101
|
YU T. Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit. Int J Food Microbiol 2008; 122:44-8. [DOI: 10.1016/j.ijfoodmicro.2007.11.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 10/01/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
102
|
Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D'Agata C, Smiraglia C, Vaughan-Martini A. Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 2008; 63:73-83. [PMID: 18067577 DOI: 10.1111/j.1574-6941.2007.00409.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Benedetta Turchetti
- Dipartimento di Biologia Applicata, Sezione di Microbiologia, University of Perugia, Borgo XX Giugno 74, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Kudanga T, Mwenje E, Mandivenga F, Read JS. Esterases and putative lipases from tropical isolates ofAureobasidium pullulans. J Basic Microbiol 2007; 47:138-47. [PMID: 17440916 DOI: 10.1002/jobm.200610207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Esterases and lipases have been studied in a number of fungi, though very little is known about esterases from Aureobasidium pullulans especially from the African tropics. In this study, forty-two Zimbabwean isolates were screened for lipase activity on tributyrin agar. Extracellular esterase activities of seven selected isolates were studied under varying conditions using para-nitrophenol acetate as substrate. Twenty isolates (48%) showed lipolytic activity; sixteen showed negative results for lipase activity while the rest showed weak activities. Esterase activities in broth cultures ranged from 0.011-0.223 mmol/microg protein/min while activities ranged from 1.5-12.8 U/ml under solid state fermentation. The esterases were optimally active at pH 7.6-8.0, showed a temperature optimum of 35 degrees C and retained more than 50% activity at temperatures up to 60 degrees C and at pH 4.0-7.0 after 150 min. Enzyme production was optimal after 5-6 days with diammonium hydrogen phosphate as nitrogen source. Isolates showed variations in preference for carbon source for esterase production. The A. pullulans esterases differed from most fungal esterases in that they are optimally active in alkaline conditions and are active over a broad pH range.
Collapse
Affiliation(s)
- Tukayi Kudanga
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Ascot, Bulawayo, Zimbabwe.
| | | | | | | |
Collapse
|
104
|
Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 2007; 53:519-25. [PMID: 17612608 DOI: 10.1139/w07-010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of a project aimed at the selection of cold-adapted yeasts expressing biotechnologically interesting features, the extracellular enzymatic activity (EEA) of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina) was investigated. Ninety-one basidiomycetous yeasts (belonging to the genera Cryptococcus , Leucosporidiella , Dioszegia , Mrakia , Rhodotorula , Rhodosporidium , Sporobolomyces , Sporidiobolus , Cystofilobasidium , and Udeniomyces ) were screened for extracellular amylolytic, proteolytic, lipolytic, esterasic, pectinolytic, chitinolytic, and cellulolytic activities. Over 15% of the strains exhibited three or more different EEAs at 4 °C and more than 63% had at least two EEAs at the same temperature. No chitinolytic or cellulolytic activities were detected at 4 and 20 °C. Cell-free supernatants exhibited significantly higher (P < 0.01) protease and lipase activities at ≤10 °C, or even at 4 °C. In light of these findings, cold environments of Patagonia (Argentina) may be considered a potential source of cold-adapted yeasts producing industrially relevant cold-active enzymes.
Collapse
Affiliation(s)
- Silvia Brizzio
- Laboratorio de Microbiología Aplicada y Biotecnología, CRUB, Universidad Nacional del Comahue, Bariloche, Argentina
| | | | | | | | | | | |
Collapse
|
105
|
de García V, Brizzio S, Libkind D, Buzzini P, van Broock M. Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 2007; 59:331-41. [PMID: 17313582 DOI: 10.1111/j.1574-6941.2006.00239.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The occurrence of culturable yeasts in glacial meltwater from the Frías, Castaño Overo and Río Manso glaciers, located on Mount Tronador in the Nahuel Huapi National Park (Northwestern Patagonia, Argentina) is presented. Subsurface water samples were filtered for colony counting and yeast isolation. The total yeast count ranged between 6 and 360 CFU L(-1). Physiologic and molecular methods were employed to identify 86 yeast isolates. In agreement with yeast diversity data from studies for Antarctic and Alpine glaciers, the genera Cryptococcus, Leucosporidiella, Dioszegia, Rhodotorula, Rhodosporidium, Mrakia, Sporobolomyces, Udeniomyces and Candida were found. Cryptococcus and Leucosporidiella accounted for 50% and 20% of the total number of strains, respectively. Among 21 identified yeast species, Cryptococcus sp. 1 and Leucosporidiella fragaria were the most frequent. The typically psychrophilic Mrakia yeast strain and three new yeast species, yet to be described, were also isolated. All yeast strains were able to grow at 5, 10, and 15 degrees C. Among yeast strains expressing extracellular enzymatic activity, higher proteolytic and lipolytic activities were obtained at 4 degrees C than at 20 degrees C.
Collapse
Affiliation(s)
- Virginia de García
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, UNCO-CONICET, Bariloche, Argentina.
| | | | | | | | | |
Collapse
|
106
|
Bekhouche F, Bonnin E, Boulahrouf A, Leveau JY. [Polygalacturonase enzyme production from bacterial isolated from raw milk and green and black olives]. Can J Microbiol 2006; 52:658-63. [PMID: 16917522 DOI: 10.1139/w06-024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Forty microbial strains isolated from raw milk samples and black and green olives were grown in MP5 (mineral pectin 5) medium containing 0.5% lemon pectin. All strains synthesized an extracellular polygalacturonase. Rhodotorula sp. ONRh9 (0.44 U x mL(-1)) and Leuconostoc sp. LLn1 (0.16 U x mL(-1)), which had a more active polygalacturonase in MP5 medium, were studied in MAPG5 medium containing polygalacturonic acid. Highest biomass and polygalacturonase production by these two strains were observed for polygalacturonic acid concentrations of 10 g x L(-1) (Rhodotorula sp. ONRh9) and 5 g x L(-1) (Leuconostoc sp. LLn1) and for initial pH values of 6 (Rhodotorula sp. ONRh9) and 5.5 (Leuconostoc sp. LLn1). The two strains grown in fermenters in MAPG5 medium generated the following results: with controlled initial pH, Rhodotorula sp. produced maximum biomass (DO) and polygalacturonase (PG) after 20 h (DO, 3.86; PG, 0.24 U x mL(-1)) of growth, and this level was sustained until the end of the culture; Leuconostoc sp. LLn1 synthesized more cells and polygalacturonase between 4 h (DO, 1.80; PG, 0.17 U x mL(-1)) and 24 h (DO, 3.90; PG, 0.27 U x mL(-1)) of culture. With uncontrolled initial pH, the cultures produced maximum biomass and polygalacturonase after 20 h (DO, 3.30; PG, 0.26 U x mL(-1)) for Rhodotorula sp. ONRh9 and 10 h (DO, 2.84; PG, 0.17 U x mL(-1)) for Leuconostoc sp. LLn1.
Collapse
Affiliation(s)
- Farida Bekhouche
- Laboratoire de génie microbiologique et applications, Département des sciences de la nature et de la vie, Université de Mentouri, Algérie.
| | | | | | | |
Collapse
|
107
|
Laitila A, Wilhelmson A, Kotaviita E, Olkku J, Home S, Juvonen R. Yeasts in an industrial malting ecosystem. J Ind Microbiol Biotechnol 2006; 33:953-66. [PMID: 16758169 DOI: 10.1007/s10295-006-0150-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
The malting ecosystem consists of two components: the germinating cereal grains and the complex microbial community. Yeasts and yeast-like fungi are an important part of this ecosystem, but the composition and the effects of this microbial group have been largely unknown. In this study we surveyed the development of yeasts and yeast-like fungi in four industrial scale malting processes. A total of 136 malting process samples were collected and examined for the presence of yeasts growing at 15, 25 and 37 degrees C. More than 700 colonies were isolated and characterized. The isolates were discriminated by PCR-fingerprinting with microsatellite primer (M13). Yeasts representing different fingerprint types were identified by sequence analysis of the D1/D2 domain of the 26S rRNA gene. Furthermore, identified yeasts were screened for the production of alpha-amylase, beta-glucanase, cellulase and xylanase. A numerous and diverse yeast community consisting of both ascomycetous (25) and basidiomycetous (18) species was detected in the various stages of the malting process. The most frequently isolated ascomycetous yeasts belonged to the genera Candida, Clavispora, Galactomyces, Hanseniaspora, Issatchenkia, Pichia, Saccharomyces and Williopsis and the basidiomycetous yeasts to Bulleromyces, Filobasidium, Cryptococcus, Rhodotorula, Sporobolomyces and Trichosporon. In addition, two ascomycetous yeast-like fungi (black yeasts) belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Knowledge of the microbial diversity provides a basis for microflora management and understanding of the role of microbes in the cereal germination process.
Collapse
Affiliation(s)
- A Laitila
- VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo, 02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
108
|
Kudanga T, Mwenje E. Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol 2006; 51:773-6. [PMID: 16391656 DOI: 10.1139/w05-053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellulase production by Aureobasidium pullulans from the temperate regions has remained speculative, with most studies reporting no activity at all. In the current study, tropical isolates from diverse sources were screened for cellulase production. Isolates were grown on a synthetic medium containing cell walls of Msasa tree (Brachystegia sp.) as the sole carbon source, and their cellulolytic activities were measured using carboxymethyl cellulose and alpha-cellulose as substrates. All isolates studied produced carboxymethyl cellulase (endoglucanase) and alpha-cellulase (exoglucanase) activity. Endoglucanase-specific activities of ten selected isolates ranged from 2.375 to 12.884 micromol glucose.(mg protein)-1.h-1, while activities on alpha-cellulose (exoglucanase activity) ranged from 0.293 to 22.442 micromol glucose.(mg protein)-1.day-1. Carboxymethyl cellulose induced the highest cellulase activity in the selected isolates, while the isolates showed variable responses to nitrogen sources. The current study indicates that some isolates of A. pullulans of tropical origin produce significant extracellular cellulolytic activity and that crude cell walls may be good inducers of cellulolytic activity in A. pullulans.
Collapse
Affiliation(s)
- T Kudanga
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe.
| | | |
Collapse
|
109
|
Avis TJ, Cheng YL, Zhao YY, Bolduc S, Neveu B, Anguenot R, Labbé C, Belzile F, Bélanger RR. The potential of Pseudozyma yeastlike epiphytes for the production of heterologous recombinant proteins. Appl Microbiol Biotechnol 2005; 69:304-11. [PMID: 15830195 DOI: 10.1007/s00253-005-1986-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 03/24/2005] [Accepted: 03/31/2005] [Indexed: 11/27/2022]
Abstract
Although Basidiomycetes represent the most evolved class of fungi, they have been neglected with regard to recombinant gene expression. In this work, basidiomycetous yeasts belonging to Pseudozyma spp. were studied with respect to their amenability to heterologous protein production. Single plasmid or cotransformation experiments routinely afforded 100 to 200 independent transformants for the two tested species of Pseudozyma. Green fluorescent protein (GFP) was expressed in the correctly folded conformation, as demonstrated by fluorescence microscopy, and hen egg white lysozyme (HEWL) was expressed in its active form, as revealed by its lytic activity on Micrococcus lysodeikticus cells. Protease analysis established that Pseudozyma spp. contained equivalent or less extracellular protease activity than yeasts and far less protease activity than ascomycetous filamentous fungi in similar culture conditions. This proteolytic activity was inhibited by over 97% with a combination of PMSF and Pepstatin A. N-glycosylation patterns of native Pseudozyma flocculosa secreted proteins were comprised of one or a few short glycan chains that possess a classic eukaryotic structure typical of higher fungi and animal cells. This is the first report of a Basidiomycete that possesses multiple intrinsic characteristics necessary for use as a heterologous gene expression system.
Collapse
Affiliation(s)
- T J Avis
- Département de Phytologie, Centre de recherche en horticulture, Université Laval, Pavillon de l'Envirotron, Laval, Québec G1K 7P4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
da Silva EG, de Fátima Borges M, Medina C, Piccoli RH, Schwan RF. Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Res 2005; 5:859-65. [PMID: 15925314 DOI: 10.1016/j.femsyr.2005.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 01/15/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022] Open
Abstract
Three hundred yeasts isolated from tropical fruits were screened in relation to secretion of pectinases. Twenty-one isolates were able to produce polygalacturonase and among them seven isolates could secrete pectin lyase. None of the isolates was able to secrete pectin methylesterase. The pectinolytic yeasts identified belonged to six different genera. Kluyveromyces wickerhamii isolated from the fruit mangaba (Hancornia speciosa) secreted the highest amount of polygalacturonase, followed by K. marxianus and Stephanoascus smithiae. The yeast Debaryomyces hansenii produced the greatest decrease in viscosity while only 3% of the glycosidic linkages were hydrolysed, indicating that the enzyme secreted was an endo-polygalacturonase. The hydrolysis of pectin by polygalacturonase secreted by S. smithiae suggested an exo-splitting mechanism. The other yeast species studied showed low polygalacturonase activity.
Collapse
|
111
|
|
112
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|