101
|
Rioja J, Rodríguez-Fraile M, Lima-Favaretto R, Rincón-Mayans A, Peñuelas-Sánchez I, Zudaire-Bergera JJ, Parra RO. Role of positron emission tomography in urological oncology. BJU Int 2010; 106:1578-93. [PMID: 21078036 DOI: 10.1111/j.1464-410x.2010.09510.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jorge Rioja
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Tang C, Russell PJ, Martiniello-Wilks R, Rasko JEJ, Khatri A. Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells 2010; 28:1686-702. [PMID: 20629172 PMCID: PMC2996089 DOI: 10.1002/stem.473] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ineffective treatment and poor patient management continue to plague the arena of clinical oncology. The crucial issues include inadequate treatment efficacy due to ineffective targeting of cancer deposits, systemic toxicities, suboptimal cancer detection and disease monitoring. This has led to the quest for clinically relevant, innovative multifaceted solutions such as development of targeted and traceable therapies. Mesenchymal stem cells (MSCs) have the intrinsic ability to "home" to growing tumors and are hypoimmunogenic. Therefore, these can be used as (a) "Trojan Horses" to deliver gene therapy directly into the tumors and (b) carriers of nanoparticles to allow cell tracking and simultaneous cancer detection. The camouflage of MSC carriers can potentially tackle the issues of safety, vector, and/or transgene immunogenicity as well as nanoparticle clearance and toxicity. The versatility of the nanotechnology platform could allow cellular tracking using single or multimodal imaging modalities. Toward that end, noninvasive magnetic resonance imaging (MRI) is fast becoming a clinical favorite, though there is scope for improvement in its accuracy and sensitivity. In that, use of superparamagnetic iron-oxide nanoparticles (SPION) as MRI contrast enhancers may be the best option for tracking therapeutic MSC. The prospects and consequences of synergistic approaches using MSC carriers, gene therapy, and SPION in developing cancer diagnostics and therapeutics are discussed.
Collapse
Affiliation(s)
- Catherine Tang
- Oncology Research Centre, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
103
|
Doré-Savard L, Otis V, Belleville K, Lemire M, Archambault M, Tremblay L, Beaudoin JF, Beaudet N, Lecomte R, Lepage M, Gendron L, Sarret P. Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS One 2010; 5:e13774. [PMID: 21048940 PMCID: PMC2966439 DOI: 10.1371/journal.pone.0013774] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 10/11/2010] [Indexed: 01/01/2023] Open
Abstract
Pre-clinical bone cancer pain models mimicking the human condition are required to respond to clinical realities. Breast or prostate cancer patients coping with bone metastases experience intractable pain, which affects their quality of life. Advanced monitoring is thus required to clarify bone cancer pain mechanisms and refine treatments. In our model of rat femoral mammary carcinoma MRMT-1 cell implantation, pain onset and tumor growth were monitored for 21 days. The surgical procedure performed without arthrotomy allowed recording of incidental pain in free-moving rats. Along with the gradual development of mechanical allodynia and hyperalgesia, behavioral signs of ambulatory pain were detected at day 14 by using a dynamic weight-bearing apparatus. Osteopenia was revealed from day 14 concomitantly with disorganization of the trabecular architecture (µCT). Bone metastases were visualized as early as day 8 by MRI (T1-Gd-DTPA) before pain detection. PET (Na18F) co-registration revealed intra-osseous activity, as determined by anatomical superimposition over MRI in accordance with osteoclastic hyperactivity (TRAP staining). Pain and bone destruction were aggravated with time. Bone remodeling was accompanied by c-Fos (spinal) and ATF3 (DRG) neuronal activation, sustained by astrocyte (GFAP) and microglia (Iba1) reactivity in lumbar spinal cord. Our animal model demonstrates the importance of simultaneously recording pain and tumor progression and will allow us to better characterize therapeutic strategies in the future.
Collapse
Affiliation(s)
- Louis Doré-Savard
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Valérie Otis
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Karine Belleville
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Myriam Lemire
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Archambault
- Department of Nuclear Medicine and Radiobiology and Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology and Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Beaudoin
- Department of Nuclear Medicine and Radiobiology and Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nicolas Beaudet
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology and Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology and Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis Gendron
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Philippe Sarret
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
104
|
Heusner TA, Hahn S, Jonkmanns C, Kuemmel S, Otterbach F, Hamami ME, Stahl AR, Bockisch A, Forsting M, Antoch G. Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: initial results. Br J Radiol 2010; 84:126-35. [PMID: 20959375 DOI: 10.1259/bjr/93330765] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the diagnostic accuracy of fused fluoro-deoxy-D-glucose positron emission tomography/magnetic resonance mammography (FDG-PET/MRM) in breast cancer patients and to compare FDG-PET/MRM with MRM. METHODS 27 breast cancer patients (mean age 58.9±9.9 years) underwent MRM and prone FDG-PET. Images were fused software-based to FDG-PET/MRM images. Histopathology served as the reference standard to define the following parameters for both MRM and FDG-PET/MRM: sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for the detection of breast cancer lesions. Furthermore, the number of patients with correctly determined lesion focality was assessed. Differences between both modalities were assessed by McNemaŕs test (p<0.05). The number of patients in whom FDG-PET/MRM would have changed the surgical approach was determined. RESULTS 58 breast lesions were evaluated. The sensitivity, specificity, PPV, NPV and accuracy were 93%, 60%, 87%, 75% and 85% for MRM, respectively. For FDG-PET/MRM they were 88%, 73%, 90%, 69% and 92%, respectively. FDG-PET/MRM was as accurate for lesion detection (p = 1) and determination of the lesions' focality (p = 0.7722) as MRM. In only 1 patient FDG-PET/MRM would have changed the surgical treatment. CONCLUSION FDG-PET/MRM is as accurate as MRM for the evaluation of local breast cancer. FDG-PET/MRM defines the tumours' focality as accurately as MRM and may have an impact on the surgical treatment in only a small portion of patients. Based on these results, FDG-PET/MRM cannot be recommended as an adjunct or alternative to MRM.
Collapse
Affiliation(s)
- T A Heusner
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University at Duisburg-Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Savita N, Maitra S, Ravishankar U. Multimodality Molecular Imaging – An Overview With Special Focus on PET/CT. APOLLO MEDICINE 2010. [DOI: 10.1016/s0976-0016(11)60104-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
106
|
Martí-Bonmatí L, Sopena R, Bartumeus P, Sopena P. Multimodality imaging techniques. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 5:180-9. [DOI: 10.1002/cmmi.393] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
107
|
Glaus C, Rossin R, Welch MJ, Bao G. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 2010; 21:715-22. [PMID: 20353170 DOI: 10.1021/bc900511j] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.
Collapse
Affiliation(s)
- Charles Glaus
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
108
|
Borsook D, Becerra L. Using NMR approaches to drive the search for new CNS therapeutics. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2010; 11:771-778. [PMID: 20571972 PMCID: PMC3010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The use of MRI-based imaging in drug development has received increased interest recently because of the difficulties associated with the development of CNS pharmacotherapies. While not yet routine, there have been significant advances in imaging that allow this technology to be used for evaluating disease state and drug effects. For disease states, both single and longitudinal studies of non-invasive measures may be obtained to provide a read-out of disease processes and, potentially, to predict the disease state and its evolution. In addition, imaging has enabled the development of improved preclinical disease models based on changes in brain circuitry. Pharmacological MRI, the imaging-based evaluation of drug effects, includes measures of direct effects on the brain, as well as the effects of chronic dosing on brain changes and neurochemical changes associated with these brain effects using magnetic resonance spectroscopy. Thus, imaging may become an integrated process in drug development, during both the preclinical and clinical stages. However, validation, the implementation of good clinical practices and regulatory acceptance are hurdles that remain to be overcome.
Collapse
Affiliation(s)
- David Borsook
- Pain & Analgesia Imaging Neuroscience (PAIN) Group, Massachusetts General Hospital, Athinoula Martinos Center for Biomedical Imaging, Department of Radiology and Psychiatry, Charlestown, MA 02129, USA.
| | | |
Collapse
|
109
|
Patel C, Goldstone A, Chowdhury F, Scarsbrook A. FDG PET/CT in oncology: “raising the bar”. Clin Radiol 2010; 65:522-35. [DOI: 10.1016/j.crad.2010.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 12/23/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
|
110
|
Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010; 37:2165-87. [PMID: 20336455 DOI: 10.1007/s00259-010-1423-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/20/2010] [Indexed: 12/23/2022]
Abstract
Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed.
Collapse
Affiliation(s)
- Habib Zaidi
- Geneva University Hospital, Geneva 4, Switzerland.
| | | |
Collapse
|
111
|
Abstract
Multimodality image registration and fusion have a key role in routine diagnosis, staging, restaging, and the assessment of response to treatment, surgery, and radiotherapy planning of malignant disease. The complementarity between anatomic (CT and MR imaging) and molecular (SPECT and PET) imaging modalities is well established and the role of fusion imaging widely recognized as a central piece of the general tree of clinical decision making. Moreover, dual modality imaging technologies including SPECT/CT, PET/CT, and, in the future, PET/MR imaging, now represent the leading component of contemporary health care institutions. This article discusses recent advances in clinical multimodality imaging, the role of correlative fusion imaging in a clinical setting, and future opportunities and challenges facing the adoption of multimodality imaging.
Collapse
|
112
|
PET imaging in pediatric neuroradiology: current and future applications. Pediatr Radiol 2010; 40:82-96. [PMID: 19937235 DOI: 10.1007/s00247-009-1457-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/12/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Molecular imaging with positron emitting tomography (PET) is widely accepted as an essential part of the diagnosis and evaluation of neoplastic and non-neoplastic disease processes. PET has expanded its role from the research domain into clinical application for oncology, cardiology and neuropsychiatry. More recently, PET is being used as a clinical molecular imaging tool in pediatric neuroimaging. PET is considered an accurate and noninvasive method to study brain activity and to understand pediatric neurological disease processes. In this review, specific examples of the clinical use of PET are given with respect to pediatric neuroimaging. The current use of co-registration of PET with MR imaging is exemplified in regard to pediatric epilepsy. The current use of PET/CT in the evaluation of head and neck lymphoma and pediatric brain tumors is also reviewed. Emerging technologies including PET/MRI and neuroreceptor imaging are discussed.
Collapse
|
113
|
Heusner T, Gölitz P, Hamami M, Eberhardt W, Esser S, Forsting M, Bockisch A, Antoch G. "One-stop-shop" staging: should we prefer FDG-PET/CT or MRI for the detection of bone metastases? Eur J Radiol 2009; 78:430-5. [PMID: 19945240 DOI: 10.1016/j.ejrad.2009.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
AIM The aim of this study was to compare the diagnostic accuracy of fully diagnostic, contrast-enhanced whole-body FDG-PET/CT and whole-body MRI for detection of bone metastases in patients suffering from newly diagnosed non-small cell lung cancer and malignant melanoma. MATERIAL AND METHODS 109 consecutive non-small cell lung cancer (n=54) and malignant melanoma (n=55) patients underwent whole-body FDG-PET/CT and whole-body MRI for initial tumor staging. All images were evaluated by four experienced physicians (three radiologists, one nuclear medicine physician). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of bone metastases were determined for both modalities. Statistically significant differences between FDG-PET/CT and MRI were calculated with Fisher's Exact test (p<0.05). Clinical and imaging follow-up data with a mean follow-up time of 434 days served as the reference standard. RESULTS According to the reference standard 11 patients (10%) suffered from bone metastases. The sensitivity, specificity, PPV, NPV, and accuracy for the detection of osseous metastases was 45%, 99%, 83%, 94%, and 94% with whole-body FDG-PET/CT and 64%, 94%, 54%, 96%, and 91% with whole-body MRI. The difference was not statistically significant (p=0.6147). CONCLUSIONS FDG-PET/CT and MRI seem to be equally suitable for the detection of skeletal metastases in patients suffering from newly diagnosed non-small cell lung cancer and malignant melanoma. Both modalities go along with a substantial rate of false-negative findings requiring a close follow-up of patients who are staged free of bone metastases at initial staging.
Collapse
Affiliation(s)
- Till Heusner
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University at Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Multimodality imaging with positron emission tomography/computed tomography (PET/CT) and single-photon emission computed tomography (SPECT)/CT has become commonplace in clinical practice and in preclinical and basic biomedical research. Do other combinations of imaging modalities have a similar potential to impact medical science and clinical medicine? Presently, the combination of PET or SPECT with magnetic resonance imaging (MRI) is an area of active research, while other, perhaps less obvious combinations, including CT/MRI and PET/optical also are being studied. In addition to the integration of the instrumentation, there are parallel developments in synthesizing imaging agents that can be viewed by multiple imaging modalities. Is the fusion of PET and SPECT with CT the ultimate answer in multimodality imaging, or is it just the first example of a more general trend toward harnessing the complementary nature of the different modalities on integrated imaging platforms?
Collapse
Affiliation(s)
- Simon R Cherry
- Department of Biomedical Engineering, Center for Molecular and Genomic Imaging, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
115
|
Delbeke D, Schöder H, Martin WH, Wahl RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 2009; 39:308-40. [PMID: 19646557 DOI: 10.1053/j.semnuclmed.2009.03.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incremental diagnostic value of integrated positron emission tomography-computed tomography (PET/CT) or single-photon emission computed tomography (SPECT)/CT images compared with PET or SPECT alone, or PET or SPECT correlated with a CT obtained at a different time includes the following: (1) improvement in lesion detection on both CT and PET or SPECT images, (2) improvement in the localization of foci of uptake resulting in better differentiation of physiological from pathologic uptake, (3) precise localization of the malignant foci, for example, in the skeleton vs soft tissue or liver vs adjacent bowel or node (4) characterization of serendipitous lesions, and (5) confirmation of small, subtle, or unusual lesions. The use of these techniques can occur at the time of initial diagnosis, in assessing the early response of disease to treatment, at the conclusion of treatment, and in continuing follow-up of patients. PET/CT and SPECT/CT fusion images affect the clinical management in a significant proportion of patients with a wide range of diseases by (1) guiding further procedures, (2) excluding the need of further procedures, (3) changing both inter- and intramodality therapy, including soon after treatment has been initiated, and (4) by providing prognostic information. PET/CT fusion images have the potential to provide important information to guide the biopsy of a mass to active regions of the tumor and to provide better maps than CT alone to modulate field and dose of radiation therapy. It is expected that the role of PET/CT and SPECT/CT in changing management will continue to evolve in the future and that these tools will be fundamental components of the truly "personalized medicine" we are striving to deliver.
Collapse
Affiliation(s)
- Dominique Delbeke
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232-2675, USA.
| | | | | | | |
Collapse
|
116
|
|
117
|
Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009; 16:1108-33. [PMID: 19427800 DOI: 10.1016/j.acra.2009.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 01/01/2023]
Abstract
The role of positron emission tomography (PET) during the past decade has evolved rapidly from that of a pure research tool to a methodology of enormous clinical potential. (18)F-fluorodeoxyglucose (FDG)-PET is currently the most widely used probe in the diagnosis, staging, assessment of tumor response to treatment, and radiation therapy planning because metabolic changes generally precede the more conventionally measured parameter of change in tumor size. Data accumulated rapidly during the last decade, thus validating the efficacy of FDG imaging and many other tracers in a wide variety of malignant tumors with sensitivities and specificities often in the high 90 percentile range. As a result, PET/computed tomography (CT) had a significant impact on the management of patients because it obviated the need for further evaluation, guided further diagnostic procedures, and assisted in planning therapy for a considerable number of patients. On the other hand, the progress in radiation therapy technology has been enormous during the last two decades, now offering the possibility to plan highly conformal radiation dose distributions through the use of sophisticated beam targeting techniques such as intensity-modulated radiation therapy (IMRT) using tomotherapy, volumetric modulated arc therapy, and many other promising technologies for sculpted three-dimensional (3D) dose distribution. The foundation of molecular imaging-guided radiation therapy lies in the use of advanced imaging technology for improved definition of tumor target volumes, thus relating the absorbed dose information to image-based patient representations. This review documents technological advancements in the field concentrating on the conceptual role of molecular PET/CT imaging in radiation therapy treatment planning and related image processing issues with special emphasis on segmentation of medical images for the purpose of defining target volumes. There is still much more work to be done and many of the techniques reviewed are themselves not yet widely implemented in clinical settings.
Collapse
|
118
|
Simultaneous imaging of magnetic resonance imaging and positron emission tomography by means of MRI-compatible optic fiber-based PET: a validation study in ex vivo rat brain. Jpn J Radiol 2009; 27:252-6. [DOI: 10.1007/s11604-009-0328-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
119
|
Abstract
Multimodality small-animal molecular imaging has become increasingly important as transgenic and knockout mice are produced to model human diseases. With the ever-increasing number and importance of human disease models, particularly in rodents (mice and rats), the ability of high-resolution multimodality molecular imaging instrumentation to contribute unique information is becoming more common and necessary. Multimodality imaging with high spatial resolution and good sensitivity, which combines modalities and records sequentially or simultaneously complementary information, offers many advantages in certain research experiments. This article discusses the current trends and new horizons in preclinical multimodality imaging in-vivo and its role in biomedical research.
Collapse
Affiliation(s)
- David B Stout
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine at UCLA, 570 Westwood Plaza, CNSI Building, Room 2151, Los Angeles, CA 90095, USA
| | - Habib Zaidi
- Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland.
| |
Collapse
|
120
|
Abstract
INTRODUCTION Magnetic resonance (MR) methods are non-invasive techniques to provide detailed, multi-parametric information on human anatomy, function and metabolism. Sensitivity, specificity, spatial and temporal resolution may, however, vary depending on hardware (e.g., field strength, gradient strength and speed) and software (optimised measurement protocols and parameters for the various techniques). Furthermore, multi-modality imaging may enhance specificity to better characterise complex disease patterns. OBJECTIVE Positron emission tomography (PET) is an interesting, largely complementary modality, which might be combined with MR. Despite obvious advantages, combining these rather different physical methods may also pose challenging problems. At this early stage, it seems that PET quality may be preserved in the magnetic field and, if an adequate detector material is used for the PET, MR sensitivity should not be significantly degraded. Again, this may vary for the different MR techniques, whereby functional and metabolic MR is more susceptible than standard anatomical imaging. DISCUSSION Here we provide a short introduction to MR basics and MR techniques, also discussing advantages, artefacts and problems when MR hardware and PET detectors are combined. In addition to references for more detailed descriptions of MR fundamentals and applications, we provide an early outlook on this novel and exciting multi-modality approach to PET/MR.
Collapse
|
121
|
Abstract
INTRODUCTION Hybrid imaging systems providing morphological and functional data in a single session have been available for oncological imaging for some time. So far, computed tomography (CT) has been the morphological method-of-choice for inclusion into these hybrid imaging systems. However, recently, research has focused on hardware-based fusion of function with magnetic resonance imaging (MRI) rather than CT. OBJECTIVES Now that the first head-only positron emission tomography (PET)/MRI systems have been installed and whole-body systems are to be expected in the near future, potential indications in clinical oncology have to be addressed. DISCUSSION This article discusses potential indications of PET/MRI in whole-body oncology imaging. Potential advantages and disadvantages compared with currently available hybrid imaging systems will be reviewed.
Collapse
|
122
|
Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 2009; 36 Suppl 1:S56-68. [PMID: 19194703 DOI: 10.1007/s00259-009-1078-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Combined PET/MRI allows for multi-parametric imaging and reveals one or more functional processes simultaneously along with high-resolution morphology. Especially in small-animal research, where high soft tissue contrast is required, and the scan time as well as radiation dose are critical factors, the combination of PET and MRI would be beneficial compared with PET/CT. DEVELOPMENT In the mid-1990's, several research groups used different approaches to integrate PET detectors into high-field MRI. First, systems were based on optical fibres guiding the scintillation light to the PMT's, which reside outside the fringe magnetic field. Recent advances in gamma ray detector technology, which were initiated mainly by the advent of avalanche photodiodes (APD's) as well as the routine availability of fast scintillation materials like lutetium oxyorthosilicate (LSO), paved the way towards the development of fully magnetic-field-insensitive high-performance PET detectors. TECHNOLOGY Current animal PET/MR technologies are reviewed and pitfalls when engineering a full integration of a PET and a high-field MRI are discussed. Compact PET detectors can be integrated in small-bore, high-field MRI tomographs. Detailed performance evaluations have shown that the mutual interference between the two imaging systems could be minimized. The performance of all major MR applications, ranging from T1- or T2-weighted imaging up to echo-planar imaging (EPI) for functional MRI (fMRI) or magnetic resonance spectroscopy (MRS), could be maintained, even when the PET insert was built into the MRI and acquiring PET data simultaneously. Similarly, the PET system performance was not influenced by the static magnetic field or applied MRI sequences. APPLICATIONS Initial biomedical research applications range from the combination of functional information from PET with the anatomical information from the MRI to multi-functional imaging combining metabollic PET and MRI data. DISCUSSION Compared to other multi-modality approaches PET/MR offers a multitude of complementary function and anatomical information. The ability to obtain simultaneous PET and MRI data with this new imaging modality could have tremendous impact on small animal imaging research.
Collapse
|
123
|
Cancer’s craving for sugar: an opportunity for clinical exploitation. J Cancer Res Clin Oncol 2009; 135:867-77. [DOI: 10.1007/s00432-009-0590-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/09/2009] [Indexed: 12/22/2022]
|
124
|
Gamble JHP, Scott G, Ormerod JOM, Frenneaux MP. Pathophysiology of coronary artery disease: the case for multiparametric imaging. Expert Rev Cardiovasc Ther 2009; 7:299-310. [PMID: 19296768 DOI: 10.1586/14779072.7.3.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interventions to treat coronary artery disease are available but they must be targeted at the correct individuals (and indeed lesions), in order to gain maximal benefit with the minimal adverse effects. Coronary contrast angiography is not able to provide all the information required for the assessment of the effects of artery disease. Other imaging modalities are of growing importance as they can reduce radiation exposure and invasiveness of screening, as well as providing important extra information. The ideal 'multiparametric' imaging technique would assess anatomy, viability and lesion activity in a single quick scan. Currently, MRI is the technology closest to achieving this ideal, although the existing technology still has some limitations. This review discusses the currently available techniques for the imaging of coronary anatomy and of myocardial viability, and considers their benefits and limitations. We also discuss the developing field of imaging molecularly targeted to active coronary lesions. Finally we provide a 5-year view of the current and likely future optimal imaging strategies.
Collapse
Affiliation(s)
- James H P Gamble
- Department of Medicine, Royal Berkshire Hospital, Reading, Berkshire, UK.
| | | | | | | |
Collapse
|
125
|
Navigating beyond the 6th dimension: a challenge in the era of multi-parametric molecular imaging. Eur J Nucl Med Mol Imaging 2009; 36:1025-8. [DOI: 10.1007/s00259-009-1095-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
126
|
Maldonado A. PET-TC en oncología: la importancia de un equipo multidisciplinar. RADIOLOGIA 2009; 51:6-14; quiz 118. [DOI: 10.1016/s0033-8338(09)70400-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/21/2008] [Indexed: 11/26/2022]
|
127
|
|
128
|
Boerman OC, Oyen WJG. Multimodality probes: amphibian cars for molecular imaging. J Nucl Med 2008; 49:1213-4. [PMID: 18632805 DOI: 10.2967/jnumed.108.052274] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Otto C Boerman
- Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
129
|
Zaidi H, Montandon ML, Alavi A. The Clinical Role of Fusion Imaging Using PET, CT, and MR Imaging. PET Clin 2008; 3:275-91. [DOI: 10.1016/j.cpet.2009.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
130
|
Lucignani G. PET–MRI synergy in molecular, functional and anatomical cancer imaging. Eur J Nucl Med Mol Imaging 2008; 35:1550-3. [DOI: 10.1007/s00259-008-0829-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|