101
|
Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 2010; 17:1603-15. [PMID: 21135147 DOI: 10.1158/1078-0432.ccr-10-2563] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE To assess the feasibility, safety, and toxicity of autologous tumor lysate-pulsed dendritic cell (DC) vaccination and toll-like receptor (TLR) agonists in patients with newly diagnosed and recurrent glioblastoma. Clinical and immune responses were monitored and correlated with tumor gene expression profiles. EXPERIMENTAL DESIGN Twenty-three patients with glioblastoma (WHO grade IV) were enrolled in this dose-escalation study and received three biweekly injections of glioma lysate-pulsed DCs followed by booster vaccinations with either imiquimod or poly-ICLC adjuvant every 3 months until tumor progression. Gene expression profiling, immunohistochemistry, FACS, and cytokine bead arrays were performed on patient tumors and peripheral blood mononuclear cells. RESULTS DC vaccinations are safe and not associated with any dose-limiting toxicity. The median overall survival from the time of initial surgical diagnosis of glioblastoma was 31.4 months, with a 1-, 2-, and 3-year survival rate of 91%, 55%, and 47%, respectively. Patients whose tumors had mesenchymal gene expression signatures exhibited increased survival following DC vaccination compared with historic controls of the same genetic subtype. Tumor samples with a mesenchymal gene expression signature had a higher number of CD3(+) and CD8(+) tumor-infiltrating lymphocytes compared with glioblastomas of other gene expression signatures (P = 0.006). CONCLUSION Autologous tumor lysate-pulsed DC vaccination in conjunction with TLR agonists is safe as adjuvant therapy in newly diagnosed and recurrent glioblastoma patients. Our results suggest that the mesenchymal gene expression profile may identify an immunogenic subgroup of glioblastoma that may be more responsive to immune-based therapies.
Collapse
Affiliation(s)
- Robert M Prins
- Department of Neurosurgery, Brain Research Institute, The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California 90095-6901, USA.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Dai XJ, Jiang WJ, Wang WM, Zhao SJ. Drug or vaccine?: selecting the appropriate treatment for malignant glioma patients. Drugs 2010; 70:1477-86. [PMID: 20687616 DOI: 10.2165/11538040-000000000-00000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Malignant gliomas are the most common and aggressive form of brain tumour. Current combinations of aggressive surgical resection, radiation therapy and chemotherapy regimens do not significantly improve long-term patient survival for these cancers. Therefore, investigative therapies including tumour vaccines have targeted this devastating condition. This article reviews evidence and data on chemotherapy and immunotherapy for a personalized medicine approach in order to enable physicians to select the appropriate treatment for glioma patients. Dendritic cell- and peptide-based therapy for gliomas seems to be safe and without major adverse effects. Gene-modified vaccines have also shown promise in the treatment of malignant gliomas. The concept of 'personalized medicine' is currently important in oncology treatment development. Using a personalized medicine approach, it may be necessary to evaluate the molecular genetic abnormalities in individual patient tumours, and such findings should be the mainstay of immunotherapeutic strategies designed for the individual patient.
Collapse
Affiliation(s)
- Xue-jun Dai
- Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, People's Republic of China
| | | | | | | |
Collapse
|
103
|
Michaelis M, Baumgarten P, Mittelbronn M, Driever PH, Doerr HW, Cinatl J. Oncomodulation by human cytomegalovirus: novel clinical findings open new roads. Med Microbiol Immunol 2010; 200:1-5. [PMID: 20967552 DOI: 10.1007/s00430-010-0177-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 12/11/2022]
Abstract
The question whether human cytomegalovirus may affect cancer diseases has been discussed (very controversially) for decades. There are convinced believers and strict opponents of the idea that HCMV might be able to play a role in the course of cancer diseases. In parallel, the number of published reports on the topic is growing. Recently published and presented (Ranganathan P, Clark P, Kuo JS, Salamat S, Kalejta RF. A Survey of Human Cytomegalovirus Genomic Loci Present in Glioblastoma Multiforme Tissue Samples. 35th Annual International Herpes Workshop, Salt Lake City, 2010) data on HCMV detection in glioblastoma tissues and colocalisation of HCMV proteins with cellular proteins known to be relevant for glioblastoma progression motivated us to recapitulate the current state of evidence.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
104
|
Bongers G, Maussang D, Muniz LR, Noriega VM, Fraile-Ramos A, Barker N, Marchesi F, Thirunarayanan N, Vischer HF, Qin L, Mayer L, Harpaz N, Leurs R, Furtado GC, Clevers H, Tortorella D, Smit MJ, Lira SA. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. J Clin Invest 2010; 120:3969-78. [PMID: 20978345 DOI: 10.1172/jci42563] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022] Open
Abstract
US28 is a constitutively active chemokine receptor encoded by CMV (also referred to as human herpesvirus 5), a highly prevalent human virus that infects a broad spectrum of cells, including intestinal epithelial cells (IECs). To study the role of US28 in vivo, we created transgenic mice (VS28 mice) in which US28 expression was targeted to IECs. Expression of US28 was detected in all IECs of the small and large intestine, including in cells expressing leucine rich repeat containing GPCR5 (Lgr5), a marker gene of intestinal epithelial stem cells. US28 expression in IECs inhibited glycogen synthase 3β (GSK-3β) function, promoted accumulation of β-catenin protein, and increased expression of Wnt target genes involved in the control of the cell proliferation. VS28 mice showed a hyperplastic intestinal epithelium and, strikingly, developed adenomas and adenocarcinomas by 40 weeks of age. When exposed to an inflammation-driven tumor model (azoxymethane/dextran sodium sulfate), VS28 mice developed a significantly higher tumor burden than control littermates. Transgenic coexpression of the US28 ligand CCL2 (an inflammatory chemokine) increased IEC proliferation as well as tumor burden, suggesting that the oncogenic activity of US28 can be modulated by inflammatory factors. Together, these results indicate that expression of US28 promotes development of intestinal dysplasia and cancer in transgenic mice and suggest that CMV infection may facilitate development of intestinal neoplasia in humans.
Collapse
Affiliation(s)
- Gerold Bongers
- Immunology Institute, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol 2010; 103:231-8. [PMID: 20820869 DOI: 10.1007/s11060-010-0383-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/21/2010] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly lethal brain tumor affecting children and adults, with the majority of affected individuals dying from their disease by 2 years following diagnosis. Other groups have reported the association of cytomegalovirus (CMV) with GBM, and we sought to confirm these findings in a large series of patients with primary GBM from our institution. Immunohistochemical analysis of paraffin embedded tissue sections was performed on 49 newly diagnosed GBM tumors, the largest series reported to date. We confirmed the presence of CMV pp65 on 25/49 (51%) and of IE1 on 8/49 (16%) of these tumors. While pp65 and IE1 are generally found in the nucleus of cells that are permissibly infected by CMV, GBM in this series had mostly cytoplasmic staining, with only 16% having nuclear staining for one or both of these antigens. We infected GBM cell lines with a laboratory strain of CMV, and found that most of the staining was cytoplasmic, with some perinuclear localization of IE1. To test the potential for CMV infected GBM cells to be recognized by CMV pp65 and IE1 specific cytotoxic T lymphocytes (CTL), we used CMV infected GBM cell lines in cytotoxicity assays with human leukocyte antigen partially matched CMV CTL. Lysis of CMV infected GBM tumor cells was accentuated by pre-treating these cell lines with either the demethylating agent decitabine or interferon-γ, both of which were shown to increase MHC Class I and II expression on tumor cells in vitro. These studies confirm the presence of CMV pp65 or IE1 on approximately half of GBM, with the possibility that CMV positive tumor cells can be recognized by CMV pp65/IE1 specific T cells.
Collapse
|
106
|
Abstract
Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential.
Collapse
|
107
|
Söderlund J, Erhardt S, Kast RE. Acyclovir inhibition of IDO to decrease Tregs as a glioblastoma treatment adjunct. J Neuroinflammation 2010; 7:44. [PMID: 20691089 PMCID: PMC2925358 DOI: 10.1186/1742-2094-7-44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/06/2010] [Indexed: 11/16/2022] Open
Abstract
Regulatory T cells, Tregs, are a subset of lymphocytes that have immunosuppressive attributes. They are elevated in blood of glioblastoma patients and within this tumor's tissue itself. Indoleamine 2,3-dioxygenase, IDO, converts tryptophan to kynurenine. IDO activity enhances Treg formation by pathways that are unknown. Experimentally, inhibition of IDO decreases Treg function and number in rodents. The common anti-viral agent acyclovir inhibits IDO. Acyclovir may thereby decrease Treg function in glioblastoma. If it can be confirmed that Treg counts are elevated in glioblastoma patients' tumor tissue, and if we can document acyclovir's lowering of tissue Treg counts by a small trial of acyclovir in pre-operative glioblastoma patients, a trial of acyclovir effect on survival should be done given the current poor prognosis of glioblastoma and the well-established safety and low side effect burden of acyclovir.
Collapse
Affiliation(s)
- Johan Söderlund
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
108
|
Barami K. Oncomodulatory mechanisms of human cytomegalovirus in gliomas. J Clin Neurosci 2010; 17:819-23. [DOI: 10.1016/j.jocn.2009.10.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/25/2009] [Indexed: 11/15/2022]
|
109
|
Chronic viral infection and primary central nervous system malignancy. J Neuroimmune Pharmacol 2010; 5:387-403. [PMID: 20387126 PMCID: PMC2914282 DOI: 10.1007/s11481-010-9204-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/05/2010] [Indexed: 01/08/2023]
Abstract
Primary central nervous system (CNS) tumors cause significant morbidity and mortality in both adults and children. While some of the genetic and molecular mechanisms of neuro-oncogenesis are known, much less is known about possible epigenetic contributions to disease pathophysiology. Over the last several decades, chronic viral infections have been associated with a number of human malignancies. In primary CNS malignancies, two families of viruses, namely polyomavirus and herpesvirus, have been detected with varied frequencies in a number of pediatric and adult histological tumor subtypes. However, establishing a link between chronic viral infection and primary CNS malignancy has been an area of considerable controversy, due in part to variations in detection frequencies and methodologies used among researchers. Since a latent viral neurotropism can be seen with a variety of viruses and a widespread seropositivity exists among the population, it has been difficult to establish an association between viral infection and CNS malignancy based on epidemiology alone. While direct evidence of a role of viruses in neuro-oncogenesis in humans is lacking, a more plausible hypothesis of neuro-oncomodulation has been proposed. The overall goals of this review are to summarize the many human investigations that have studied viral infection in primary CNS tumors, discuss potential neuro-oncomodulatory mechanisms of viral-associated CNS disease and propose future research directions to establish a more firm association between chronic viral infections and primary CNS malignancies.
Collapse
|
110
|
Agarwalla PK, Barnard ZR, Curry WT. Virally mediated immunotherapy for brain tumors. Neurosurg Clin N Am 2009; 21:167-79. [PMID: 19944975 DOI: 10.1016/j.nec.2009.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain tumors are a leading cause of mortality and morbidity in the United States. Malignant brain tumors occur in approximately 80,000 adults. Furthermore, the average 5-year survival rate for malignant brain tumors across all ages and races is approximately 30% and has remained relatively static over the past few decades, showing the need for continued research and progress in brain tumor therapy. Improved techniques in molecular biology have expanded understanding of tumor genetics and permitted viral engineering and the anticancer therapeutic use of viruses as directly cytotoxic agents and as gene vectors. Preclinical models have shown promising antitumor effects, and generation of clinical grade vectors is feasible. In parallel to these developments, better understanding of antitumor immunity has been accompanied by progress in cancer immunotherapy, the goal of which is to stimulate host rejection of a growing tumor. This article reviews the intersection between the use of viral therapy and immunotherapy in the treatment of malignant gliomas. Each approach shows great promise on its own and in combined or integrated forms.
Collapse
Affiliation(s)
- Pankaj K Agarwalla
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
111
|
Söderberg-Nauclér C. Protection from Cancer in Kidney Transplant Patients by γδ T Cells: Role of CMV Infection? J Am Soc Nephrol 2009; 21:11-3. [DOI: 10.1681/asn.2009111166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
112
|
Gardner SL, Ahmed N, Okada H. Immunotherapy for pediatric central nervous system tumors. Biol Blood Marrow Transplant 2009; 16:S75-81. [PMID: 19896544 DOI: 10.1016/j.bbmt.2009.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sharon L Gardner
- Division of Pediatric Hematology/Oncology, Steven D. Hassenfeld Children's Center for Cancer and Blood Disorders, New York University, New York, New York, USA.
| | | | | |
Collapse
|
113
|
Candolfi M, Yagiz K, Foulad D, Alzadeh GE, Tesarfreund M, Muhammad AKMG, Puntel M, Kroeger KM, Liu C, Lee S, Curtin JF, King GD, Lerner J, Sato K, Mineharu Y, Xiong W, Lowenstein PR, Castro MG. Release of HMGB1 in response to proapoptotic glioma killing strategies: efficacy and neurotoxicity. Clin Cancer Res 2009; 15:4401-14. [PMID: 19570774 DOI: 10.1158/1078-0432.ccr-09-0155] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In preparation for a phase I clinical trial using a combined cytotoxic/immunotherapeutic strategy with adenoviruses (Ad) expressing Flt3L (Ad-Flt3L) and thymidine kinase (Ad-TK) to treat glioblastoma (GBM), we tested the hypothesis that Ad-TK+GCV would be the optimal tumor-killing agent in relation to efficacy and safety when compared with other proapoptotic approaches. EXPERIMENTAL DESIGN The efficacy and neurotoxicity of Ad-TK+GCV was compared with Ads encoding the proapoptotic cytokines [tumor necrosis factor-alpha, tumor necrosis factor-related apoptosis-inducing factor (TRAIL), and Fas ligand (FasL)], alone or in combination with Ad-Flt3L. In rats bearing small GBMs (day 4), only Ad-TK+GCV or Ad-FasL improved survival. RESULTS In rats bearing large GBMs (day 9), the combination of Ad-Flt3L with Ad-FasL did not improve survival over FasL alone, whereas Ad-Flt3L combined with Ad-TK+GCV led to 70% long-term survival. Expression of FasL and TRAIL caused severe neuropathology, which was not encountered when we used Ad-TK+/-Ad-Flt3L. In vitro, all treatments elicited release of high mobility group box 1 protein (HMGB1) from dying tumor cells. In vivo, the highest levels of circulating HMGB1 were observed after treatment with Ad-TK+GCV+Ad-Flt3L; HMGB1 was necessary for the therapeutic efficacy of AdTK+GCV+Ad-Flt3L because its blockade with glycyrrhizin completely blocked tumor regression. We also showed the killing efficacy of Ad-TK+GCV in human GBM cell lines and GBM primary cultures, which also elicited release of HMGB1. CONCLUSIONS Our results indicate that Ad-TK+GCV+Ad-Flt3L exhibit the highest efficacy and safety profile among the several proapoptotic approaches tested. The results reported further support the implementation of this combined approach in a phase I clinical trial for GBM.
Collapse
Affiliation(s)
- Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Ghulam Muhammad AKM, Candolfi M, King GD, Yagiz K, Foulad D, Mineharu Y, Kroeger KM, Treuer KA, Nichols WS, Sanderson NS, Yang J, Khayznikov M, Van Rooijen N, Lowenstein PR, Castro MG. Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression. Clin Cancer Res 2009; 15:6113-27. [PMID: 19789315 DOI: 10.1158/1078-0432.ccr-09-1087] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma multiforme is a deadly primary brain cancer. Because the tumor kills due to recurrences, we tested the hypothesis that a new treatment would lead to immunological memory in a rat model of recurrent glioblastoma multiforme. EXPERIMENTAL DESIGN We developed a combined treatment using an adenovirus (Ad) expressing fms-like tyrosine kinase-3 ligand (Flt3L), which induces the infiltration of immune cells into the tumor microenvironment, and an Ad expressing herpes simplex virus-1-thymidine kinase (TK), which kills proliferating tumor cells in the presence of ganciclovir. RESULTS This treatment induced immunological memory that led to rejection of a second glioblastoma multiforme implanted in the contralateral hemisphere and of an extracranial glioblastoma multiforme implanted intradermally. Rechallenged long-term survivors exhibited anti-glioblastoma multiforme-specific T cells and displayed specific delayed-type hypersensitivity. Using depleting antibodies, we showed that rejection of the second tumor was dependent on CD8(+) T cells. Circulating anti-glioma antibodies were observed when glioblastoma multiforme cells were implanted intradermally in naïve rats or in long-term survivors. However, rats bearing intracranial glioblastoma multiforme only exhibited circulating antitumoral antibodies upon treatment with Ad-Flt3L + Ad-TK. This combined treatment induced tumor regression and release of the chromatin-binding protein high mobility group box 1 in two further intracranial glioblastoma multiforme models, that is, Fisher rats bearing intracranial 9L and F98 glioblastoma multiforme cells. CONCLUSIONS Treatment with Ad-Flt3L + Ad-TK triggered systemic anti-glioblastoma multiforme cellular and humoral immune responses, and anti-glioblastoma multiforme immunological memory. Release of the chromatin-binding protein high mobility group box 1 could be used as a noninvasive biomarker of therapeutic efficacy for glioblastoma multiforme. The robust treatment efficacy lends further support to its implementation in a phase I clinical trial.
Collapse
Affiliation(s)
- A K M Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Human papillomavirus 16 E7 inactivator of retinoblastoma family proteins complements human cytomegalovirus lacking UL97 protein kinase. Proc Natl Acad Sci U S A 2009; 106:16823-8. [PMID: 19805380 DOI: 10.1073/pnas.0901521106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several different families of DNA viruses encode proteins that inactivate the cellular retinoblastoma tumor suppressor protein (pRb), which normally functions to bind E2F transcription factors and restrict expression of genes necessary for cellular processes including DNA replication. Human cytomegalovirus (HCMV) UL97, a protein kinase functionally orthologous to cellular cyclin-dependent kinases, phosphorylates pRb on inactivating residues during HCMV infection. To assess if such phosphorylation is biologically relevant, we tested whether the human papillomavirus type 16 E7 protein, which inactivates pRb family proteins by direct binding and destabilization, could substitute for UL97 during HCMV infection. In the absence of UL97, expression of wild-type E7 protein, but not a mutant E7 unable to bind pRb family proteins, restored E2F-responsive cellular gene expression, late viral gene expression, and viral DNA synthesis to levels normally observed during wild-type virus infection of quiescent cells. UL97-null mutants exhibited more pronounced defects in virus production and DNA synthesis in quiescent cells as compared to serum-fed, cycling cells. E7 expression substantially enhanced infectious virus production in quiescent cells, but did not complement the defects observed during UL97-null virus infection of cycling cells. Thus, a primary role of UL97 is to inactivate pRb family proteins during infection of quiescent cells, and this inactivation likely abets virus replication by induction of cellular E2F-responsive genes. Our findings have implications for human cytomegalovirus disease and for drugs that target UL97.
Collapse
|
116
|
Abstract
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. EGFR variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed in GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon, resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls of using this approach are discussed.
Collapse
Affiliation(s)
- Amy B Heimberger
- University of Texas MD Anderson Cancer Center, Department of Neurosurgery, Unit 422, Houston, TX 77230-1402, USA.
| | | |
Collapse
|
117
|
Mitchell DA, Sampson JH. Toward effective immunotherapy for the treatment of malignant brain tumors. Neurotherapeutics 2009; 6:527-38. [PMID: 19560742 PMCID: PMC2763142 DOI: 10.1016/j.nurt.2009.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 12/26/2022] Open
Abstract
The immunologic treatment of cancer has long been heralded as a targeted molecular therapeutic with the promise of eradicating tumor cells with minimal damage to surrounding normal tissues. However, a demonstrative example of the efficacy of immunotherapy in modulating cancer progression is still lacking for most human cancers. Recent breakthroughs in our understanding of the mechanisms leading to full T-cell activation, and recognition of the importance of overcoming tumor-induced immunosuppressive mechanisms, have shed new light on how to generate effective anti-tumor immune responses in humans, and sparked a renewed and enthusiastic effort to realize the full potential of cancer immunotherapy. The immunologic treatment of invasive malignant brain tumors has not escaped this re-invigorated endeavor, and promising therapies are currently under active investigation in dozens of clinical trials at several institutions worldwide. This review will focus on some of the most important breakthroughs in our understanding of how to generate potent anti-tumor immune responses, and some of the clear challenges that lie ahead in achieving effective immunotherapy for the majority of patients with malignant brain tumors. A review of immunotherapeutic strategies currently under clinical evaluation, as well as an outline of promising novel approaches on the horizon, is included to provide perspective on the active and stalwart progress toward effective immunotherapy for the treatment of malignant brain tumors.
Collapse
Affiliation(s)
- Duane A Mitchell
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
118
|
Crawford JR, Santi MR, Cornelison R, Sallinen SL, Haapasalo H, MacDonald TJ. Detection of human herpesvirus-6 in adult central nervous system tumors: predominance of early and late viral antigens in glial tumors. J Neurooncol 2009; 95:49-60. [PMID: 19424665 DOI: 10.1007/s11060-009-9908-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 04/22/2009] [Indexed: 12/21/2022]
Abstract
The purpose is to determine the incidence of active and latent human herpesvirus-6 (HHV-6) infection in a large cohort of adult primary and recurrent CNS tumors. We screened a tissue microarray (TMA) containing more than 200 adult primary and recurrent CNS tumors with known clinical information for the presence of HHV-6 DNA by in situ hybridization (ISH) and protein by immunohistochemistry (IHC). One hundred six of 224 (47%) CNS tumors were positive for HHV-6 U57 Major Capsid Protein (MCP) gene by ISH compared to 0/25 non tumor control brain (P = 0.001). Fourteen of 30 (47%) tumors were HHV-6 MCP positive by nested PCR compared to 0/25 non-tumor brain controls (P = 0.001), revealing HHV-6 Variant A in 6 of 14 samples. HHV-6A/B early (p41) and late (gp116/64/54) antigens were detected by IHC in 66 of 277 (24%) (P = 0.003) and 84 of 282 (35%) (P = 0.002) tumors, respectively, suggesting active infection. HHV-6 p41 (P = 0.645) and gp116/64/54 (P = 0.198) antigen detection was independent of recurrent disease. Glial tumors were 3 times more positive by IHC compared to non glial tumors for both HHV-6 gp116/64/54 (P = 0.0002) and HHV-6 p41 (P = 0.004). Kaplan Meier survival analysis showed no effect of HHV-6 gp116/64/54 (P = 0.852) or HHV-6 p41 (P = 0.817) antigen detection on survival. HHV-6 early and late antigens are detected in adult primary and recurrent CNS tumors more frequently in glial tumors. We hypothesize that the glial-tropic features of HHV-6 may play an important modifying role in tumor biology that warrants further investigation.
Collapse
Affiliation(s)
- John R Crawford
- Department of Neurology, The George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- The Brain Tumor Institute, Children's National Medical Center, The George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Department of Neurology, University of California, San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, USA.
| | - Maria Rita Santi
- Department of Pathology, The George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
- The Brain Tumor Institute, Children's National Medical Center, The George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Robbie Cornelison
- Molecular Genetics Section, The National Cancer Institute, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Satu-Leena Sallinen
- Department of Pediatrics, Genetics Outpatient Clinics, Tampere University Hospital, P.O. Box 2000, Tampere, 33521, Finland
| | - Hannu Haapasalo
- Department of Pathology, Tampere University Hospital, P.O. Box 2000, Tampere, 33521, Finland
| | - Tobey J MacDonald
- Department of Hematology-Oncology, The George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
- The Brain Tumor Institute, Children's National Medical Center, The George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| |
Collapse
|
119
|
The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 2009; 11:1-9. [PMID: 19107226 DOI: 10.1593/neo.81178] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 02/08/2023] Open
Abstract
Although human cytomegalovirus (HCMV) is generally not regarded to be an oncogenic virus, HCMV infection has been implicated in malignant diseases from different cancer entities. On the basis of our experimental findings, we developed the concept of "oncomodulation" to better explain the role of HCMV in cancer. Oncomodulation means that HCMV infects tumor cells and increases their malignancy. By this concept, HCMV was proposed to be a therapeutic target in a fraction of cancer patients. However, the clinical relevance of HCMV-induced oncomodulation remains to be clarified. One central question that has to be definitively answered is if HCMV establishes persistent virus replication in tumor cells or not. In our eyes, recent clinical findings from different groups in glioblastoma patients and especially the detection of a correlation between the numbers of HCMV-infected glioblastoma cells and tumor stage (malignancy) strongly increase the evidence that HCMV may exert oncomodulatory effects. Here, we summarize the currently available knowledge about the molecular mechanisms that may contribute to oncomodulation by HCMV as well as the clinical findings that suggest that a fraction of tumors from different entities is indeed infected with HCMV.
Collapse
|
120
|
Michaelis M, Doerr HW, Cinatl J. Oncomodulation by human cytomegalovirus: evidence becomes stronger. Med Microbiol Immunol 2009; 198:79-81. [PMID: 19198878 DOI: 10.1007/s00430-009-0107-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | | | | |
Collapse
|
121
|
|
122
|
Abstract
The development of effective immunotherapy strategies for glioma requires adequate understanding of the unique immunological microenvironment in the central nervous system (CNS) and CNS tumors. Although the CNS is often considered to be an immunologically privileged site and poses unique challenges for the delivery of effector cells and molecules, recent advances in technology and discoveries in CNS immunology suggest novel mechanisms that may significantly improve the efficacy of immunotherapy against gliomas. In this review, we first summarize recent advances in the CNS and CNS tumor immunology. We address factors that may promote immune escape of gliomas. We also review advances in passive and active immunotherapy strategies for glioma, with an emphasis on lessons learned from recent early-phase clinical trials. We also discuss novel immunotherapy strategies that have been recently tested in non-CNS tumors and show great potential for application to gliomas. Finally, we discuss how each of these promising strategies can be combined to achieve clinical benefit for patients with gliomas.
Collapse
Affiliation(s)
- Hideho Okada
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
T-cell mediated immunotherapy is a conceptually attractive treatment option to envisage for glioma, since T lymphocytes can actively seek out neoplastic cells in the brain, and they have the potential to safely and specifically eliminate tumor. Some antigenic targets on glioma cells are already defined, and we can be optimistic that more will be discovered from progress in T-cell epitope identification and gene expression profiling of brain tumors. In parallel, advances in immunology (regional immunology, neuroimmunology, tumor immunology) now equip us to build upon the results from current immunotherapy trials in which the safety and feasibility of brain tumor immunotherapy have already been confirmed. We can now look to the next phase of immunotherapy, in which we must harness the most promising basic science advances and existing clinical expertise, and apply these to randomized clinical trials to determine the real clinical impact and applicability of these approaches for treating patients with currently incurable malignant brain tumors.
Collapse
Affiliation(s)
- Erwin G. Meir
- School of Medicine, Emory University, Clifton Road 1365C, Atlanta, 30322 U.S.A
| |
Collapse
|
124
|
|