101
|
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. THE PLANT CELL 2005; 17:444-63. [PMID: 15659631 PMCID: PMC548818 DOI: 10.1105/tpc.104.028316] [Citation(s) in RCA: 750] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/15/2004] [Indexed: 05/18/2023]
Abstract
The AUXIN RESPONSE FACTOR (ARF) gene family products, together with the AUXIN/INDOLE-3-ACETIC ACID proteins, regulate auxin-mediated transcriptional activation/repression. The biological function(s) of most ARFs is poorly understood. Here, we report the identification and characterization of T-DNA insertion lines for 18 of the 23 ARF gene family members in Arabidopsis thaliana. Most of the lines fail to show an obvious growth phenotype except of the previously identified arf2/hss, arf3/ett, arf5/mp, and arf7/nph4 mutants, suggesting that there are functional redundancies among the ARF proteins. Subsequently, we generated double mutants. arf7 arf19 has a strong auxin-related phenotype not observed in the arf7 and arf19 single mutants, including severely impaired lateral root formation and abnormal gravitropism in both hypocotyl and root. Global gene expression analysis revealed that auxin-induced gene expression is severely impaired in the arf7 single and arf7 arf19 double mutants. For example, the expression of several genes, such as those encoding members of LATERAL ORGAN BOUNDARIES domain proteins and AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE, are disrupted in the double mutant. The data suggest that the ARF7 and ARF19 proteins play essential roles in auxin-mediated plant development by regulating both unique and partially overlapping sets of target genes. These observations provide molecular insight into the unique and overlapping functions of ARF gene family members in Arabidopsis.
Collapse
Affiliation(s)
- Yoko Okushima
- Plant Gene Expression Center, Albany, California 94710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Sun W, Kieliszewski MJ, Showalter AM. Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:870-881. [PMID: 15584953 DOI: 10.1111/j.1365-313x.2004.02274.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
LeAGP-1 is a glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-protein (AGP) in tomato (Lycopersicon esculentum). Patterns of mRNA expression and protein localization for LeAGP-1 indicate that it likely functions in certain aspects of plant growth and development. To elucidate LeAGP-1 function(s), transgenic tomato plants expressing enhanced green fluorescent protein (GFP) fused to LeAGP-1 [GFP-LeAGP-1] or two LeAGP-1 variants, one lacking the C-terminal GPI-anchor domain [GFP-LeAGP-1DeltaC] and the other lacking the lysine-rich domain [GFP-LeAGP-1DeltaK], under the control of the CaMV35S promoter were produced using Agrobacterium-mediated transformation. Transgenic T0 and T1 lines with high levels of both GFP-LeAGP-1 mRNA and protein: (i) were significantly shorter; (ii) were highly branched; (iii) produced more flower buds, but most of these flowers did not mature, resulting in less fruit production; and (iv) produced seeds that were significantly smaller than normal seeds. Overexpression of LeAGP-1DeltaK had a similar or even more pronounced effect on plant vegetative and reproductive growth, while the effect of LeAGP-1DeltaC overexpression on plant reproduction was minimal. These results indicate that the GPI anchor is critical for LeAGP-1 function. As the phenotype of GFP-LeAGP-1 overexpressing transgenic plants is similar to that of cytokinin-overproducing plants, mRNA expression patterns of LeAGP-1 under different hormone treatments were examined. Cytokinins upregulated LeAGP-1 mRNA expression, while auxins and ABA inhibited LeAGP-1 mRNA expression. Based on these results, GPI-anchored LeAGP-1 most likely functions in plant growth and development in concert with auxin/cytokinin signaling.
Collapse
Affiliation(s)
- Wenxian Sun
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701-2979, USA
| | | | | |
Collapse
|
103
|
Østergaard L, Yanofsky MF. Establishing gene function by mutagenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:682-96. [PMID: 15315632 DOI: 10.1111/j.1365-313x.2004.02149.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.
Collapse
Affiliation(s)
- Lars Østergaard
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| | | |
Collapse
|
104
|
Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. THE PLANT CELL 2004; 16:2463-80. [PMID: 15319479 PMCID: PMC520946 DOI: 10.1105/tpc.104.022897] [Citation(s) in RCA: 515] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/11/2004] [Indexed: 05/17/2023]
Abstract
The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-beta-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these diverse functions are mediated by regulating metabolism of lipid and/or cell wall components.
Collapse
Affiliation(s)
- Asaph Aharoni
- Plant Research International, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
105
|
Kaminuma E, Heida N, Tsumoto Y, Yamamoto N, Goto N, Okamoto N, Konagaya A, Matsui M, Toyoda T. Automatic quantification of morphological traits via three-dimensional measurement of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:358-365. [PMID: 15078337 DOI: 10.1111/j.1365-313x.2004.02042.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many mutants have been isolated from the model plant Arabidopsis thaliana, and recent important genetic resources, such as T-DNA knockout lines, facilitate the speed of identifying new mutants. However, present phenotypic analysis of mutant screens depends mainly on qualitative descriptions after visual observation of morphological traits. We propose a novel method of phenotypic analysis based on precise three-dimensional (3D) measurement by a laser range finder (LRF) and automatic data processing. We measured the 3D surfaces of young plants of two Arabidopsis ecotypes and successfully defined two new traits, the direction of the blade surface and epinasty of the blade, quantitatively. The proposed method enables us to obtain quantitative and precise descriptions of plant morphologies compared to conventional 2D measurement. The method will open a way to find new traits from mutant pools or natural ecotypes based on 3D data.
Collapse
Affiliation(s)
- Eli Kaminuma
- Genomic Knowledge Base Research Team, Bioinformatics Group, RIKEN Yokohama Institute, Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Zhao L, Nakazawa M, Takase T, Manabe K, Kobayashi M, Seki M, Shinozaki K, Matsui M. Overexpression of LSH1, a member of an uncharacterised gene family, causes enhanced light regulation of seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:694-706. [PMID: 14871309 DOI: 10.1111/j.1365-313x.2003.01993.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Light regulates plant growth and development through a network of endogenous factors. By screening Arabidopsis activation-tagged lines, we isolated a dominant mutant (light-dependent short hypocotyls 1-D (lsh1-D)) that showed hypersensitive responses to continuous red (cR), far-red (cFR) and blue (cB) light and cloned the corresponding gene, LSH1. LSH1 encodes a nuclear protein of a novel gene family that has homologues in Arabidopsis and rice. The effects of the lsh1-D mutation were tested in a series of photoreceptor mutant backgrounds. The hypersensitivity to cFR and cB light conferred by lsh1-D was abolished in a phyA null background (phyA-201), and the hypersensitivity to cR and cFR light conferred by lsh1-D was much reduced in the phytochrome-chromophore synthetic mutant, hy1-1 (long hypocotyl 1). These results indicate that LSH1 is functionally dependent on phytochrome to mediate light regulation of seedling development.
Collapse
Affiliation(s)
- Li Zhao
- Plant Function Exploration Team, Plant Functional Genomics Research Group, Genomic Sciences Center, RIKEN Yokohama Institute 1-7-22 Suyehirocho, Tsurumiku, Yokohama 230-0045, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:471-83. [PMID: 14756757 DOI: 10.1046/j.1365-313x.2003.01973.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To study the GH3 gene family of Arabidopsis, we investigated a flanking sequence database of Arabidopsis activation-tagged lines. We found a dwarf mutant, named yadokari 1-D (ydk1-D), that had a T-DNA insertion proximal to a GH3 gene. ydk1-D is dominant and has a short hypocotyl not only in light but also in darkness. Moreover, ydk1-D has a short primary root, a reduced lateral root number, and reduced apical dominance. A GH3 gene, named YDK1, was upregulated in ydk1-D, and YDK1 transgenic plants showed the ydk1-D phenotype. YDK1 gene expression was induced by exogenously applied auxin and regulated by auxin-response factor (ARF)7. In addition, YDK1 gene expression was downregulated by blue and far-red (FR) lights. Strong promoter activity of YDK1 was observed in roots and flowers. These results suggest that YDK1 may function as a negative component in auxin signaling by regulating auxin activity.
Collapse
Affiliation(s)
- Tomoyuki Takase
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawaku, Yokohama, Kanagawa 236-0027, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003; 4. [PMCID: PMC2447311 DOI: 10.1002/cfg.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
109
|
Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, Tsuhara Y, Iizumi H, Goto Y, Matsui M. Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:421-9. [PMID: 14617098 DOI: 10.1046/j.1365-313x.2003.01876.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant genomic resources harbouring gain-of-function mutations remain rare, even though this type of mutation is believed to be one of the most useful for elucidating the function of unknown genes that have redundant partners in the genome. An activation-tagging T-DNA was introduced into the genome of Arabidopsis creating 55,431 independent transformed lines. Of these T1 lines, 1,262 showed phenotypes different from those of wild-type plants. We called these lines 'AT1Ps' (activation T1 putants). The phenotypes observed include abnormalities in morphology, growth rate, plant colour, flowering time and fertility. Similar phenotypes re-appeared either in dominant or semi-dominant fashion in 17% of 177 AT2P plants tested. Plasmid rescue or an adaptor-PCR method was used to identify 1172 independent genomic loci of T-DNA integration sites in the AT1P plants. Mapping of the integration sites revealed that the chromosomal distribution of these sites is similar to that observed in conventional T-DNA knock-out lines, except that the intragenic type of integration is slightly lower (27%) in the AT1P plants compared to that observed in other random knock-out populations (30-35%). Ten AT2P lines that showed dominant phenotypes were chosen to monitor expression levels of genes adjacent to the T-DNA integration sites by RT-PCR. Activation was observed in 7 out of 17 of the adjacent genes detected. Genes located up to 8.2 kb away from the enhancer sequence were activated. One of the seven activated genes was located close to the left-border sequence of the T-DNA, having an estimated distance of 5.7 kb from the enhancer. Surprisingly, one gene, the first ATG of which is located 12 kb away from the enhancer, showed reduced mRNA accumulation in the tagged line. Application of the database generated to Arabidopsis functional genomics research is discussed. The sequence database of the 1172 loci from the AT1P plants is available (http://pfgweb.gsc.riken.go.jp/index.html).
Collapse
Affiliation(s)
- Takanari Ichikawa
- Plant Function Exploration Team, Plant Functional Genomics Research Group, Genomic Sciences Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|