101
|
Vasko V, Saji M, Hardy E, Kruhlak M, Larin A, Savchenko V, Miyakawa M, Isozaki O, Murakami H, Tsushima T, Burman KD, De Micco C, Ringel MD. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 2004; 41:161-70. [PMID: 14985374 PMCID: PMC1735712 DOI: 10.1136/jmg.2003.015339] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Akt activation is involved in the pathogenesis of inherited thyroid cancer in Cowden's syndrome and in sporadic thyroid cancers. In cell culture, Akt regulates thyroid cell growth and survival; but recent data suggest that Akt also regulates cell motility in non-thyroid cell lines. We therefore sought to evaluate the role of Akt in thyroid cancer progression. METHODS We evaluated 46 thyroid cancer, 20 thyroid follicular adenoma, and adjacent normal tissues samples by immunohistochemistry for activated Akt (pAkt), Akt 1, 2, and 3, and p27 expression. Immunoblots were performed in 14 samples. RESULTS Akt activation was identified in 10/10 follicular cancers, 26/26 papillary cancers, and 2/10 follicular variant of papillary cancers, but in only 4/66 normal tissue samples and 2/10 typical benign follicular adenomas. Immunoactive pAkt was greatest in regions of capsular invasion; and was localised to the nucleus in follicular cancers and the cytoplasm in papillary cancers, except for invasive regions of papillary cancers where it localised to both compartments. Immunoactive Akt 1, but not Akt 2 or Akt 3, correlated with pAkt localisation, and nuclear pAkt was associated with cytoplasmic expression of p27. In vitro studies using human thyroid cancer cells demonstrated that nuclear translocation of Akt 1 and pAkt were associated with cytoplasmic p27 and cell invasion and migration. Cell migration and the localisation of Akt 1, pAkt, and p27 were inhibited by PI3 kinase, but not MEK inhibition. DISCUSSION These data suggest an important role for nuclear activation of Akt 1 in thyroid cancer progression.
Collapse
Affiliation(s)
- V Vasko
- Ohio State University School of Medicine and Arthur G. James Cancer Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Luo Y, Smith RA, Guan R, Liu X, Klinghofer V, Shen J, Hutchins C, Richardson P, Holzman T, Rosenberg SH, Giranda VL. Pseudosubstrate peptides inhibit Akt and induce cell growth inhibition. Biochemistry 2004; 43:1254-63. [PMID: 14756561 DOI: 10.1021/bi034515p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have designed peptide inhibitors that potently inhibit Akt both in vitro and inside cells. These peptide inhibitors are selective for Akt versus other closely related kinases. The peptides inhibit the in vitro phosphorylation of a biotinylated Bad peptide by Akt with potency up to 100 nM. We have shown that the binding between Akt1 and these peptide inhibitors requires MgATP. Mutating the two putative Akt phosphorylation sites to Ala (nonsubstrate) in these peptides increases the inhibitory potency while mutating the sites to aspartic acid (phosphorylation mimetic) reduces the potency. When delivered into cells, these peptide inhibitors can inhibit cellular Akt activity and cell growth. Thus, these Akt-specific peptide inhibitors provide prototypes for peptide mimetic drugs as well as very useful tools to dissect cellular functions of Akt.
Collapse
Affiliation(s)
- Yan Luo
- Department R47S AP9A, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Metastasis in breast cancer significantly increases morbidity and mortality. The 5-year survival rate reduces from 90% for localised disease to about 20% once metastasis has taken place. The phosphoinositide 3-kinase/Akt signalling pathway has an important role in cell motility, invasion and metastasis. However, the precise contribution of the Akt kinase family members, Akt1, Akt2 and Akt3, in mediating these processes is unclear. The possibility that they have distinct functions in tumour progression is particularly interesting.
Collapse
Affiliation(s)
- Noan-Minh Chau
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, UK
| | - Margaret Ashcroft
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
104
|
McCurdy CE, Davidson RT, Cartee GD. Brief calorie restriction increases Akt2 phosphorylation in insulin-stimulated rat skeletal muscle. Am J Physiol Endocrinol Metab 2003; 285:E693-700. [PMID: 12799317 PMCID: PMC2748752 DOI: 10.1152/ajpendo.00224.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle insulin sensitivity improves with short-term reduction in calorie intake. The goal of this study was to evaluate changes in the abundance and phosphorylation of Akt1 and Akt2 as potential mechanisms for enhanced insulin action after 20 days of moderate calorie restriction [CR; 60% of ad libitum (AL) intake] in rat skeletal muscle. We also assessed changes in the abundance of SH2 domain-containing inositol phosphatase (SHIP2), a negative regulator of insulin signaling. Fisher 344 x Brown Norway rats were assigned to an AL control group or a CR treatment group for 20 days. Epitrochlearis muscles were dissected and incubated with or without insulin (500 microU/ml). Total Akt serine and threonine phosphorylation was significantly increased by 32 (P < 0.01) and 30% (P < 0.005) in insulin-stimulated muscles from CR vs. AL. Despite an increase in total Akt phosphorylation, there was no difference in Akt1 serine or Akt1 threonine phosphorylation between CR and AL insulin-treated muscles. However, there was a 30% decrease (P < 0.05) in Akt1 abundance for CR vs. AL. In contrast, there was no change in Akt2 protein abundance, and there was a 94% increase (P < 0.05) in Akt2 serine phosphorylation and an increase of 75% (P < 0.05) in Akt2 threonine phosphorylation of insulin-stimulated CR muscles compared with AL. There was no diet effect on SHIP2 abundance in skeletal muscle. These results suggest that, with brief CR, enhanced Akt2 phosphorylation may play a role in increasing insulin sensitivity in rat skeletal muscles.
Collapse
Affiliation(s)
- Carrie E McCurdy
- Department of Kinesiology, University of Wisconsin, 2000 Observatory Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
105
|
Koivisto L, Alavian K, Hakkinen L, Pelech S, McCulloch CA, Larjava H. Glycogen synthase kinase-3 regulates formation of long lamellipodia in human keratinocytes. J Cell Sci 2003; 116:3749-60. [PMID: 12890758 DOI: 10.1242/jcs.00693] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During wound healing, keratinocytes initiate migration from the wound edge by extending lamellipodia into a fibronectin-rich provisional matrix. While lamellipodia-like structures are also found in cultured keratinocytes exposed to epidermal growth factor (EGF), the signaling pathway that regulates the formation of these structures is not defined. In cultured human keratinocytes seeded on fibronectin, we found that protein-serine/threonine kinase inhibitors including staurosporine, induced concentration-dependent formation of extended lamellipodia (E-lams). The formation of E-lams was inhibited by the proteintyrosine kinase inhibitors herbimycin A and genistein and augmented by the protein-tyrosine phosphatase inhibitor sodium orthovanadate. Staurosporine treatment induced relocation of tyrosine phosphorylated phospholipase C-gamma1 (PLC-gamma1) to the tips of lamellipodia where actin assembly was initiated. Consistent with an involvement of PLC-gamma1 in E-lam formation, intracellular free calcium (Ca2+) was elevated during the formation of E-lams and conversely, E-lam formation was blocked by intracellular Ca2+ chelation with BAPTA/AM, but not by extracellular reduction of Ca2+ by EGTA. Notably, glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) was activated by staurosporine as evidenced by reduced phosphorylation on Ser-21/9. Suppression of GSK-3 activity by LiCl2 or by a specific chemical inhibitor, SB-415286, blocked E-lam formation but without altering cell spreading. Furthermore, GSK-3 inhibitors blocked both staurosporine- and EGF-induced keratinocyte migration in scratch-wounded cultures. We propose that GSK-3 plays a crucial role in the formation of long lamellipodia in human keratinocytes and is potentially a central regulatory molecule in epithelial cell migration during wound healing.
Collapse
Affiliation(s)
- Leeni Koivisto
- University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
106
|
Yang L, Lin HK, Altuwaijri S, Xie S, Wang L, Chang C. APPL suppresses androgen receptor transactivation via potentiating Akt activity. J Biol Chem 2003; 278:16820-7. [PMID: 12621049 DOI: 10.1074/jbc.m213163200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
APPL may function as an adapter protein to modulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Although we have previously proven that the PI3K/Akt pathway can suppress androgen receptor (AR) transactivation, the potential linkage from APPL to the AR remains unclear. Here we demonstrated that APPL could suppress AR-mediated transactivation in a dose-dependent manner in LNCaP and PC-3 cells. This suppressive effect could be blocked by either dominant-negative Akt or dominant-negative PI3K or LY294002, suggesting that the APPL-mediated suppression of AR transactivation is dependent on the PI3K/Akt pathway. We also observed that APPL could further enhance the Akt-mediated suppression of AR transactivation and AR target gene using the reporter gene and Northern blot assay. APPL was able to enhance insulin-like growth factor (IGF-1)-mediated Akt activation. The abrogation of IGF-1-mediated Akt activation by the dominant-negative PI3K or LY294002 or antisense APPL suggests that APPL may function as an important adapter protein in controlling the IGF-1 --> Akt signal pathway. Co-immunoprecipitation and glutathione S-transferase pull-down assays suggest that APPL, Akt, and AR may exist in a complex and Akt may serve as an important bridge factor for the association of APPL with AR. Together, our data indicate that APPL may suppress AR transactivation via potentiating Akt activity.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
107
|
Liu LX, Liu ZH, Jiang HC, Qi SY, Zhang WH, Zhu AL, Wang XQ, Wu M. Overexpression of Akt-1 gene in human hepatocellular carcinoma. Chin J Cancer Res 2002. [DOI: 10.1007/s11670-002-0036-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
108
|
Itoh N, Semba S, Ito M, Takeda H, Kawata S, Yamakawa M. Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer 2002; 94:3127-34. [PMID: 12115344 DOI: 10.1002/cncr.10591] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Akt/protein kinase B (PKB), which is included in phosphatidyl inositol-3-OH kinase (PI3K) signaling, controls many intracellular processes, such as the suppression of apoptosis and the promotion of the cell cycle. Therefore, the authors investigated phosphorylated Akt (Ser473) in colorectal carcinomas to reveal the role of PI3K signaling during the development of colorectal carcinoma. METHODS Expression of phosphorylated Akt (Ser473) in two colon carcinoma cell lines (DLD-1 and Colo205) and 65 human colorectal carcinomas was analyzed using western blotting and immunohistochemistry, respectively. Growth inhibition and induction of apoptosis caused by LY294002, a specific inhibitor of PI3K, were also examined in these cell lines. In tumor samples, the level of cell proliferation activity (Ki-67) and number of apoptotic bodies (single stranded DNA) were determined by counting positive cells. RESULTS LY294002 significantly affected the proliferation and apoptosis of Colo205 cells, suggesting an association with the low phosphorylation level of Akt protein. Immunohistochemic analysis showed that 46% of the tumors had a high level of expression of phosphorylated Akt with a close association with Ki-67 proliferative activity (P < 0.001) and the number of apoptotic bodies (P < 0.001). Akt phosphorylation was also correlated with some clinicopathologic parameters of the malignancies, including depth of invasion, infiltration to venous vessels, lymph node metastasis, and clinicopathologic stage. CONCLUSIONS The phosphorylated Akt level can monitor cell growth and resistance to apoptosis, indicating that activation of Akt plays an important role during the progression of colorectal carcinomas by helping promote cell growth and rescue cells from apoptosis. These findings also suggest the possibility of using LY294002 for treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Nanami Itoh
- First Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Brodbeck D, Hill MM, Hemmings BA. Two splice variants of protein kinase B gamma have different regulatory capacity depending on the presence or absence of the regulatory phosphorylation site serine 472 in the carboxyl-terminal hydrophobic domain. J Biol Chem 2001; 276:29550-8. [PMID: 11387345 DOI: 10.1074/jbc.m104633200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported previously the cloning and characterization of human and mouse protein kinase B gamma (PKB gamma), the third member of the PKB family of second messenger-regulated serine/threonine kinases (Brodbeck, D., Cron, P., and Hemmings, B. A. (1999) J. Biol. Chem. 274, 9133--9136). Here we report the isolation of human and mouse PKB gamma 1, a splice variant lacking the second regulatory phosphorylation site Ser-472 in the hydrophobic C-terminal domain. Expression of PKB gamma 1 is low compared with PKB gamma, and it is regulated in different human tissues. We show that PKB gamma and PKB gamma 1 differ in their response to stimulation by insulin, pervanadate, peroxide, or okadaic acid. Activation of PKB gamma 1 requires phosphorylation at a single regulatory site Thr-305. Interestingly, this site is phosphorylated to a higher extent in PKB gamma compared with PKB gamma 1 upon maximal stimulation by pervanadate, and this is reflected in the respective specific kinase activities. Furthermore, upon insulin stimulation of transfected cells, PKB gamma 1 translocates to the plasma membrane to a lesser extent than PKB gamma. Taken together, these results suggest that phosphorylation of the hydrophobic motif at the extreme C terminus of PKB gamma may facilitate translocation of the kinase to the membrane and/or its phosphorylation on the activation loop site by phosphoinositide-dependent protein kinase-1.
Collapse
Affiliation(s)
- D Brodbeck
- Friedrich Miescher-Institut, P. O. Box 2543, Basel 4002, Switzerland
| | | | | |
Collapse
|
110
|
Mende I, Malstrom S, Tsichlis PN, Vogt PK, Aoki M. Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene 2001; 20:4419-23. [PMID: 11466625 DOI: 10.1038/sj.onc.1204486] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Revised: 03/20/2001] [Accepted: 03/26/2001] [Indexed: 01/10/2023]
Abstract
The kinases Akt2, Akt3 and their myristylated variants, Myr-Akt2 and Myr-Akt3 were expressed by the RCAS vector in chicken embryo fibroblasts (CEF). Myr-Akt2 and Myr-Akt3 were strongly oncogenic, inducing multilayered foci of transformed cells. In contrast, wild-type Akt2 and Akt3 were only poorly transforming, their efficiencies of focus formation were more than 100-fold lower; foci appeared later and showed less multilayering. Addition of the myristylation signal not only enhanced oncogenic potential but also increased kinase activities. Myr-Akt2 and Myr-Akt3 also induced hemangiosarcomas in the animal, whereas wild type Akt2 and Akt3 were not oncogenic in vivo. Furthermore, Akt2, driven by the lck (lymphocyte specific kinase) promoter in transgenic mice, induced lymphomas. The oncogenic effects of Akt2 and Akt3 described here are indistinguishable from those of Akt1. The downstream targets relevant to oncogenic transformation are therefore probably shared by the three Akt kinases.
Collapse
Affiliation(s)
- I Mende
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California CA 92037, USA
| | | | | | | | | |
Collapse
|
111
|
Liu X, Shi Y, Han EK, Chen Z, Rosenberg SH, Giranda VL, Luo Y, Ng SC. Downregulation of Akt1 inhibits anchorage-independent cell growth and induces apoptosis in cancer cells. Neoplasia 2001; 3:278-86. [PMID: 11571628 PMCID: PMC1505865 DOI: 10.1038/sj.neo.7900163] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Accepted: 05/20/2001] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinases, Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an Akt1 antisense oligonucleotide (AS) to specifically downregulate Akt1 protein in both cancer and normal cells. Our data indicate that Akt1 AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FACS analysis and a caspase activity assay. Conversely, Akt1 AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF), fibroblast from muscle (FBM), and mammary gland epithelial 184B5 cells. In addition, Akt1 AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akt1 is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of Akt1 may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.
Collapse
Affiliation(s)
- X Liu
- Cancer Research, Pharmaceutical Product Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Sandirasegarane L, Kester M. Enhanced stimulation of Akt-3/protein kinase B-gamma in human aortic smooth muscle cells. Biochem Biophys Res Commun 2001; 283:158-63. [PMID: 11322783 DOI: 10.1006/bbrc.2001.4739] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth factor-induced activation of Akt (protein kinase B) is implicated in the proliferation of vascular smooth muscle cells (VSMC) in addition to antiapoptotic signaling. Although previous studies have documented increases in total Akt or Akt-1 activity in rodent VSMC, little is known about the regulation of Akt-2 or Akt-3 kinase activity in VSMC from any species. In the present study, reverse transcriptase-polymerase chain reaction revealed the expression of all three Akt isoforms in human aortic VSMC. In vitro kinase assays using immunoprecipitated Akt isoforms showed robust increases in Akt-3 activity after stimulation of human aortic VSMC with platelet-derived growth factor (PDGF), insulin, and insulin-like growth factor-1. In contrast, these growth factors produced modest and marginal increases in Akt-1 and Akt-2 kinase activity, respectively. Pretreatment of VSMC with a phosphoinositide-3kinase (PI-3K) inhibitor, LY294002, led to significant inhibition of growth factor(s)-induced increases in Akt-3 activity and DNA synthesis. The present findings provide the first direct evidence that the Akt-3 isoform is predominantly activated in human aortic VSMC. Moreover, these data suggest that PI-3K-dependent activation of Akt-3 may play a major role in VSMC proliferation.
Collapse
Affiliation(s)
- L Sandirasegarane
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | |
Collapse
|
113
|
Stepczynska A, Lauber K, Engels IH, Janssen O, Kabelitz D, Wesselborg S, Schulze-Osthoff K. Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene 2001; 20:1193-202. [PMID: 11313863 DOI: 10.1038/sj.onc.1204221] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 12/14/2000] [Accepted: 01/03/2001] [Indexed: 11/09/2022]
Abstract
Apoptosis can be induced by various stimuli including DNA-damaging anticancer drugs and the protein kinase inhibitor staurosporine. It is generally believed that the molecular events during execution of apoptosis are shared, as both anticancer drugs and staurosporine derivatives induce mitochondrial damage, cytochrome c release and the activation of the caspase-9 proteolytic cascade. In the present study we show that overexpression of a dominant-negative caspase-9 mutant abolished the activation of endogenous caspase-9, caspase-3 and the cleavage of the caspase substrate Bid in response to anticancer drug treatment. Surprisingly, however, only marginal effects were observed during staurosporine-induced apoptosis. Furthermore, we describe a Jurkat T-cell clone that is completely resistant towards different anticancer drugs, but remains sensitive towards staurosporine-induced apoptosis. In these cells only staurosporine, but neither anti-CD95 nor anticancer drugs were able to trigger caspase activity and the cleavage of caspase substrates. Our results therefore suggest that the mechanism of staurosporine-induced apoptosis is more complex and at least partially differs from anticancer drug-induced caspase activation. These distinct features of staurosporine may allow to bypass chemoresistance of tumor cells and may encourage further clinical trials for the use of staurosporine derivatives in antitumor therapy.
Collapse
Affiliation(s)
- A Stepczynska
- Department of Immunology and Cell Biology, University of Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
114
|
Cousin MA, Tan TC, Robinson PJ. Protein phosphorylation is required for endocytosis in nerve terminals: potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J Neurochem 2001; 76:105-16. [PMID: 11145983 DOI: 10.1046/j.1471-4159.2001.00049.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dynamin I and at least five other nerve terminal proteins, amphiphysins I and II, synaptojanin, epsin and eps15 (collectively called dephosphins), are coordinately dephosphorylated by calcineurin during endocytosis of synaptic vesicles. Here we have identified a new dephosphin, the essential endocytic protein AP180. Blocking dephosphorylation of the dephosphins is known to inhibit endocytosis, but the role of phosphorylation has not been determined. We show that the protein kinase C (PKC) antagonists Ro 31-8220 and Go 7874 block the rephosphorylation of dynamin I and synaptojanin that occurs during recovery from an initial depolarizing stimulus (S1). The rephosphorylation of AP180 and amphiphysins 1 and 2, however, were unaffected by Ro 31-8220. Although these dephosphins share a single phosphatase, different protein kinases phosphorylated them after nerve terminal stimulation. The inhibitors were used to selectively examine the role of dynamin I and/or synaptojanin phosphorylation in endocytosis. Ro 31-8220 and Go 7874 did not block the initial S1 cycle of endocytosis, but strongly inhibited endocytosis following a second stimulus (S2). Therefore, phosphorylation of a subset of dephosphins, which includes dynamin I and synaptojanin, is required for the next round of stimulated synaptic vesicle retrieval.
Collapse
Affiliation(s)
- M A Cousin
- Cell Signalling Unit, Children's Medical Research Institute, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
115
|
Miyamoto S, Kimball SR, Safer B. Signal transduction pathways that contribute to increased protein synthesis during T-cell activation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:28-42. [PMID: 11072066 DOI: 10.1016/s0167-4781(00)00208-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein synthesis rates were maximally stimulated in human lymphocytes by ionomycin and the phorbol ester PMA (I+P), which promotes proliferation, whereas PMA alone, which does not promote proliferation, stimulated protein synthesis to a lesser degree. Three translation-associated activities, eIF4E phosphorylation, eIF2B activity and 4E-BP1 phosphorylation also increased with stimulation by I+P and PMA, but only 4E-BP1 phosphorylation was differentially stimulated by these conditions. Correspondingly, signaling pathways activated in T cells were probed for their connection to these activities. Immunosuppressants FK506 and rapamycin partially blocked the protein synthesis rate increases by I+P stimulation. FK506 had less of an inhibitory effect with PMA stimulation suggesting that its mechanism mostly affected ionomycin-activated signals. I+P and PMA equally stimulated phosphorylation of ERK1/2, but I+P more strongly stimulated Akt, and p70(S6K) phosphorylation. An inhibitor that blocks ERK1/2 phosphorylation only slightly reduced protein synthesis rates stimulated by I+P or PMA, but greatly reduced eIF4E phosphorylation and eIF2B activity. In contrast, inhibitors of the PI-3 kinase and mTOR pathways strongly blocked early protein synthesis rate stimulated by I+P and PMA and also blocked 4E-BP1 phosphorylation and release of eIF4E suggesting that these pathways regulate protein synthesis activities, which are important for proliferation in T cells.
Collapse
Affiliation(s)
- S Miyamoto
- Molecular Hematology Branch, NHLBI, Bethesda, MD 20892-1654, USA.
| | | | | |
Collapse
|
116
|
Okano J, Gaslightwala I, Birnbaum MJ, Rustgi AK, Nakagawa H. Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem 2000; 275:30934-42. [PMID: 10908564 DOI: 10.1074/jbc.m004112200] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of epidermal growth factor receptor (EGFR) in certain cancers is well established. There is growing evidence that epidermal growth factor (EGF) activates Akt/protein kinase B (PKB) in a phosphoinositide 3-OH kinase (PI3K)-dependent manner, but it is not yet clear which Akt isoforms are involved in this signal transduction pathway. We investigated the functional regulation of three Akt isoforms, Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma, in esophageal cancer cells where EGFR is frequently overexpressed. Upon EGF simulation, phosphorylation of Akt1 at the Ser-473 residue was remarkably induced. This result was corroborated by in vitro Akt kinase assays using glycogen synthase kinase 3beta as the substrate. PI3K inhibitors, wortmannin or LY294002, significantly blocked the Akt kinase activity induced by EGF. Akt2 activity was evaluated by electrophoretic mobility shift assays. Robust activation of Akt2 by EGF was observed in some cell lines in a PI3K-dependent manner. EGF-induced Akt3 activation was demonstrated by Ser-472 phosphorylation of Akt3 but in a restrictive fashion. In aggregate, EGF-mediated activation of Akt isoforms is overlapping and distinctive. The mechanism by which EGFR recruits the PI3K/Akt pathway was in part differentially regulated at the level of Ras but independent of heterodimerization of EGFR with either ErbB2 or ErbB3 based upon functional dissection of pathways in esophageal cancer cell lines.
Collapse
Affiliation(s)
- J Okano
- Division of Gastroenterology, Howard Hughes Medical Institute, Cancer Center, and Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|