101
|
Hubeek I, Stam RW, Peters GJ, Broekhuizen R, Meijerink JPP, van Wering ER, Gibson BES, Creutzig U, Zwaan CM, Cloos J, Kuik DJ, Pieters R, Kaspers GJL. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer 2006; 93:1388-94. [PMID: 16333246 PMCID: PMC2361532 DOI: 10.1038/sj.bjc.6602881] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cytarabine (ara-C) is the most effective agent for the treatment of acute myeloid leukaemia (AML). Aberrant expression of enzymes involved in the transport/metabolism of ara-C could explain drug resistance. We determined mRNA expression of these factors using quantitative-real-time-PCR in leukemic blasts from children diagnosed with de novo AML. Expression of the inactivating enzyme pyrimidine nucleotidase-I (PN-I) was 1.8-fold lower in FAB-M5 as compared to FAB-M1/2 (P=0.007). In vitro sensitivity to deoxynucleoside analogues was determined using the MTT-assay. Human equilibrative nucleoside transporter-1 (hENT1) mRNA expression and ara-C sensitivity were significantly correlated (rp=−0.46; P=0.001), with three-fold lower hENT1 mRNA levels in resistant patients (P=0.003). hENT1 mRNA expression also seemed to correlate inversely with the LC50 values of cladribine (rp=−0.30; P=0.04), decitabine (rp=−0.29; P=0.04) and gemcitabine (rp=−0.33; P=0.02). Deoxycytidine kinase (dCK) and cytidine deaminase (CDA) mRNA expression seemed to correlate with in vitro sensitivity to gemcitabine (rp=−0.31; P=0.03) and decitabine (rp=0.33; P=0.03), respectively. The dCK/PN-I ratio correlated inversely with LC50 values for gemcitabine (rp=−0.45, P=0.001) and the dCK/CDA ratio seemed to correlate with LC50 values for decitabine (rp=−0.29; 0.04). In conclusion, decreased expression of hENT1, which transports ara-C across the cell membrane, appears to be a major factor in ara-C resistance in childhood AML.
Collapse
Affiliation(s)
- I Hubeek
- Department of Pediatric Hematology/Oncology, VU University Medical Center, De Boelelaan 1117, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Hunsucker SA, Mitchell BS, Spychala J. The 5'-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 2005; 107:1-30. [PMID: 15963349 DOI: 10.1016/j.pharmthera.2005.01.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2005] [Indexed: 11/19/2022]
Abstract
The 5'-nucleotidases are a family of enzymes that catalyze the dephosphorylation of nucleoside monophosphates and regulate cellular nucleotide and nucleoside levels. While the nucleoside kinases responsible for the initial phosphorylation of salvaged nucleosides have been well studied, many of the catabolic nucleotidases have only recently been cloned and characterized. Aside from maintaining balanced ribo- and deoxyribonucleotide pools, substrate cycles that are formed with kinase and nucleotidase activities are also likely to regulate the activation of nucleoside analogues, a class of anticancer and antiviral agents that rely on the nucleoside kinases for phosphorylation to their active forms. Both clinical and in vitro studies suggest that an increase in nucleotidase activity can inhibit nucleoside analogue activation and result in drug resistance. The physiological role of the 5'-nucleotidases will be covered in this review, as will the evidence that these enzymes can mediate resistance to nucleoside analogues.
Collapse
Affiliation(s)
- Sally Anne Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
103
|
Zaza G, Cheok M, Yang W, Panetta JC, Pui CH, Relling MV, Evans WE. Gene expression and thioguanine nucleotide disposition in acute lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood 2005; 106:1778-85. [PMID: 15905191 PMCID: PMC1895216 DOI: 10.1182/blood-2005-01-0143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 04/24/2005] [Indexed: 11/20/2022] Open
Abstract
To elucidate interpatient variability in thioguanine nucleotide (TGN) concentrations in acute lymphoblastic leukemia (ALL) cells, we determined the TGN concentrations in leukemic blasts from 82 children with newly diagnosed ALL after intravenous administration of mercaptopurine (MP). Patients treated with MP alone achieved higher TGN concentrations than those treated with the combination of methotrexate plus mercaptopurine (MTX + MP). Analysis of the expression of approximately 9600 genes in ALL cells obtained at diagnosis identified 60 gene probes significantly associated with TGN accumulation in patients treated with MP alone and 75 gene probes in patients treated with MTX + MP, with no overlap between the 2 sets of genes. Genes significantly associated with intracellular TGN accumulation after MP alone included those encoding MP metabolic enzymes and transporters (eg, SLC29A1). Inhibition of SLC29A1 by nitrobenzylmercaptopurine ribonucleoside (NBMPR) caused a 33% to 45% reduction of TGN in ALL cells in vitro (P < .006), consistent with the gene expression findings. Genes associated with TGN concentration after combination therapy included those involved in protein and adenosine triphosphate (ATP)-biosynthesis. Together, these in vivo and in vitro data provide new insight into the genomic basis of interpatient differences in intracellular TGN accumulation and reveal significant differences between treatment with MP alone and treatment with MP and MTX.
Collapse
Affiliation(s)
- Gianluigi Zaza
- St. Jude Children's Research Hospital, 332 N Lauderdale St, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Fernandez-Calotti P, Jordheim LP, Giordano M, Dumontet C, Galmarini CM. Substrate cycles and drug resistance to 1-beta-D-arabinofuranosylcytosine (araC). Leuk Lymphoma 2005; 46:335-46. [PMID: 15621823 DOI: 10.1080/10428190400015683] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acute myelogenous leukemia (AML) is the most common form of acute leukemia in adults. After diagnosis, patients with AML are mainly treated with standard induction chemotherapy combining cytarabine (araC) and anthracyclines. The majority of them achieve complete remission (CR) (65-80%). However, prospects for long-term survival are poor for the majority of patients. Resistance to chemotherapy therefore remains a major obstacle in the effective treatment of patients with AML. In this review, we highlight the current knowledge of substrate cycles involved in normal deoxynucleoside triphosphate (dNTPs) metabolism and their possible role in drug resistance to araC.
Collapse
Affiliation(s)
- Paula Fernandez-Calotti
- Laboratorio de Immunología Oncológica-IIHEMA, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
105
|
A sensitive new method for clinically monitoring cytarabine concentrations at the DNA level in leukemic cells. Biochem Pharmacol 2005; 69:1795-803. [PMID: 15935150 DOI: 10.1016/j.bcp.2005.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 03/16/2005] [Indexed: 11/22/2022]
Abstract
Cytarabine (ara-C), a major antileukemic agent, is phosphorylated in the cell to cytarabine triphosphate (ara-CTP), which is then partly incorporated into DNA. The drug incorporation into DNA poisons the extending primer against further incorporation of deoxyribonucleotides including dCTP, ultimately inhibiting DNA synthesis. While intracellular ara-CTP concentration has been found to predict clinical outcome, cytotoxicity in vitro is determined primarily by the extent of drug incorporation into DNA. However, clinically appropriate quantitation methods for ara-C at the DNA level have not been available. We developed a sensitive new method for monitoring ara-C incorporated into DNA in vivo. After DNA from leukemic cells was fractionated using the Schmidt-Thannhauser-Schneider method, it was degraded to constituent nucleosides to release ara-C, which was isolated from the nucleosides using HPLC and then measured by radioimmunoassay. Recovery for DNA fractionation, ara-C release by degradation, and ara-C isolation were 92.0+/-6.4%, 90.7+/-9.4%, and 98.5+/-1.4%, respectively. The method was found to determine ara-C incorporation into DNA of ara-C-treated HL 60 cells in vitro with minimal interassay variation. The values determined were compatible with those determined by scintillation counting in parallel experiments using tritiated ara-C. Our method could be used to monitor DNA-incorporated ara-C concentrations during ara-C therapy, together with plasma ara-C and intracellular ara-CTP concentrations. ara-C incorporation into DNA appeared to be associated with intracellular retention of ara-CTP or persistence of plasma ara-C. Thus, the present method is sensitive, accurate, precise, and may permit therapeutic drug monitoring at the DNA level for better individualization of antileukemic regimens.
Collapse
|
106
|
Chow L, Lai R, Dabbagh L, Belch A, Young JD, Cass CE, Mackey JR. Analysis of human equilibrative nucleoside transporter 1 (hENT1) protein in non-Hodgkin's lymphoma by immunohistochemistry. Mod Pathol 2005; 18:558-64. [PMID: 15529184 DOI: 10.1038/modpathol.3800323] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human equilibrative nucleoside transporter 1 (hENT1) is a member of the equilibrative nucleoside transporter family that mediates cellular entry of gemcitabine, cytarabine, and fludarabine. Deficiency in hENT1 confers resistance to toxicity of these drugs in a variety of model systems. Since some nucleoside analogs have a role in treating patients with non-Hodgkin's lymphoma (NHL), this study was undertaken to assess hENT1 abundance in NHL. A total of 115 cases of NHL of various subtypes and 15 reactive lymph nodes were evaluated for the presence of hENT1 protein using immunohistochemistry applied to frozen tissues. Samples were considered positive when >or=50% of neoplastic cells showed immunostaining. In reactive lymph nodes, hENT1 was confined to the germinal centers, whereas mantle zone B-cells and interfollicular T-cells were negative. In NHL, a relatively high frequency of hENT1 positivity was found in Burkitt lymphoma/leukemia (63%), diffuse large B-cell lymphoma (DLCL; 45%), and follicular lymphoma (40%). In DLCL, 26% of cases were positive for CD10, and CD10-positive DLCL cases were more likely to be hENT1 positive than CD10-negative cases (P=0.025). A lower frequency of hENT1 positivity was found in mantle cell lymphoma (13%) and peripheral T-cell lymphomas (37%). All marginal zone lymphomas (n=5), chronic lymphocytic leukemia small lymphocytic lymphomas (n=10), plasmacytoma (n=3), acute lymphoblastic lymphoma/leukemia, and anaplastic large-cell lymphomas (n=5) were negative. In conclusion, hENT1 was most frequently found in benign and malignant follicular center cells. Prospective studies to assess the value of hENT1 immunostaining in predicting resistance to nucleoside chemotherapy for NHL are warranted.
Collapse
Affiliation(s)
- Laura Chow
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
107
|
Spratlin J, Sangha R, Glubrecht D, Dabbagh L, Young JD, Dumontet C, Cass C, Lai R, Mackey JR. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 2005; 10:6956-61. [PMID: 15501974 DOI: 10.1158/1078-0432.ccr-04-0224] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Gemcitabine monotherapy is the standard palliative chemotherapy for pancreatic adenocarcinoma. Gemcitabine requires plasma membrane nucleoside transporter proteins to efficiently enter cells and exert it cytotoxicity. In vitro studies have demonstrated that deficiency of human equilibrative nucleoside transporter 1 (hENT1), the most widely abundant and distributed nucleoside transporter in human cells, confers resistance to gemcitabine toxicity, but the distribution and abundance of nucleoside transporters in normal and malignant pancreatic tissue is unknown. EXPERIMENTAL DESIGN We studied tumor blocks from normal pancreas and 21 Alberta patients with gemcitabine-treated pancreatic cancer. Immunohistochemistry on the formalin-fixed, paraffin-embedded tissues was performed with specific hENT1 and human Concentrative Nucleoside Transporter 3 monoclonal antibodies and scored by a pathologist blinded to clinical outcomes. RESULTS hENT1 was detected in normal Langerhan cells and lymphocytes but not in normal glandular elements. Patients in whom all adenocarcinoma cells had detectable hENT1 had significantly longer median survivals from gemcitabine initiation than those for whom hENT1 was absent in a proportion (10 to 100%) of adenocarcinoma cells (median survival, 13 versus 4 months, P = 0.01). Immunohistochemistry for human Concentrative Nucleoside Transporter 3 revealed moderate to high-intensity staining in all adenocarcinoma tissue samples. CONCLUSIONS Patients with pancreatic adenocarcinoma with uniformly detectable hENT1 immunostaining have a significantly longer survival after gemcitabine chemotherapy than tumors without detectable hENT1. Immunohistochemistry for hENT1 shows promise as a molecular predictive assay to appropriately select patients for palliative gemcitabine chemotherapy but requires formal validation in prospective, randomized trials.
Collapse
Affiliation(s)
- Jennifer Spratlin
- University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Fukuda K, Sakakura C, Miyagawa K, Kuriu Y, Kin S, Nakase Y, Hagiwara A, Mitsufuji S, Okazaki Y, Hayashizaki Y, Yamagishi H. Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. Br J Cancer 2004; 91:1543-50. [PMID: 15365572 PMCID: PMC2409931 DOI: 10.1038/sj.bjc.6602187] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Radiation therapy is a powerful tool for the treatment of oesophageal cancer. We established radioresistant cell lines by applying fractionated irradiation in order to identify differentially expressed genes between parent and radioresistant cells. Six oesophageal cancer cell lines (TE-2, TE-5, TE-9, TE-13, KYSE170, and KYSE180) were treated with continuous 2 Gy fractionated irradiation (total dose 60 Gy). We compared expression profiles of each parent and radioresistant lines on a cDNA microarray consisting of 21168 genes. In the fractionated irradiation trial, four radioresistant sublines (TE-2R, TE-9R, TE-13R, KYSE170R) were established successfully, and we identified 19 upregulated and 28 downregulated genes common to radioresistant sublines. Upregulated genes were associated with apotosis and inflammatory response (BIRC2 and COX-2), DNA metabolism (CD73), and cell growth (PLAU). Downregulated genes were associated with apoptosis (CASP6), cell adhesion (CDH1 and CDH3), transcription (MLL3), and cell cycle (CDK6). Some of these genes were known to be associated with radiation response, such as COX-2, but others were novel. Reverse transcription–polymerase chain reaction confirmed that genes selected by cDNA microarray were overexpressed in clinical specimens of radioresistant cases. Global gene analysis of radioresistant sublines may provide new insight into mechanisms of radioresistance and effective radiation therapy.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Dose Fractionation, Radiation
- Dose-Response Relationship, Radiation
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/radiotherapy
- Gamma Rays
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Radiation Tolerance
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K Fukuda
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Molina-Arcas M, Marcé S, Villamor N, Huber-Ruano I, Casado FJ, Bellosillo B, Montserrat E, Gil J, Colomer D, Pastor-Anglada M. Equilibrative nucleoside transporter-2 (hENT2) protein expression correlates with ex vivo sensitivity to fludarabine in chronic lymphocytic leukemia (CLL) cells. Leukemia 2004; 19:64-8. [PMID: 15510196 DOI: 10.1038/sj.leu.2403582] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fludarabine is considered the treatment of choice for most patients with chronic lymphocytic leukemia (CLL). We have analyzed the role of plasma membrane transporters in nucleoside-derived drug bioavailability and action in CLL cells. Among the known plasma membrane transporters, we have previously observed a significant correlation between fludarabine uptake via ENT carriers and ex vivo sensitivity of CLL cells to fludarabine, although mRNA amounts of the equilibrative nucleoside transporters hENT1 and hENT2 do not show any predictive response to treatment. In this study, using polyclonal monospecific antibodies we have observed a significant correlation between the expression of hENT2 by Western blot and fludarabine uptake via hENT carriers and also with ex vivo sensitivity of CLL cells to fludarabine. These results suggest that the equilibrative nucleoside transporter hENT2 plays a role in fludarabine responsiveness in CLL patients.
Collapse
Affiliation(s)
- M Molina-Arcas
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Although the cure of acute leukaemia has improved significantly, many patients will still relapse and die. The unraveling of the molecular pathogenesis of acute leukaemia has lead to the identification of new prognostic factors and improved the detection of minimal residual disease. The treatment of relapsed acute leukaemia with chemotherapy remains unsatisfactory. Allogeneic or autologous blood and marrow transplant (BMT) can cure a subset of patients with relapsed acute leukaemia. The identification of the graft-vs-leukaemia (GVL) effect has lead to the development of donor lymphocyte infusions to re-induce remission in patients with relapsed leukaemia after allogeneic BMT and also stimulated the development of the less toxic nonmyeloablative allogeneic transplant approach. The identification of molecular targets of therapy and the development of monoclonal antibody-directed therapy has generated optimism. It is possible that combinations of chemotherapy, molecularly directed therapy, and immunotherapy may be combined to cure an increasing proportion of patients with acute leukaemia.
Collapse
Affiliation(s)
- Mark R Litzow
- Division of Hematology, Mayo Clinic and Mayo Medical School, 200 First Streeet, SW, Rochester, MN 55905, USA.
| |
Collapse
|
111
|
Bullinger L, Döhner K, Bair E, Fröhling S, Schlenk RF, Tibshirani R, Döhner H, Pollack JR. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350:1605-16. [PMID: 15084693 DOI: 10.1056/nejmoa031046] [Citation(s) in RCA: 688] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND In patients with acute myeloid leukemia (AML), the presence or absence of recurrent cytogenetic aberrations is used to identify the appropriate therapy. However, the current classification system does not fully reflect the molecular heterogeneity of the disease, and treatment stratification is difficult, especially for patients with intermediate-risk AML with a normal karyotype. METHODS We used complementary-DNA microarrays to determine the levels of gene expression in peripheral-blood samples or bone marrow samples from 116 adults with AML (including 45 with a normal karyotype). We used unsupervised hierarchical clustering analysis to identify molecular subgroups with distinct gene-expression signatures. Using a training set of samples from 59 patients, we applied a novel supervised learning algorithm to devise a gene-expression-based clinical-outcome predictor, which we then tested using an independent validation group comprising the 57 remaining patients. RESULTS Unsupervised analysis identified new molecular subtypes of AML, including two prognostically relevant subgroups in AML with a normal karyotype. Using the supervised learning algorithm, we constructed an optimal 133-gene clinical-outcome predictor, which accurately predicted overall survival among patients in the independent validation group (P=0.006), including the subgroup of patients with AML with a normal karyotype (P=0.046). In multivariate analysis, the gene-expression predictor was a strong independent prognostic factor (odds ratio, 8.8; 95 percent confidence interval, 2.6 to 29.3; P<0.001). CONCLUSIONS The use of gene-expression profiling improves the molecular classification of adult AML.
Collapse
Affiliation(s)
- Lars Bullinger
- Department of Pathology, Stanford University, Stanford, Calif, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Gamberale R, Galmarini CM, Fernández-Calotti P, Jordheim L, Sánchez-Avalos J, Dumontet C, Geffner J, Giordano M. In vitro susceptibility of CD4+ and CD8+ T cell subsets to fludarabine. Biochem Pharmacol 2004; 66:2185-91. [PMID: 14609743 DOI: 10.1016/j.bcp.2003.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Administration of the adenosine analogue fludarabine (FLU) in vivo induces a profound and prolonged T lymphopenia which mainly affects CD4(+) cells. To better understand the mechanistic basis underlying this preferential depletion, we analyzed the in vitro susceptibility of T cell subsets to FLU-induced apoptosis. Contrasting with observations in vivo, our results showed that treatment of peripheral blood mononuclear cells with FLU induced a higher level of apoptosis in CD8(+) than in CD4(+) T lymphocytes. This increased sensitivity of CD8(+) T cells to FLU was observed in samples from both, healthy donors and B cell chronic lymphocytic leukemia patients, and resulted in higher CD4:CD8 ratios in FLU-treated than in untreated cultures (P<0.01). Expression of factors involved in FLU transport and metabolism was then evaluated by quantitative real time-PCR in normal T cell subsets. It was found that mRNA levels of human equilibrative nucleoside transporter-1 nucleoside transporter were higher whereas deoxycytidine kinase and IMP/GMP selective 5'-nucleotidase mRNA levels were lower in CD4(+) cells. However the dCK/cN-II ratio was 2-fold greater in CD8(+) than in CD4(+) T lymphocytes, which could account for the higher apoptosis levels observed in the CD8(+) subset. These results favor the view that decreased CD4:CD8 ratios in FLU-treated patients should be attributed to differences in cell recovery and/or homing between T cell subsets.
Collapse
Affiliation(s)
- Romina Gamberale
- Departamento de Inmunología Oncológica, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Affiliation(s)
- R Pieters
- University Medical Center Rotterdam, Sophia Childrens Hospital, Pediatric Oncology/Hematology, Rotterdam, The Netherlands.
| | | |
Collapse
|
114
|
Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB, Cass CE. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 2003; 22:7524-36. [PMID: 14576856 DOI: 10.1038/sj.onc.1206952] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The clinical efficacy of anticancer nucleoside drugs depends on a complex interplay of transporters mediating entry of nucleoside drugs into cells, efflux mechanisms that remove drugs from intracellular compartments and cellular metabolism to active metabolites. Nucleoside transporters (NTs) are important determinants for salvage of preformed nucleosides and mediated uptake of antimetabolite nucleoside drugs into target cells. The focus of this review is the two families of human nucleoside transporters (hENTs, hCNTs) and their role in transport of cytotoxic chemotherapeutic nucleoside drugs. Resistance to anticancer nucleoside drugs is a major clinical problem in which NTs have been implicated. Single nucleotide polymorphisms (SNPs) in drug transporters may contribute to interindividual variation in response to nucleoside drugs. In this review, we give an overview of the functional and molecular characteristics of human NTs and their potential role in resistance to nucleoside drugs and discuss the potential use of genetic polymorphism analyses for NTs to address drug resistance.
Collapse
Affiliation(s)
- Vijaya L Damaraju
- Membrane Protein Research Group, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | | | | | |
Collapse
|
115
|
Galmarini CM, Clarke ML, Santos CL, Jordheim L, Perigaud C, Gosselin G, Cros E, Mackey JR, Dumontet C. Sensitization of ara-C-resistant lymphoma cells by a pronucleotide analogue. Int J Cancer 2003; 107:149-54. [PMID: 12925971 DOI: 10.1002/ijc.11339] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adequate intracellular concentrations of ara-CMP, the monophosphorylated derivative of ara-C, are essential for its cytotoxicity. The critical step for ara-CMP formation is intracellular phosphorylation of ara-C by deoxycytidine kinase (dCK). A common nucleoside resistance mechanism is mutation affecting the expression or the specificity of dCK. We describe the ability of a tert-butyl S-acyl-thioethyl (SATE) derivative of ara-CMP (UA911) to circumvent ara-C resistance in a dCK-deficient human follicular lymphoma cell line (RL-G). The RL-G cell line was produced by continuous exposure to gemcitabine and displayed low dCK mRNA and protein expression that conferred resistance both to ara-C (2,250-fold) and to gemcitabine (2,092-fold). RL-G cells were able to take up the UA911 pronucleotide by diffusion and metabolize it to the corresponding ara-CMP and ara-CTP nucleotides, exhibiting a 199-fold reduction in resistance ratios, and a similar cell cycle arrest to the parental RL-7 cells. Exposures to 10, 50 or 100 microM concentrations of UA911 produced 160 +/- 7, 269 +/- 8 and 318 +/- 62 pmol ara-CTP/mg protein in RL-7 cells, and 100 +/- 12, 168 +/- 10 and 217 +/- 39 pmol ara-CTP/mg protein in RL-G cells, respectively. Exposure of RL-G cells to underivatized, radiolabeled ara-C produced no detectable amounts of the active triphosphate metabolites. We conclude that the UA911 pronucleotide is capable of overcoming dCK-mediated resistance. This result can be attributed to the unique cellular metabolism of the SATE pronucleotides giving rise to the intracellular delivery of ara-CMP to dCK-deficient cells.
Collapse
Affiliation(s)
- Carlos María Galmarini
- INSERM 590, Laboratoire de Cytologie Analytique, Faculté de Médecine Rockefeller, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Galimberti S, Testi R, Guerrini F, Fazzi R, Petrini M. The clinical relevance of the expression of several multidrug-resistant-related genes in patients with primary acute myeloid leukemia. J Chemother 2003; 15:374-9. [PMID: 12962366 DOI: 10.1179/joc.2003.15.4.374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Multidrug resistance (MDR) is a complex phenomenon that includes the expression of many different genes regulating drug transport or metabolism, cellular repair or detoxification mechanisms. The co-expression of several genes could be at the basis of the resistant phenotype in vivo. In order to test a possible prognostic role of the expression and co-expression of several MDR-related genes (MDR1, topoisomerase IIalpha, topoisomerase IIbeta, MRP, GSTpi, LRP), 35 patients affected by acute myeloid leukemia (AML) were tested by RT-PCR assays. In our series, topoisomerase IIbeta was significantly co-expressed with MRP (p = 0.05), GSTpi (p = 0.017) and LRP (p = 0.005). GSTpi was co-expressed with LRP (p = 0.03) and MRP (p = 0.007); on the other hand, 53.8% of patients were LRP and MRP-positive (p = 0.02). The PCR-positivity did not differ according to biological/clinical characteristics of patients, including age; this latter was the only parameter conditioning the response and overall survival. Neither the expression nor the co-expression of the tested genes was significantly correlated with the response to the induction treatment and long-term outcome.
Collapse
Affiliation(s)
- S Galimberti
- Department of Oncology, Transplant and Advances in Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
117
|
Galmarini CM, Jordheim L, Dumontet C. Role of IMP-selective 5'-nucleotidase (cN-II) in hematological malignancies. Leuk Lymphoma 2003; 44:1105-11. [PMID: 12916861 DOI: 10.1080/1042819031000077142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytotoxic nucleoside analogs (NA) are important in the treatment of hematologic malignancies. The NA in routine clinical use include the pyrimidine analog cytosine arabinoside (ara-c), which is extensively used in the treatment of acute leukemias, and the purine analogs, cladribine and fludarabine. These drugs have mostly been used in the treatment of low grade hematological malignancies. NA become therapeutically effective only after phosporylation to the triphosphate level. The 5'-nucleotidases (5'-NTs) dephosphorylate the monophosphate form of NA and, therefore, may affect the pharmacological activity of these antimetabolites in the clinic. Several 5'-NTs attached to membranes or present in the cytosol or in mitochondria are present in mammalian cells. cN-II, an IMP-selective 5'-NT, participates in the regulation of purine deoxyribonucleotide metabolism. cN-II opposes the action of the salvage enzymes by dephosphorylating purine nucleoside mononphosphates to purine nucleosides. Due to its phosphotransferase activity, cN-II can also phosphorylate inosine and 2',3'-dideoxyribonucleosides utilizing IMP as a phosphate donor. The observation that cytosolic cN-II is able to phosphorylate purine nucleosides has initiated studies on its potential participation in the metabolism of anticancer agents and in the development of cN-II inhibitory substances. In this review, we highlight the current knowledge concerning cN-II activity and regulation of intracellular deoxyribonucleotide pools and it role in hematological malignancies.
Collapse
|
118
|
Galmarini CM, Thomas X, Graham K, El Jafaari A, Cros E, Jordheim L, Mackey JR, Dumontet C. Deoxycytidine kinase and cN-II nucleotidase expression in blast cells predict survival in acute myeloid leukaemia patients treated with cytarabine. Br J Haematol 2003; 122:53-60. [PMID: 12823345 DOI: 10.1046/j.1365-2141.2003.04386.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytotoxic activity of cytarabine (ara-C) in leukaemic blasts depends on activating enzymes such as deoxycytidine kinase (dCK) and inactivating enzymes such as the 5'-nucleotidases. We have analysed dCK and 'high-Km' 5'-nucleotidase (cN-II) mRNA expression by the quantitative real-time polymerase chain reaction at diagnosis in leukaemic blasts from 115 acute myeloid leukaemia (AML) patients treated with ara-C. The prognostic value of these parameters as well as that of the cN-II/dCK ratio was determined. In univariate analyses: (1) low levels of dCK, high levels of cN-II and a high cN-II/dCK ratio predicted shorter disease-free survival (DFS); (2) low levels of dCK and cN-II/dCK ratio also predicted shorter overall survival (OS). In a multivariate analysis taking into account other clinical and laboratory variables: (1) high cN-II expression, a high cN-II/dCK ratio, age >/= 60 years and an unfavourable karyotype were independent prognostic factors for DFS; and (2) a high cN-II/dCK ratio, age >/= 60 years and an unfavourable karyotype predicted shorter OS. Age, karyotype and cN-II/dCK ratio were used to define a prognostic score that permitted the identification of high- and low-risk groups. Our results suggest that dCK and cN-II mRNA expression in leukaemic blasts at diagnosis is correlated with clinical outcome and may play a functional role in the resistance to ara-C in patients with AML.
Collapse
|
119
|
Molina-Arcas M, Bellosillo B, Casado FJ, Montserrat E, Gil J, Colomer D, Pastor-Anglada M. Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia. Blood 2003; 101:2328-34. [PMID: 12411296 DOI: 10.1182/blood-2002-07-2236] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside derivatives are currently used in the treatment of hematologic malignancies. Although intracellular events involved in the pharmacologic action of these compounds have been extensively studied, the role of plasma membrane transporters in nucleoside-derived drug bioavailability and action in leukemia cells has not been comprehensively addressed. We have monitored the amounts of mRNA for the 5 nucleoside transporter isoforms cloned so far (CNT1, CNT2, CNT3, ENT1, and ENT2) in several human cell types and in normal human leukocytes. We then examined the expression patterns of these plasma membrane proteins in patients with chronic lymphocytic leukemia (CLL) and correlated them with in vitro fludarabine cytotoxicity. Despite a huge individual variability in the mRNA amounts for every transporter gene expressed in CLL cells (CNT2, CNT3, ENT1, and ENT2), no relationship between mRNA levels and in vitro fludarabine cytotoxicity was observed. Fludarabine accumulation in CLL cells was mostly, if not exclusively, mediated by ENT-type transporters whose biologic activity was clearly correlated with fludarabine cytotoxicity, which reveals a role of ENT-mediated uptake in drug responsiveness in patients with CLL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Adult
- Aged
- Aged, 80 and over
- Biological Transport
- Carrier Proteins/genetics
- Cell Survival/drug effects
- Drug Resistance, Neoplasm
- Equilibrative Nucleoside Transporter 1/genetics
- Female
- Gene Expression
- Humans
- Immunoglobulin G/metabolism
- Immunoglobulin G/pharmacology
- Immunoglobulin G/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes/metabolism
- Male
- Melphalan/metabolism
- Melphalan/pharmacology
- Melphalan/therapeutic use
- Membrane Transport Proteins/genetics
- Middle Aged
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Saccharomyces cerevisiae Proteins
- Tumor Cells, Cultured
- Vidarabine/analogs & derivatives
- Vidarabine/metabolism
- Vidarabine/pharmacology
- Vidarabine/therapeutic use
Collapse
Affiliation(s)
- Míriam Molina-Arcas
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|