HH) signaling, but the underlying mechanisms are incompletely understood. Here we provide genetic, biochemical, and pharmacologic evidence that MTOR complex 1 (mTORC1)-dependent translation is a prerequisite for HH signaling. The genetic loss of mTORC1 function inhibited HH signaling-driven growth of the cerebellum and medulloblastoma. Inhibiting translation or mTORC1 blocked HH signaling. Depleting 4EBP1, an mTORC1 target that inhibits translation, alleviated the dependence of HH signaling on mTORC1. Consistent with this, phosphorylated 4EBP1 levels were elevated in HH signaling-driven medulloblastomas in mice and humans. In mice, an mTORC1 inhibitor suppressed medulloblastoma driven by a mutant SMO that is inherently resistant to existing SMO inhibitors, prolonging the survival of the mice. Our study reveals that mTORC1-mediated translation is a key component of HH signaling and an important target for treating medulloblastoma and other cancers driven by HH signaling.
Collapse
Affiliation(s)
- Chang-Chih Wu
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shirui Hou
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bryan R Kuo
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taren Ong
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fanny Roth
- Sorbonne Universités, UPMC Paris 06, INSERM, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 47 Boulevard de l'hôpital, Paris 13, Paris, France
| | - Charles G Eberhart
- Department of Pathology, The Johns Hopkins University School of Medicine, Ross Building 558, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Giles W Robinson
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David J Solecki
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto 606-8501, Japan
| | - Richard J Gilbertson
- Department of Oncology and CRUK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, England
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
137
|
Suvarna V, Murahari M, Khan T, Chaubey P, Sangave P. Phytochemicals and PI3K Inhibitors in Cancer-An Insight. Front Pharmacol 2017; 8:916. [PMID: 29311925 PMCID: PMC5736021 DOI: 10.3389/fphar.2017.00916] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
In today's world of modern medicine and novel therapies, cancer still remains to be one of the prime contributor to the death of people worldwide. The modern therapies improve condition of cancer patients and are effective in early stages of cancer but the advanced metastasized stage of cancer remains untreatable. Also most of the cancer therapies are expensive and are associated with adverse side effects. Thus, considering the current status of cancer treatment there is scope to search for efficient therapies which are cost-effective and are associated with lesser and milder side effects. Phytochemicals have been utilized for many decades to prevent and cure various ailments and current evidences indicate use of phytochemicals as an effective treatment for cancer. Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling cascades is a common phenomenon in most types of cancers. Thus, natural substances targeting PI3K pathway can be of great therapeutic potential in the treatment of cancer patients. This chapter summarizes the updated research on plant-derived substances targeting PI3K pathway and the current status of their preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S Ramaiah University of Applied Sciences, Bangalore, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Preeti Sangave
- Department of Pharmaceutical Sciences, School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
138
|
Hanigan TW, Aboukhatwa SM, Taha TY, Frasor J, Petukhov PA. Divergent JNK Phosphorylation of HDAC3 in Triple-Negative Breast Cancer Cells Determines HDAC Inhibitor Binding and Selectivity. Cell Chem Biol 2017; 24:1356-1367.e8. [PMID: 28943357 PMCID: PMC5693607 DOI: 10.1016/j.chembiol.2017.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/10/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022]
Abstract
Histone deacetylase (HDAC) catalytic activity is regulated by formation of co-regulator complexes and post-translational modification. Whether these mechanisms are transformed in cancer and how this affects the binding and selectivity of HDAC inhibitors (HDACis) is unclear. In this study, we developed a method that identified a 3- to 16-fold increase in HDACi selectivity for HDAC3 in triple-negative breast cancer (TNBC) cells in comparison with luminal subtypes that was not predicted by current practice measurements with recombinant proteins. We found this increase was caused by c-Jun N-terminal kinase (JNK) phosphorylation of HDAC3, was independent of HDAC3 complex composition or subcellular localization, and was associated with a 5-fold increase in HDAC3 enzymatic activity. This study points to HDAC3 and the JNK axes as targets in TNBC, highlights how HDAC phosphorylation affects HDACi binding and selectivity, and outlines a method to identify changes in individual HDAC isoforms catalytic activity, applicable to any disease state.
Collapse
Affiliation(s)
- Thomas W Hanigan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Shaimaa M Aboukhatwa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt 31527
| | - Taha Y Taha
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
139
|
Vanegas Sáenz JR, Tenkumo T, Kamano Y, Egusa H, Sasaki K. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles. PLoS One 2017; 12:e0188347. [PMID: 29145481 PMCID: PMC5690608 DOI: 10.1371/journal.pone.0188347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.
Collapse
Affiliation(s)
- Juan Ramón Vanegas Sáenz
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- * E-mail: ,
| | - Taichi Tenkumo
- Laboratory for Redox Regulation, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Yuya Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
140
|
Zhang H, Gao J, Wang M, Yu X, Lv X, Deng H, Fan X, Chen K. Effects of scalp electroacupuncture on the PI3K/Akt signalling pathway and apoptosis of hippocampal neurons in a rat model of cerebral palsy. Acupunct Med 2017; 36:96-102. [PMID: 29102966 DOI: 10.1136/acupmed-2016-011335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/14/2017] [Accepted: 08/13/2017] [Indexed: 11/03/2022]
Abstract
Background Substantial evidence from clinical reports has established that most cerebral palsy (CP) patients benefit from a comprehensive rehabilitation exercise training programme. Such advances are enhanced when scalp electroacupuncture (EA), applied at a location corresponding to the projection of the motor area, is combined with rehabilitation exercise training. However, little information exists regarding the mechanistic basis for these effects. Objective To examine whether EA stimulation within the scalp projection location of the motor area can inhibit apoptosis of hippocampal neurons by regulating the PI3k/Akt signalling pathway in a rat model of CP. Methods Fifty male Sprague-Dawley rats underwent surgical modelling of CP. Five were used to confirm successful establishment of the model and the remaining 45 rats were randomly divided into one of three groups that remained untreated (CP group, n=15) or received EA treatment alone (CP+EA group, n=15) or EA in combination with a PI3K/Akt inhibitor (CP+EA+LY294002 group, n=15)). An otherwise healthy negative control group of rats undergoing sham surgery was also included (Control group, n=15). In the CP+EA and CP+EA+LY294002 groups, EA was applied to the scalp surface at alocation corresponding to the projection of the motor area. Basso, Beattie and Bresnahan (BBB) locomotor scores, hippocampal protein expression of Akt and p-Akt (by Western blot analysis) and neuronal apoptosis in hippocampal tissue (by histopathology) were assessed at 7, 14 and 21 days post-CP induction. Results CP rats receiving scalp EA treatment demonstrated improved behavioural scores, less hippocampal neuronal apoptosis and higher expression levels of Akt and p-Akt (p<0.05) at all time points studied compared with untreated CP rats. There were no significant differences observed between CP+EA+LY294002 and untreated CP model groups. Conclusions The effects of scalp EA on the PI3K/ Akt signalling pathway may represent one of the mechanisms involved in the inhibition of hippocampal neuronal apoptosis and improvement of deficits associated with CP in a rat model.
Collapse
Affiliation(s)
- Hanhong Zhang
- The Fourth Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Gao
- Huai'an Maternity and Child Care Hospital, Huan'an, Jiangsu, China
| | - Mengmeng Wang
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuefeng Yu
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuhua Lv
- Life Science and Bioengineering of Beijing Agricultural University, Beijing, China
| | - Huan Deng
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiangwei Fan
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaiyun Chen
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
141
|
Naufer A, Hipolito VEB, Ganesan S, Prashar A, Zaremberg V, Botelho RJ, Terebiznik MR. pH of endophagosomes controls association of their membranes with Vps34 and PtdIns(3)P levels. J Cell Biol 2017; 217:329-346. [PMID: 29089378 PMCID: PMC5748975 DOI: 10.1083/jcb.201702179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/03/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Specific changes in phospholipid content are a hallmark of the membranes of maturing endosomes and phagosomes, but is it unclear how this is controlled. Naufer et al. now show that acidification of the lumen of endosomes and phagosomes triggers dissociation of the Vps34 lipid kinase from these organelles, which terminates PtdIns(3)P synthesis and signaling. Phagocytosis of filamentous bacteria occurs through tubular phagocytic cups (tPCs) and takes many minutes to engulf these filaments into phagosomes. Contravening the canonical phagocytic pathway, tPCs mature by fusing with endosomes. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the elongating tPCs. Surprisingly, the regulatory early endosomal lipid phosphatidylinositol-3-phosphate (PtdIns(3)P) persists on tPCs as long as their luminal pH remains neutral. Interestingly, by manipulating cellular pH, we determined that PtdIns(3)P behaves similarly in canonical phagosomes as well as endosomes. We found that this is the product of a pH-based mechanism that induces the dissociation of the Vps34 class III phosphatidylinositol-3-kinase from these organelles as they acidify. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for the turnover of this lipid by PIKfyve. Given that PtdIns(3)P-dependent signaling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes.
Collapse
Affiliation(s)
- Amriya Naufer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Victoria E B Hipolito
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Akriti Prashar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Roberto J Botelho
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada .,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada .,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
142
|
Shaik AB, Rao GK, Kumar GB, Patel N, Reddy VS, Khan I, Routhu SR, Kumar CG, Veena I, Chandra Shekar K, Barkume M, Jadhav S, Juvekar A, Kode J, Pal-Bhadra M, Kamal A. Design, synthesis and biological evaluation of novel pyrazolochalcones as potential modulators of PI3K/Akt/mTOR pathway and inducers of apoptosis in breast cancer cells. Eur J Med Chem 2017; 139:305-324. [PMID: 28803046 DOI: 10.1016/j.ejmech.2017.07.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/25/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
Cancer has been established as the "Emperor of all maladies". In recent years, medicinal chemistry has focused on identifying novel anti-cancer compounds; though discovery of these compounds appears to be a herculean task. In present study, we synthesized forty pyrazolochalcone conjugates and explored their cytotoxic activity against a panel of sixty cancer cell lines. Fifteen conjugates of the series showed excellent growth inhibition (13b-e, 13h-j, 14c-d, 15 a, 15 c-d, 16b, 16d and 18f; GI50 for MCF-7: 0.4-20 μM). Conjugates 13b, 13c, 13d, 16b and 14d were also evaluated for their cytotoxic activity in human breast cancer cell line (MCF-7). The promising candidates induced cell cycle arrest, mitochondrial membrane depolarization and apoptosis in MCF-7 cells at a 2 μM concentration. Furthermore, inhibition of PI3K/Akt/mTOR pathway-regulators such as PI3K, p-PI3K, p-AKT, and mTOR were observed; as well as upregulation of p-GSK3β and tumor-suppressor protein, PTEN. Our study indicates that pyrazolochalcone conjugates could serve as potential leads in the development of tailored cancer therapeutics.
Collapse
Affiliation(s)
- Anver Basha Shaik
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Garikapati Koteswara Rao
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - G Bharath Kumar
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Nibeditha Patel
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Vangala Santhosh Reddy
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Irfan Khan
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sunitha Rani Routhu
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Immadi Veena
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Kunta Chandra Shekar
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Madan Barkume
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Shailesh Jadhav
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Aarti Juvekar
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Jyoti Kode
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
143
|
Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, Zhou J, Simar D, Lewin SR, Ostrowski M, McCune JM, Crowe SM. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett 2017; 591:3319-3332. [PMID: 28892135 PMCID: PMC5658250 DOI: 10.1002/1873-3468.12843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/04/2022]
Abstract
High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3‐kinases (PI3K) activation measured by p‐Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K‐mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)‐treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in ‘virologically suppressed’ cART‐treated HIV+ persons.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Gabriel A Duette
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Suah Saleh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Candida Pereira
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Jingling Zhou
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Matias Ostrowski
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
144
|
Thillai K, Lam H, Sarker D, Wells CM. Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget 2017; 8:14173-14191. [PMID: 27845911 PMCID: PMC5355171 DOI: 10.18632/oncotarget.13309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The development of personalised therapies has ushered in a new and exciting era of cancer treatment for a variety of solid malignancies. Yet pancreatic ductal adenocarcinoma (PDAC) has failed to benefit from this paradigm shift, remaining notoriously refractory to targeted therapies. Chemotherapy is the cornerstone of management but can offer only modest survival benefits of a few months with 5-year survival rates rarely exceeding 3%. Despite these disappointing statistics, significant strides have been made towards understanding the complex biology of pancreatic cancer, with deep genomic sequencing identifying novel genetic aberrations and key signalling pathways. The PI3K-PDK1-AKT pathway has received great attention due to its prominence in carcinogenesis. However, efforts to target several components of this network have resulted in only a handful of drugs demonstrating any survival benefit in solid tumors; despite promising pre-clinical results. p-21 activated kinase 4 (PAK4) is a gene that is recurrently amplified or overexpressed in PDAC and both PAK4 and related family member PAK1, have been linked to aberrant RAS activity, a common feature in pancreatic cancer. As regulators of PI3K, PAKs have been highlighted as a potential prognostic marker and therapeutic target. In this review, we discuss the biology of pancreatic cancer and the close interaction between PAKs and the PI3K pathway. We also suggest proposals for future research that may see the development of effective targeted therapies that could finally improve outcomes for this disease.
Collapse
Affiliation(s)
- Kiruthikah Thillai
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Hoyin Lam
- Division of Cancer Studies, King's College London, London, United Kingdom
| | - Debashis Sarker
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
145
|
Tajima S, Tabata Y. Preparation of epithelial cell aggregates incorporating matrigel microspheres to enhance proliferation and differentiation of epithelial cells. Regen Ther 2017; 7:34-44. [PMID: 30271850 PMCID: PMC6134895 DOI: 10.1016/j.reth.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/10/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022] Open
Abstract
The objective of this study is to investigate the effect of matrigel microspheres (MM), gelatin hydrogel microspheres (GM), and matrigel-coated GM on the proliferated and biological functions of epithelial cells in cell aggregates incorporating the microspheres. The MM were prepared by a coacelvation method. When mammary epithelial EpH4 cells were cultured with the MM, GM, and matrigel-coated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to suppress the cell adhesion, EpH4 cell aggregates with each microspheres homogeneously incorporated were formed. Higher EpH4 cells proliferation was observed for cell aggregates incorporating MM, GM, and matrigel-coated GM compared with the conventional 3-dimensional (3D) culture method. When examined to evaluate the epithelial differentiation of EpH4 cells, the β-casein expression was significantly higher for the cell aggregates incorporating MM than that of aggregates incorporating GM and matrigel-coated GM or the conventional 3D culture method. It is concluded that the proliferation and differentiation of mammary epithelial EpH4 cells were promoted by the incorporation of MM.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
146
|
Inducing metabolic suppression in severe hemorrhagic shock: Pilot study results from the Biochronicity Project. J Trauma Acute Care Surg 2017; 81:1003-1011. [PMID: 27537510 DOI: 10.1097/ta.0000000000001235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Suspended animation-like states have been achieved in small animal models, but not in larger species. Inducing metabolic suppression and temporary oxygen independence could enhance survivability of massive injury. Based on prior analyses of key pathways, we hypothesized that phosphoinositol-3-kinase inhibition would produce metabolic suppression without worsening organ injury or systemic physiology. METHODS Twenty swine were studied using LY294002 (LY), a nonselective phosphoinositol-3-kinase inhibitor. Animals were assigned to trauma only (TO, n = 3); dimethyl sulfoxide only (DMSO, n = 4), LY drug only (LYO, n = 3), and drug + trauma (LY + T, n = 10) groups. Both trauma groups underwent laparotomy, 35% hemorrhage, severe ischemia/reperfusion injury, and protocolized resuscitation. Laboratory, physiologic, cytokine, and metabolic cart data were obtained. Histology of key end organs was also compared. RESULTS Baseline values were similar among the groups. Compared with the TO group, the LYO group had reversible decreases in heart rate, mean arterial pressure, cardiac output, oxygen consumption, and carbon dioxide production. Compared with TO, LY + T showed sustained decreases in heart rate (113 vs. 76, p = 0.03), mean arterial pressure (40 vs. 31 mm Hg, p = 0.02), and cardiac output (3.8 vs. 1.9 L/min, p = 0.05) at 6 hours. Metabolic parameters showed profound suppression in the LY + T group. Oxygen consumption in LY + T was lower than both TO (119 vs. 229 mL/min, p = 0.012) and LYO (119 vs. 225 mL/min, p = 0.014) at 6 hours. Similarly, carbon dioxide production was decreased at 6 hours in LY + T when compared with TO (114 vs. 191 mL/min, p = 0.043) and LYO (114 vs. 195 mL/min, p = 0.034) groups. There was no worsening of acidosis (lactate 6.4 vs. 8.3 mmol/L, p = 0.4) or other endpoints. Interleukin 6 (IL-6) showed a significant increase in LY + T when compared with TO at 6 hours (60.5 vs. 2.47, p = 0.043). Tumor necrosis factor α and IL-1β were decreased, and IL-10 increased in TO and LY + T at 6 hours. Markers of liver and kidney injury were no different between TO and LY + T groups at 6 hours. CONCLUSIONS Phosphoinositol-3-kinase inhibition produced metabolic suppression in healthy and injured swine without increasing end-organ injury or systemic physiologic markers and demonstrated prolonged efficacy in injured animals. Further study may lead to targeted therapies to prolong tolerance to hemorrhage and extend the "golden hour" for injured patients.
Collapse
|
147
|
Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim JH, Shin SS, Cho JY. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2017; 42:496-503. [PMID: 30337810 PMCID: PMC6187086 DOI: 10.1016/j.jgr.2017.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background Korean ginseng (Panax ginseng) plays an anti-inflammatory role in a variety of inflammatory diseases such as gastritis, hepatitis, and colitis. However, inflammation-regulatory activity of the calyx of the P. ginseng berry has not been thoroughly evaluated. To understand whether the calyx portion of the P. ginseng berry is able to ameliorate inflammatory processes, an ethanolic extract of P. ginseng berry calyx (Pg-C-EE) was prepared, and lipopolysaccharide-activated macrophages and HEK293 cells transfected with inflammation-regulatory proteins were used to test the anti-inflammatory action of Pg-C-EE. Methods The ginsenoside contents of Pg-C-EE were analyzed by HPLC. Suppressive activity of Pg-C-EE on NO production, inflammatory gene expression, transcriptional activation, and inflammation signaling events were examined using the Griess assay, reverse transcription-polymerization chain reaction, luciferase activity reporter gene assay, and immunoblotting analysis. Results Pg-C-EE reduced NO production and diminished mRNA expression of inflammatory genes such as cyclooxygenase-2, inducible NO synthase, and tumor necrosis factor-α in a dose-dependent manner. This extract suppressed luciferase activity induced only by nuclear factor-κB. Interestingly, immunoblotting analysis results demonstrated that Pg-C-EE reduced the activities of protein kinase B (AKT)1 and AKT2. Conclusion These results suggest that Pg-C-EE may have nuclear-factor-κB-targeted anti-inflammatory properties through suppression of AKT. The calyx of the P. ginseng berry is an underused part of the ginseng plant, and development of calyx-derived extracts may be useful for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Sang Yun Han
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Juewon Kim
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Eunji Kim
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Hwan Kim
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Dae Bang Seo
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Song Seok Shin
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
148
|
Reis J, Gaspar A, Milhazes N, Borges F. Chromone as a Privileged Scaffold in Drug Discovery: Recent Advances. J Med Chem 2017; 60:7941-7957. [PMID: 28537720 DOI: 10.1021/acs.jmedchem.6b01720] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of privileged structures in drug discovery has proven to be an effective strategy, allowing the generation of innovative hits/leads and successful optimization processes. Chromone is recognized as a privileged structure and a useful template for the design of novel compounds with potential pharmacological interest, particularly in the field of neurodegenerative, inflammatory, and infectious diseases as well as diabetes and cancer. This perspective provides the reader with an update of an earlier article entitled "Chromone: A Valid Scaffold in Medicinal Chemistry" ( Chem. Rev. 2014 , 114 , 4960 - 4992 ) and is mainly focused on chromones of biological interest, including those isolated from natural sources. Moreover, as drug repurposing is becoming an attractive drug discovery approach, recent repurposing studies of chromone-based drugs are also reported.
Collapse
Affiliation(s)
- Joana Reis
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Alexandra Gaspar
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Nuno Milhazes
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| |
Collapse
|
149
|
Inhibition of PI3K suppresses propagation of drug-tolerant cancer cell subpopulations enriched by 5-fluorouracil. Sci Rep 2017; 7:2262. [PMID: 28536445 PMCID: PMC5442158 DOI: 10.1038/s41598-017-02548-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Drug-tolerant cancer cell subpopulations are responsible for relapse after chemotherapy. By continuously exposing the gastric cancer cell line MKN45 to 5-FU for >100 passages, we established a 5-fluorouracil (5-FU)-tolerant line, MKN45/5FU. Orthotopic xenografts of MKN45/5FU cells in the stomach of nude mice revealed that these cells had a high potential to metastasize to sites such as the liver. Levels of phosphorylated phosphatidylinositide 3-kinase (PI3K) increased both in 5-FU-tolerant subpopulations according to the 5-FU dose, and in gastric submucosal orthotopic xenografts of MKN45/5FU cells. Sequential administration of 5-FU and a PI3K inhibitor, GDC-0941, targeted the downstream ribosomal S6 kinase phosphorylation to significantly suppress 5-FU-tolerant subpopulations and tumor propagation of orthotopic MKN45/5FU xenografts. These results suggest that administration of 5-FU followed by GDC-0941 may suppress disease relapse after 5-FU-based gastric cancer chemotherapy.
Collapse
|
150
|
Phosphoinositide 3-Kinase Is Involved in Mediating the Anti-inflammation Effects of Vasopressin. Inflammation 2017; 40:435-441. [PMID: 27943011 DOI: 10.1007/s10753-016-0489-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vasopressin possesses potent anti-inflammatory capacity. Phosphoinositide 3-kinase (PI3K) and its downstream activator Akt contribute to endogenous anti-inflammation capacity. We sought to elucidate whether PI3K is involved in mediating the anti-inflammation effects of vasopressin. Macrophages (RAW264.7 cells) were randomized to receive endotoxin, endotoxin plus vasopressin, or endotoxin plus vasopressin plus the nonselective PI3K inhibitor (LY294002) or the selective isoform inhibitor of PI3Kα (PIK-75), PI3Kβ (TGX-221), PI3Kδ (IC-87114), or PI3Kγ (AS-252424). Compared to macrophages treated with endotoxin, the concentrations of cytokines (tumor necrosis factor-α, interleukin-6) and chemokine (macrophage inflammatory protein-2) in macrophages treated with endotoxin plus vasopressin were significantly lower (all P < 0.05). The concentrations of phosphorylated nuclear factor-κB p65 (p-NF-κB p65) in nuclear extracts and phosphorylated inhibitor-κBα (p-I-κBα) in cytosolic extracts as well as NF-κB-DNA binding activity were also lower (all P < 0.05). Of note, except for macrophages treated with endotoxin plus vasopressin plus PIK-75, the concentrations of cytokines, chemokine, p-NF-κB p65, and p-I-κBα as well as NF-κB-DNA binding activity in macrophages treated with endotoxin plus vasopressin plus LY294002, TGX-221, IC-87114, or AS-252424 were significantly higher than those in macrophages treated with endotoxin plus vasopressin (all P < 0.05). In contrast, the phosphorylated Akt concentration in macrophages treated with endotoxin plus vasopressin was significantly higher than that in macrophages treated with endotoxin or in macrophages treated with endotoxin plus vasopressin plus LY294002, TGX-221, IC-87114, or AS-252424, but not PIK-75. These data confirmed that PI3K, especially the isoforms of PI3Kβ, PI3Kδ, and PI3Kγ, is involved in mediating the anti-inflammatory effects of vasopressin.
Collapse
|