101
|
Suzuki T. [Research on Analysis of Final Diagnosis and Prognostic Factors, and Development of New Therapeutic Drugs for Malignant Tumors (Especially Malignant Pediatric Tumors)]. YAKUGAKU ZASSHI 2020; 140:229-271. [PMID: 32009046 DOI: 10.1248/yakushi.19-00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outcomes of treatment for malignant pediatric tumors including leukemia are improving by conventional multimodal treatment with strong chemotherapy, surgical resection, radiotherapy, and bone marrow transplantation. However, patients with advanced neuroblastoma, metastatic Ewing's sarcoma family of tumor (ESFT), and metastatic osteosarcoma continue to have an extremely poor prognosis. Therefore novel therapeutic strategies are urgently needed to improve their survival. Apoptotic cell death is a key mechanism for normal cellular homeostasis. Intact apoptotic mechanisms are pivotal for embryonic development, tissue remodeling, immune regulation, and tumor regression. Genetic aberrations disrupting programmed cell death often underpin tumorigenesis and drug resistance. Moreover, it has been suggested that apoptosis or cell differentiation proceeds to spontaneous regression in early stage neuroblastoma. Therefore apoptosis or cell differentiation is a critical event in this cancer. We extracted many compounds from natural plants (Angelica keiskei, Alpinia officiarum, Lycaria puchury-major, Brassica rapa) or synthesized cyclophane pyridine, indirubin derivatives, vitamin K3 derivatives, burchellin derivatives, and GANT61, and examined their effects on apoptosis, cell differentiation, and cell cycle in neuroblastoma and ESFT cell lines compared with normal cells. Some compounds were very effective against these tumor cells. These results suggest that they may be applicable as an efficacious and safe drug for the treatment of malignant pediatric tumors.
Collapse
Affiliation(s)
- Takashi Suzuki
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University
| |
Collapse
|
102
|
Protein phosphatase 4 promotes Hedgehog signaling through dephosphorylation of Suppressor of fused. Cell Death Dis 2020; 11:686. [PMID: 32826873 PMCID: PMC7442787 DOI: 10.1038/s41419-020-02843-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023]
Abstract
Reversible phosphorylation of Suppressor of fused (Sufu) is essential for Sonic Hedgehog (Shh) signal transduction. Sufu is stabilized under dual phosphorylation of protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Its phosphorylation is reduced with the activation of Shh signaling. However, the phosphatase in this reversible phosphorylation has not been found. Taking advantage of a proteomic approach, we identified Protein phosphatase 4 regulatory subunit 2 (Ppp4r2), an interacting protein of Sufu. Shh signaling promotes the interaction of these two proteins in the nucleus, and Ppp4 also promotes dephosphorylation of Sufu, leading to its degradation and enhancing the Gli1 transcriptional activity. Finally, Ppp4-mediated dephosphorylation of Sufu promotes proliferation of medulloblastoma tumor cells, and expression of Ppp4 is positively correlated with up-regulation of Shh pathway target genes in the Shh-subtype medulloblastoma, underscoring the important role of this regulation in Shh signaling.
Collapse
|
103
|
Singh J, Suryan A, Kumar S, Sharma S. Phthalazinone Scaffold: Emerging Tool in the Development of Target Based Novel Anticancer Agents. Anticancer Agents Med Chem 2020; 20:2228-2245. [PMID: 32767957 DOI: 10.2174/1871520620666200807220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
Phthalazinones are important nitrogen-rich heterocyclic compounds which have been a topic of considerable medicinal interest because of their diversified pharmacological activities. This versatile scaffold forms a common structural feature for many bioactive compounds, which leads to the design and development of novel anticancer drugs with fruitful results. The current review article discusses the progressive development of novel phthalazinone analogues that are targets for various receptors such as PARP, EGFR, VEGFR-2, Aurora kinase, Proteasome, Hedgehog pathway, DNA topoisomerase and P-glycoprotein. It describes mechanistic insights into the anticancer properties of phthalazinone derivatives and also highlights various simple and economical techniques for the synthesis of phthalazinones.
Collapse
Affiliation(s)
- Jyoti Singh
- Chandigarh College of Pharmacy, Landran, Punjab, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Shweta Sharma
- Chandigarh College of Pharmacy, Landran, Punjab, India
| |
Collapse
|
104
|
Saddozai UAK, Wang F, Cheng Y, Lu Z, Akbar MU, Zhu W, Li Y, Ji X, Guo X. Gene expression profile identifies distinct molecular subtypes and potential therapeutic genes in Merkel cell carcinoma. Transl Oncol 2020; 13:100816. [PMID: 32771971 PMCID: PMC7412862 DOI: 10.1016/j.tranon.2020.100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare primary cutaneous neoplasm of neuroendocrine carcinoma of the skin. About 80% of the MCC occurs due to Merkel cell polyomavirus (MCPyV) and 20% of the tumors usually occur due to severe UV exposure which is a more aggressive type of MCC. It tends to have an increased incidence rate among elderly and immunosuppressed individuals. On therapeutic level, sub-classification of MCC through molecular subtyping has emerged as a promising technique for MCC prognosis. In current study, two consistent distinct molecular subtypes of MCCs were identified using gene expression profiling data. Subtypes I MCCs were associated with spliceosome, DNA replication and cellular pathways. On the other hand, genes overexpressed in subtype II were found active in TNF signalling pathway and MAPK signalling pathway. We proposed different therapeutic targets based on subtype specificity, such as PTCH1, CDKN2A, AURKA in case of subtype I and MCL1, FGFR2 for subtype II. Such findings may provide fruitful knowledge to understand the intrinsic subtypes of MCCs and the pathways involved in distinct subtype oncogenesis, and will further advance the knowledge in developing a specific therapeutic strategy for these MCC subtypes. Merkel cell carcinoma (MCC) a rare and highly aggressive neuroendocrine carcinoma of the skin Sub-classification of MCC through molecular subtyping Identification of two distinct molecular subtypes of MCCs using gene expression profiling data Classification of different therapeutic targets based on subtype specificity
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yu Cheng
- Pharmacy Department, Luoyang maternal and Child Health Hospital, Luoyang 471023, China
| | - Zhang Lu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
105
|
Hung HC, Liu CC, Chuang JY, Su CL, Gean PW. Inhibition of Sonic Hedgehog Signaling Suppresses Glioma Stem-Like Cells Likely Through Inducing Autophagic Cell Death. Front Oncol 2020; 10:1233. [PMID: 32793494 PMCID: PMC7393230 DOI: 10.3389/fonc.2020.01233] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) often recurs after radio- and chemotherapies leading to poor prognosis. Glioma stem-like cells (GSCs) contribute to drug resistance and recurrence. Thus, understanding cellular mechanism underlying the growth of GSCs is critical for the treatment of GBM. Here GSCs were isolated from human U87 GBM cells with magnetic-activated cell sorting (MACS) using CD133 as a marker. The CD133+ cells highly expressed sonic hedgehog (Shh) and were capable of forming tumor spheroids in vitro and tumor in vivo. Athymic mice received intracranial injection of luciferase transduced parental and CD133+ GBM cells was utilized as orthotopic GBM model. Inhibited Shh by LDE225 delayed GBM growth in vivo, and downregulated Ptch1 and Gli1. CD133+ cell proliferation was more sensitive to inhibition by LDE225 than that of CD133− cells. Treatment with LDE225 significantly reduced CD133+-derived tumor spheroid formation. Large membranous vacuoles appeared in the LDE225-treated cells concomitant with the conversion of LC3-I to LC3-II. In addition, LDE225-induced cell death was mitigated in the presence of autophagy inhibitor 3-methyladenine (3-MA). Tumor growth was much slower in Shh shRNA-knockdown mice than in control RNA-transfected mice. Conversely, tumor growth was faster in Shh overexpressed mice. Furthermore, combination of LDE225 and rapamycin treatment resulted in additive effect on LC3-I to LC3-II conversion and reduction in cell viability. However, LDE225 did not affect the phosphorylated level of mTOR. Similarly, amiodarone, an mTOR-independent autophagy enhancer, reduced CD133+ cell viability and tumor spheroid formation in vitro and exhibited anti-tumor activity in vivo. These results suggest that Shh inhibitor induces autophagy of CD133+ cells likely through mTOR independent pathway. Targeting Shh signal pathway may overcome chemoresistance and provide a therapeutic strategy for patients with malignant gliomas.
Collapse
Affiliation(s)
- Hui-Chi Hung
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Lin Su
- Division of Natural Sciences, Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
106
|
Tran U, Zhang GC, Eom R, Billingsley KL, Ondrus AE. Small Molecule Intervention in a Protein Kinase C-Gli Transcription Factor Axis. ACS Chem Biol 2020; 15:1321-1327. [PMID: 32479053 DOI: 10.1021/acschembio.0c00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrations in the Hedgehog (Hh) signaling pathway are responsible for a broad range of human cancers, yet only a subset rely on the activity of the clinical target, Smoothened (Smo). Emerging cases of cancers that are insensitive to Smo-targeting drugs demand new therapeutic targets and agents for inhibition. As such, we sought to pursue a recently discovered connection between the Hedgehog pathway transcription factors, the glioma-associated oncogene homologues (Glis), and protein kinase C (PKC) isozymes. Here, we report our assessment of a structurally diverse library of PKC effectors for their influence on Gli function. Using cell lines that employ distinct mechanisms of Gli activation up- and downstream of Smo, we identify a PKC effector that acts as a nanomolar Gli antagonist downstream of Smo through a mitogen-activated protein kinase kinase (MEK)-independent mechanism. This agent provides a unique tool to illuminate crosstalk between PKC isozymes and Hh signaling and new opportunities for therapeutic intervention in Hh pathway-dependent cancers.
Collapse
Affiliation(s)
- UyenPhuong Tran
- Department of Chemistry and Biochemistry, California State University Fullerton, 800 N State College Blvd, Fullerton, California 92831, United States
| | - Grace C. Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Ryan Eom
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave, Ithaca, New York 14853, United States
| | - Kelvin L. Billingsley
- Department of Chemistry and Biochemistry, California State University Fullerton, 800 N State College Blvd, Fullerton, California 92831, United States
| | - Alison E. Ondrus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
107
|
Lu VM, Pendleton C, Brown DA, Lakomkin N, Cho S, Miller KJ, Daniels DJ. Shaping Our Understanding of Medulloblastoma: A Bibliometric Analysis of the 100 Most Cited Articles. Clin Neurol Neurosurg 2020; 194:105895. [PMID: 32497953 DOI: 10.1016/j.clineuro.2020.105895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 05/03/2020] [Indexed: 01/03/2023]
Abstract
The clinical management of medulloblastoma has undergone significant transformation since the recent dawn of the molecular era. The aim of this analysis was to evaluate citation and other bibliometric characteristics of the 100 most cited medulloblastoma articles in the literature to better understand the current state of our research efforts into this diagnosis. Elsevier's Scopus database was searched for the 100 most cited articles that focused on medulloblastoma. Articles were dichotomized as either primarily basic science (BSc) or clinical (CL) articles. Various bibliometric parameters were summarized and compared between BSc and CL articles using Pearson's Chi-square and Mann Whitney U tests. Of the 100 most cited articles, 52 were characterized as BSc articles and 48 as CL articles. Overall median (range) values were as follows: citation count 252 (164-1,270); citation rate per year 17.5 (2.5-110); number of authors 11 (1-135); and publication year 2005 (1925-2014). Articles were published in a total of 40 different journals, and the majority originated in the US (n = 60). When compared to CL articles, BSc articles reported significantly greater citation rates per year (P < 0.01), and more recent years of publication (P < 0.01). In summary, although similar in overall proportion, BSc articles demonstrated significantly increased bibliometric parameters of impact in this field by the successful clustering molecular subtypes. Moving forward, it will be of great interest to see how the findings from these impactful BSc articles will translate into future clinical initiatives and subsequently high-impact CL articles.
Collapse
Affiliation(s)
- Victor M Lu
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.
| | - Courtney Pendleton
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Desmond A Brown
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Nikita Lakomkin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Steve Cho
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Kai J Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
108
|
Wang CC, Zhao Y, Chen X. Drug-pathway association prediction: from experimental results to computational models. Brief Bioinform 2020; 22:5835554. [PMID: 32393976 DOI: 10.1093/bib/bbaa061] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Effective drugs are urgently needed to overcome human complex diseases. However, the research and development of novel drug would take long time and cost much money. Traditional drug discovery follows the rule of one drug-one target, while some studies have demonstrated that drugs generally perform their task by affecting related pathway rather than targeting single target. Thus, the new strategy of drug discovery, namely pathway-based drug discovery, have been proposed. Obviously, identifying associations between drugs and pathways plays a key role in the development of pathway-based drug discovery. Revealing the drug-pathway associations by experiment methods would take much time and cost. Therefore, some computational models were established to predict potential drug-pathway associations. In this review, we first introduced the background of drug and the concept of drug-pathway associations. Then, some publicly accessible databases and web servers about drug-pathway associations were listed. Next, we summarized some state-of-the-art computational methods in the past years for inferring drug-pathway associations and divided these methods into three classes, namely Bayesian spare factor-based, matrix decomposition-based and other machine learning methods. In addition, we introduced several evaluation strategies to estimate the predictive performance of various computational models. In the end, we discussed the advantages and limitations of existing computational methods and provided some suggestions about the future directions of the data collection and the calculation models development.
Collapse
|
109
|
Zou H, Poore B, Broniscer A, Pollack IF, Hu B. Molecular Heterogeneity and Cellular Diversity: Implications for Precision Treatment in Medulloblastoma. Cancers (Basel) 2020; 12:cancers12030643. [PMID: 32164294 PMCID: PMC7139663 DOI: 10.3390/cancers12030643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Medulloblastoma, the most common pediatric malignant brain tumor, continues to have a high rate of morbidity and mortality in childhood. Recent advances in cancer genomics, single-cell sequencing, and sophisticated tumor models have revolutionized the characterization and stratification of medulloblastoma. In this review, we discuss heterogeneity associated with four major subgroups of medulloblastoma (WNT, SHH, Group 3, and Group 4) on the molecular and cellular levels, including histological features, genetic and epigenetic alterations, proteomic landscape, cell-of-origin, tumor microenvironment, and therapeutic approaches. The intratumoral molecular heterogeneity and intertumoral cellular diversity clearly underlie the divergent biology and clinical behavior of these lesions and highlight the future role of precision treatment in this devastating brain tumor in children.
Collapse
Affiliation(s)
- Han Zou
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (H.Z.); (I.F.P.)
- Pediatric Neurosurgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Brad Poore
- Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Alberto Broniscer
- Pediatric Neuro-Oncology Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Ian F. Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (H.Z.); (I.F.P.)
- Pediatric Neurosurgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (H.Z.); (I.F.P.)
- Pediatric Neurosurgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Correspondence: ; Tel.: +1-412-962-9457; Fax: +1-412-692-8906
| |
Collapse
|
110
|
Zhang R, Ma J, Avery JT, Sambandam V, Nguyen TH, Xu B, Suto MJ, Boohaker RJ. GLI1 Inhibitor SRI-38832 Attenuates Chemotherapeutic Resistance by Downregulating NBS1 Transcription in BRAF V600E Colorectal Cancer. Front Oncol 2020; 10:241. [PMID: 32185127 PMCID: PMC7058788 DOI: 10.3389/fonc.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1. Non-canonical activation of GLI1 is driven through oncogenic pathways in CRC, like the BRAFV600E mutation. GLI1 was identified as a novel regulator of NBS1 and discovered that by knocking down GLI1 levels in vitro, diminished NBS1 expression, increased DNA damage/apoptosis, and re-sensitization of 5-FU resistant cancer to treatment was observed. Furthermore, a novel GLI1 inhibitor, SRI-38832, which exhibited pharmacokinetic properties suitable for in vivo testing, was identified. GLI1 inhibition in a murine BRAFV600E variant xenograft model of CRC resulted in the same down-regulation of NBS1 observed in vitro as well as significant reduction of tumor growth/burden. GLI1 inhibition could therefore be a therapeutic option for 5-FU resistant and BRAFV600E variant CRC patients.
Collapse
Affiliation(s)
- Ruowen Zhang
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Jinlu Ma
- Department of Radiation Oncology, First Affiliated Hospital, Xian Jiaotong University, Xi'an, China
| | - Justin T. Avery
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Vijaya Sambandam
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Theresa H. Nguyen
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Bo Xu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mark J. Suto
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Rebecca J. Boohaker
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| |
Collapse
|
111
|
Niesen J, Ohli J, Sedlacik J, Dührsen L, Hellwig M, Spohn M, Holsten T, Schüller U. Pik3ca mutations significantly enhance the growth of SHH medulloblastoma and lead to metastatic tumour growth in a novel mouse model. Cancer Lett 2020; 477:10-18. [PMID: 32112900 DOI: 10.1016/j.canlet.2020.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumour in children with a poor outcome. Divided into four molecular subgroups, MB of the Sonic hedgehog (SHH) subgroup accounts for approximately 25% of the cases and is driven by mutations within components of the SHH pathway, such as its receptors PTCH1 or SMO. A fraction of these cases additionally harbour PIK3CA mutations, the relevance of which is so far unknown. To unravel the role of Pik3ca mutations alone or in combination with a constitutively activated SHH signalling pathway, transgenic mice were used. These mice show mutated variants within Smo, Ptch1 or Pik3ca genes in cerebellar granule neuron precursors, which represent the cellular origin of SHH MB. Our results show that Pik3ca mutations alone are insufficient to cause developmental alterations or to initiate MB. However, they significantly accelerate the growth of Shh MB, induce tumour spread throughout the cerebrospinal fluid, and result in lower survival rates of mice with a double Pik3caH1047R/SmoM2 or Pik3caH1047R/Ptch1 mutation. Therefore, PIK3CA mutations in SHH MB may represent a therapeutic target for first and second line combination treatments.
Collapse
Affiliation(s)
- Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Jasmin Ohli
- Centre for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jan Sedlacik
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany; Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
112
|
Liu X, Ding C, Tan W, Zhang A. Medulloblastoma: Molecular understanding, treatment evolution, and new developments. Pharmacol Ther 2020; 210:107516. [PMID: 32105673 DOI: 10.1016/j.pharmthera.2020.107516] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Medulloblastoma (MB) is the most common childhood malignant brain tumor, accounting for approximately 20% of all pediatric central nervous system tumors. Current standard treatments involving surgical interventions followed by craniospinal irradiation and adjuvant chemotherapy have severe motor and cognitive defects. Therefore, individualized treatment regimens with reduced toxicity designed according to the presence of specific oncogenic 'driver' genes are urgently demanded. To this end, recent genetic and epigenetic findings have advanced the classification of MB into the international consensus of four distinct MB molecular subgroups (WNT, SHH, Group 3, and Group 4) based on their respective molecular and histopathological characteristics. More recent studies have indicated that up to seven molecular subgroups exist in childhood MB. Moreover, studies on the inter- and intra-tumoral features of the four subgroups revealed that each subgroup contains variant subtypes. These results have greatly helped risk stratification of MB patients at diagnosis and significantly improved clinical treatment options. Herein, we highlight the recent advances and challenges associated with MB classification, and the development of therapeutic treatments targeting novel subgroup-specific molecular and epigenetic factors, especially those in the SHH-driven MB tumors.
Collapse
Affiliation(s)
- Xiaohua Liu
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyong Ding
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Ao Zhang
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
113
|
Penas-Prado M, Theeler BJ, Cordeiro B, Dunkel IJ, Hau P, Mahajan A, Robinson GW, Willmarth N, Aboud O, Aldape K, Butman JA, Gajjar A, Kelly W, Rao G, Raygada M, Siegel C, Romo CG, Armstrong TS, Gilbert MR. Proceedings of the Comprehensive Oncology Network Evaluating Rare CNS Tumors (NCI-CONNECT) Adult Medulloblastoma Workshop. Neurooncol Adv 2020; 2:vdaa097. [PMID: 33005896 PMCID: PMC7518566 DOI: 10.1093/noajnl/vdaa097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a rare brain tumor occurring more frequently in children in whom research has been primarily focused. Treatment recommendations in adults are mainly based on retrospective data and pediatric experience; however, molecular features and treatment tolerance differ between the 2 age groups. In adults, prognostic tools are suboptimal, late recurrences are typical, and long-term sequelae remain understudied. Treatment has not adapted to molecular classification advances; thus, the survival rate of adult MB has not improved. METHODS In 2017, the National Cancer Institute (NCI) received support from the Cancer Moonshot℠ to address the challenges and unmet needs of adults with rare central nervous system tumors through NCI-CONNECT, a program that creates partnerships among patients, health care professionals, researchers, and advocacy organizations. On November 25, 2019, NCI-CONNECT convened leading clinicians and scientists in a workshop to review advances in research, share scientific insights, and discuss clinical challenges in adult MB. RESULTS Working groups identified unmet needs in clinical trial design, tissue acquisition and testing, tumor modeling, and measurement of clinical outcomes. CONCLUSIONS Participants identified opportunities for collaboration; discussed plans to create a working group of clinicians, researchers, and patient advocates; and developed specific action items to expedite progress in adult MB.
Collapse
Affiliation(s)
- Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Brett J Theeler
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brittany Cordeiro
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ira J Dunkel
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter Hau
- Wilhelm Sander NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Mahajan
- Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Orwa Aboud
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
- Brain Tumor Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - John A Butman
- Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland, USA
| | - Amar Gajjar
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William Kelly
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Margarita Raygada
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Christine Siegel
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carlos G Romo
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
- Brain Tumor Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
114
|
Ng HK, Wong GH, Li KW, Poon MM. Is adult medulloblastoma merely the counterpart of pediatric medulloblastoma? GLIOMA 2020. [DOI: 10.4103/glioma.glioma_24_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
115
|
Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 2019; 17:204-232. [PMID: 31792354 DOI: 10.1038/s41571-019-0293-2] [Citation(s) in RCA: 487] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) have important roles in tumour development, relapse and metastasis; the intrinsic self-renewal characteristics and tumorigenic properties of these cells provide them with unique capabilities to resist diverse forms of anticancer therapy, seed recurrent tumours, and disseminate to and colonize distant tissues. The findings of several studies indicate that CSCs originate from non-malignant stem or progenitor cells. Accordingly, inhibition of developmental signalling pathways that are crucial for stem and progenitor cell homeostasis and function, such as the Notch, WNT, Hedgehog and Hippo signalling cascades, continues to be pursued across multiple cancer types as a strategy for targeting the CSCs hypothesized to drive cancer progression - with some success in certain malignancies. In addition, with the renaissance of anticancer immunotherapy, a better understanding of the interplay between CSCs and the tumour immune microenvironment might be the key to unlocking a new era of oncological treatments associated with a reduced propensity for the development of resistance and with enhanced antimetastatic activity, thus ultimately resulting in improved patient outcomes. Herein, we provide an update on the progress to date in the clinical development of therapeutics targeting the Notch, WNT, Hedgehog and Hippo pathways. We also discuss the interactions between CSCs and the immune system, including the potential immunological effects of agents targeting CSC-associated developmental signalling pathways, and provide an overview of the emerging approaches to CSC-targeted immunotherapy.
Collapse
Affiliation(s)
- Joseph A Clara
- National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Cecilia Monge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
116
|
Sokolenko AP, Bizin IV, Preobrazhenskaya EV, Gorodnova TV, Ivantsov AO, Iyevleva AG, Savonevich EL, Kotiv KB, Kuligina ES, Imyanitov EN. Molecular profiles of BRCA1-associated ovarian cancer treated by platinum-based therapy: Analysis of primary, residual and relapsed tumors. Int J Cancer 2019; 146:1879-1888. [PMID: 31693165 DOI: 10.1002/ijc.32776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Our study aimed to analyze the evolution of molecular portraits of BRCA1-driven ovarian cancer (OC) during treatment. BRCA1 loss-of-heterozygosity status (LOH) and exome profiles were investigated in serial OC samples from 13 patients, which included primary tumors (n = 11) obtained before neoadjuvant therapy (NACT) or at primary debulking surgery, residual post-NACT cancer tissues (n = 13) and tumor relapses (16 samples from 13 patients). Loss of the wild-type BRCA1 allele was detected in 11/11 (100%) primary tumors, 6/13 (46%) residual post-NACT OC samples and 15/16 (94%) OC relapses. Full tumor triplets were available for four patients undergoing NACT; whereas primary carcinomas from these patients demonstrated BRCA1 LOH, the retention of the wild-type allele was detected in all four post-NACT residual tumors. These four women provided to the study 5 recurrent OC samples; 4 out of 5 tumor relapses had BRCA1 LOH thus resembling BRCA1 status observed in primary but not residual OC tissues. TP53 mutation was detected in 12 out of 13 patients and was retained across all serial samples. OC relapses tended to acquire additional intragenic mutations in genes involved in cell migration, adhesion and cell junction assembly. BRCA1-driven OCs demonstrate the plasticity of BRCA1 status during the treatment course. NACT results in rapid selection of pre-existing BRCA1-proficient cells. However, BRCA1 proficiency appears to be disadvantageous in the absence of platinum exposure, as tumor relapses usually re-acquire BRCA1 LOH during therapy holidays.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Ilya V Bizin
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Elena V Preobrazhenskaya
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Tatiana V Gorodnova
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Alexander O Ivantsov
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Aglaya G Iyevleva
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Elena L Savonevich
- Department of Obstetrics and Gynecology, Grodno State Medical University, Grodno, Belarus
| | - Khristina B Kotiv
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Ekaterina Sh Kuligina
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| |
Collapse
|
117
|
Leavitt E, Lask G, Martin S. Sonic Hedgehog Pathway Inhibition in the Treatment of Advanced Basal Cell Carcinoma. Curr Treat Options Oncol 2019; 20:84. [PMID: 31773379 DOI: 10.1007/s11864-019-0683-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Advanced basal cell carcinoma (BCC) represents a small proportion of BCCs that are not amenable to standard therapies due to lack of efficacy, high recurrence risk, and excessive morbidity. Implication of the Sonic hedgehog (Shh) pathway in the development of BCC has led to the development of systemic Shh pathway inhibitors, providing patients with advanced BCCs new treatment options and improved survival. There are currently two Food and Drug Administration (FDA)-approved Shh inhibitors, vismodegib and sonidegib, for advanced basal cell carcinomas. Vismodegib has approval for locally advanced BCCs (laBCC) and metastatic BCC (mBCC), while sonidegib has approval for laBCC. These agents have also been used for prevention in nevoid basal cell carcinoma syndrome and as neoadjuvant therapy before surgery, and we feel that there is a growing role of Shh inhibitors in these settings. Head-to-head randomized controlled trials comparing vismodegib to sonidegib are lacking. Adverse events can limit the utility of these medications by leading to treatment discontinuation in a large proportion of patients, and it is thus essential that prescribers be able to anticipate and manage the most frequent side effects of muscle spasms, alopecia, dysgeusia, nausea, and weight loss. Other Shh inhibitors, including the antifungal itraconazole, have been investigated in small trials, but further research is needed before recommending their routine clinical use. Additionally, there are several new agents under investigation that may have improved efficacy for resistant tumors by utilizing different mechanisms of action than the two currently approved medications.
Collapse
Affiliation(s)
- Erica Leavitt
- Division of Dermatology, UCLA, 200 UCLA Medical Plaza, Los Angeles, CA, USA
| | | | - Stephanie Martin
- ILR Dermatology, Encino, CA, USA. .,Department of Dermatology, Greater Los Angeles VA, 200 Medical Plaza Suite 450, Los Angeles, CA, 90095, USA.
| |
Collapse
|
118
|
Pediatric Patients With SHH Medulloblastoma Fail Differently as Compared With Adults: Possible Implications for Treatment Modifications. J Pediatr Hematol Oncol 2019; 41:e499-e505. [PMID: 30973484 DOI: 10.1097/mph.0000000000001484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this work was to study the diversity of sonic hedgehog (SHH) medulloblastoma across different age groups with an emphasis on patterns of relapse. METHODS All data for the study were obtained through review of medical records, imaging, radiation charts, treatment planning, and chemotherapy details. RESULTS Sixty-three patients with SHH medulloblastoma were identified from a prospectively maintained database and classified into 3 groups-infantile: ≤3 years (i-SHH, n=11); pediatric: >3 to <18 years (p-SHH, n=21); and adult: ≥18 years (a-SHH; n=31). Lateralized tumors were common with increasing age (81% a-SHH, 67% p-SHH, 27% i-SHH; P=0.01). Large cell anaplastic histology was relatively common for p-SHH (33%), while the nodular/desmoplastic variant was more frequent in i-SHH (64%) and adults (51%). Median follow-up was 38 months (range, 5 to 91 mo). Five-year event-free survival was 80%, 31%, and 52% for i-SHH, p-SHH, and a-SHH, respectively (P=0.001). Median time to failure for p-SHH and a-SHH were 12 and 36 months, respectively. For p-SHH, 83% were metastatic relapses compared with localized failure in 75% for a-SHH. Five-year overall survival for i-SHH, p-SHH, and a-SHH were 91%, 31%, and 70%, respectively (P=0.001). On univariate analysis, event-free survival was significantly worse for superiorly located tumors (P=0.01), nondesmoplastic histology (P=0.02), and histology alone for overall survival (P=0.04) (none on multivariate analysis). CONCLUSIONS SHH medulloblastoma demonstrates varied outcomes depending on age, with p-SHH associated with early and metastatic relapses, while for a-SHH it tends to be delayed and localized.
Collapse
|
119
|
Konings K, Belmans N, Vermeesen R, Baselet B, Lamers G, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. Targeting the Hedgehog pathway in combination with X‑ray or carbon ion radiation decreases migration of MCF‑7 breast cancer cells. Int J Oncol 2019; 55:1339-1348. [PMID: 31638201 DOI: 10.3892/ijo.2019.4901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/28/2019] [Indexed: 11/06/2022] Open
Abstract
The use of carbon ion therapy for cancer treatment is becoming more widespread due to the advantages of carbon ions compared with X‑rays. Breast cancer patients may benefit from these advantages, as the surrounding healthy tissues receive a lower dose, and the increased biological effectiveness of carbon ions can better control radioresistant cancer cells. Accumulating evidence indicates that the Hedgehog (Hh) pathway is linked to the development and progression of breast cancer, as well as to resistance to X‑irradiation and the migratory capacity of cancer cells. Hence, there is an increasing interest in targeting the Hh pathway in combination with radiotherapy. Several studies have already investigated this treatment strategy with conventional radiotherapy. However, to the best of our knowledge, the combination of Hh inhibitors with particle therapy has not yet been explored. The aim of the present study was to investigate the potential of the Hh inhibitor GANT61 as an effective modulator of radiosensitivity and migration potential in MCF‑7 breast cancer cells, and compare potential differences between carbon ion irradiation and X‑ray exposure. Although Hh targeting was not able to radiosensitise cells to any radiation type used, the combination of GANT61 with X‑rays or carbon ions (energy: 95 MeV/n; linear energy transfer: 73 keV/µm) was more effective in decreasing MCF‑7 cell migration compared with either radiation type alone. Gene expression of the Hh pathway was affected to different degrees in response to X‑ray and carbon ion irradiation, as well as in response to the combination of GANT61 with irradiation. In conclusion, combining Hh inhibition with radiation (X‑rays or carbon ions) more effectively decreased breast cancer cell migration compared with radiation treatment alone.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Niels Belmans
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Greta Lamers
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Flemish‑Brabant, 3000 Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Flemish‑Brabant, 3000 Leuven, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| |
Collapse
|
120
|
A Smo/Gli Multitarget Hedgehog Pathway Inhibitor Impairs Tumor Growth. Cancers (Basel) 2019; 11:cancers11101518. [PMID: 31601026 PMCID: PMC6826940 DOI: 10.3390/cancers11101518] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a recent study, we exploited the high versatility of the natural isoflavone scaffold for targeting the Hh signaling pathway at multiple levels showing that the simultaneous targeting of Smo and Gli1 provided synergistic Hh pathway inhibition stronger than single administration. This approach seems to effectively overcome the drug resistance, particularly at the level of Smo. Here, we combined the pharmacophores targeting Smo and Gli1 into a single and individual isoflavone, compound 22, which inhibits the Hh pathway at both upstream and downstream level. We demonstrate that this multitarget agent suppresses medulloblastoma growth in vitro and in vivo through antagonism of Smo and Gli1, which is a novel mechanism of action in Hh inhibition.
Collapse
|
121
|
Pace JR, Jog R, Burgess DJ, Hadden MK. Formulation and evaluation of itraconazole liposomes for Hedgehog pathway inhibition. J Liposome Res 2019; 30:305-311. [PMID: 31576768 DOI: 10.1080/08982104.2019.1668011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Itraconazole (ITZ) is an FDA-approved antifungal agent that has recently been explored for novel biological properties. In particular, ITZ was identified as a potent inhibitor of the hedgehog (Hh) pathway, a cell signalling pathway that has been linked to a variety of cancers and accounts for ∼25% of paediatric medulloblastoma (MB) cases. To date, there is not a targeted therapeutic option for paediatric MB, resulting in long-term side effects such as hormone deficiency, organ damage and secondary cancers. A primary obstacle for developing targeted therapy for brain ailments is the presence of the blood-brain barrier (BBB), which protects the brain from potentially harmful substances. Due to its size and hydrophobicity, ITZ does not penetrate the BBB. Alternatively, liposomes are being increasingly used within the clinic to increase drug bioavailability, target specificity and BBB permeability. With this in mind, we have successfully developed ITZ-containing liposomes with an optimal size for BBB penetration (<100 nm) and encapsulation efficiency (∼95%) by utilizing a continuous manufacturing approach-turbulent coaxial jet in co-flow. Our preliminary in vitro data demonstrate that these liposomes inhibit the Hh pathway, albeit at a reduced level in comparison to free ITZ. (196/250 words).
Collapse
Affiliation(s)
- Jennifer R Pace
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Rajan Jog
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
122
|
Spectroscopic measurement of 5-ALA-induced intracellular protoporphyrin IX in pediatric brain tumors. Acta Neurochir (Wien) 2019; 161:2099-2105. [PMID: 31435824 DOI: 10.1007/s00701-019-04039-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE 5-Aminolevulinic acid (5-ALA)-guided resection of gliomas in adults enables better delineation between tumor and normal brain, allowing improved resection and improved patients' outcome. Recently, several reports were published regarding 5-ALA for resection of pediatric brain tumors. The aim of the study was to determine the intracellular fluorescence of protoporphyrin IX (PPIX) in pediatric brain tumors by hyperspectral imaging and to compare it with visually observed intraoperative fluorescence. METHODS 5-ALA was administered orally 4 h prior to surgery. During tumor resection, the surgeon assessed the fluorescence signal to be strong, weak, or absent. Subsequently, fluorescence intensity of tumor samples was measured via spectroscopy. In addition, clinical data, imaging, and laboratory data were analyzed. RESULTS Eleven children (1-16 years) were operated. Tumor entities included three (n = 3) medulloblastomas, two (n = 2) pilocytic astrocytomas (PA), two (n = 2) anaplastic ependymomas and one (n = 1) diffuse astrocytoma, anaplastic astrocytoma (n = 1), pilomyxoid astrocytoma (n = 1) and anaplastic pleomorphic xanthoastrocytoma (n = 1). Strong fluorescence was visible in all anaplastic tumors and one PA; one PA demonstrated weak fluorescence. Visible fluorescence was strongly associated with intracellular fluorescence intensity and PPIX concentration (P < 0.05). Within all tumors with visible fluorescence, the intracellular PPIX concentration was greater than 4 μg/ml. Except for moderate and transient elevation of liver enzymes, no 5-ALA related adverse events were reported. CONCLUSION We demonstrate a strong association between intraoperative observations and spectrometric measurements of PPIX fluorescence in tumor tissue. As in former studies, fluorescence signal was more commonly observed in malignant glial tumors. Further prospective controlled trials should be conducted to investigate the feasibility of 5-ALA-guided resection of pediatric brain tumors.
Collapse
|
123
|
Scicchitano S, Giordano M, Lucchino V, Montalcini Y, Chiarella E, Aloisio A, Codispoti B, Zoppoli P, Melocchi V, Bianchi F, De Smaele E, Mesuraca M, Morrone G, Bond HM. The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the Sonic hedgehog pathway. Cell Death Dis 2019; 10:715. [PMID: 31558698 PMCID: PMC6763495 DOI: 10.1038/s41419-019-1946-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/17/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023]
Abstract
ZNF521 is a transcription co-factor with recognized regulatory functions in haematopoietic, osteo-adipogenic and neural progenitor cells. Among its diverse activities, ZNF521 has been implicated in the regulation of medulloblastoma (MB) cells, where the Hedgehog (HH) pathway, has a key role in the development of normal cerebellum and of a substantial fraction of MBs. Here a functional cross-talk is shown for ZNF521 with the HH pathway, where it interacts with GLI1 and GLI2, the major HH transcriptional effectors and enhances the activity of HH signalling. In particular, ZNF521 cooperates with GLI1 and GLI2 in the transcriptional activation of GLI (glioma-associated transcription factor)-responsive promoters. This synergism is dependent on the presence of the N-terminal, NuRD-binding motif in ZNF521, and is sensitive to HDAC (histone deacetylase) and GLI inhibitors. Taken together, these results highlight the role of ZNF521, and its interaction with the NuRD complex, in determining the HH response at the level of transcription. This may be of particular relevance in HH-driven diseases, especially regarding the MBs belonging to the SHH (sonic HH) subgroup where a high expression of ZNF521 is correlated with that of HH pathway components.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Marco Giordano
- Unit of Gynecological Oncology Research, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141, Milano, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Bruna Codispoti
- Tecnologica Research Institute-Marrelli Hospital, 88900, Crotone, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valentina Melocchi
- Fondazione IRCCS - Casa Sollievo della Sofferenza, Laboratory of Cancer Biomarkers, San Giovanni Rotondo, 71013, (FG), Italy
| | - Fabrizio Bianchi
- Fondazione IRCCS - Casa Sollievo della Sofferenza, Laboratory of Cancer Biomarkers, San Giovanni Rotondo, 71013, (FG), Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, University La Sapienza, 00161, Rome, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.
| |
Collapse
|
124
|
Zhang J, Liu Y, Jiang K, Jia J. Hedgehog signaling promotes lipolysis in adipose tissue through directly regulating Bmm/ATGL lipase. Dev Biol 2019; 457:128-139. [PMID: 31550483 DOI: 10.1016/j.ydbio.2019.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/21/2019] [Accepted: 09/20/2019] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) signaling has been shown to regulate multiple developmental processes, however, it is unclear how it regulates lipid metabolism. Here, we demonstrate that Hh signaling exhibits potent activity in Drosophila fat body, which is induced by both locally expressed and midgut-derived Hh proteins. Inactivation of Hh signaling increases, whereas activation of Hh signaling decreases lipid accumulation. The major lipase Brummer (Bmm) acts downstream of Smoothened (Smo) in Hh signaling to promote lipolysis, therefore, the breakdown of triacylglycerol (TAG). We identify a critical Ci binding site in bmm promoter that is responsible to mediate Bmm expression induced by Hh signaling. Genomic mutation of the Ci binding site significantly reduces the expression of Bmm and dramatically decreases the responsiveness to Ci overexpression. Together, our findings provide a model for lipolysis to be regulated by Hh signaling, raising the possibility for Hh signaling to be involved in lipid metabolic and/or lipid storage diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
125
|
Pak E, MacKenzie EL, Zhao X, Pazyra-Murphy MF, Park PMC, Wu L, Shaw DL, Addleson EC, Cayer SS, Lopez BGC, Agar NYR, Rubin LL, Qi J, Merk DJ, Segal RA. A large-scale drug screen identifies selective inhibitors of class I HDACs as a potential therapeutic option for SHH medulloblastoma. Neuro Oncol 2019; 21:1150-1163. [PMID: 31111916 PMCID: PMC7594547 DOI: 10.1093/neuonc/noz089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most frequent malignant brain tumors of children, and a large set of these tumors is characterized by aberrant activation of the sonic hedgehog (SHH) pathway. While some tumors initially respond to inhibition of the SHH pathway component Smoothened (SMO), tumors ultimately recur due to downstream resistance mechanisms, indicating a need for novel therapeutic options. METHODS Here we performed a targeted small-molecule screen on a stable, SHH-dependent murine MB cell line (SMB21). Comprehensive isotype profiling of histone deacetylase (HDAC) inhibitors was performed, and effects of HDAC inhibition were evaluated in cell lines both sensitive and resistant to SMO inhibition. Lastly, distinct mouse models of SHH MB were used to demonstrate pharmacologic efficacy in vivo. RESULTS A subset of the HDAC inhibitors tested significantly inhibit tumor growth of SMB21 cells by preventing SHH pathway activation. Isotype profiling of HDAC inhibitors, together with genetic approaches suggested that concerted inhibition of multiple class I HDACs is necessary to achieve pathway inhibition. Of note, class I HDAC inhibitors were also efficacious in suppressing growth of diverse SMO inhibitor‒resistant clones of SMB21 cells. Finally, we show that the novel HDAC inhibitor quisinostat targets multiple class I HDACs, is well tolerated in mouse models, and robustly inhibits growth of SHH MB cells in vivo as well as in vitro. CONCLUSIONS Our data provide strong evidence that quisinostat or other class I HDAC inhibitors might be therapeutically useful for patients with SHH MB, including those resistant to SMO inhibition.
Collapse
Affiliation(s)
- Ekaterina Pak
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ethan L MacKenzie
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xuesong Zhao
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria F Pazyra-Murphy
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul M C Park
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Wu
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel L Shaw
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Emily C Addleson
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne S Cayer
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Begoña G-C Lopez
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jun Qi
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Merk
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Rosalind A Segal
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
126
|
Capozza MA, Trombatore G, Triarico S, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Adult medulloblastoma: an overview on current and future strategies of treatment. Expert Opin Orphan Drugs 2019; 7:383-389. [DOI: 10.1080/21678707.2019.1663170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Giovanna Trombatore
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
127
|
Abstract
Pediatric central nervous system (CNS) tumors are the most common solid tumors in children and comprise 15% to 20% of all malignancies in children. Presentation, symptoms, and signs depend on tumor location and age of the patient at the time of diagnosis. This article summarizes the common childhood CNS tumors, presentations, classification, and recent updates in treatment approaches due to the increased understanding of the molecular pathogenesis of pediatric brain tumors.
Collapse
Affiliation(s)
- Yoko T Udaka
- The Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Oncology, Center for Cancer and Blood Disorders, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Roger J Packer
- The Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; The Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| |
Collapse
|
128
|
Li Y, Song Q, Day BW. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: a systemic review and meta-analysis. Acta Neuropathol Commun 2019; 7:123. [PMID: 31362788 PMCID: PMC6668073 DOI: 10.1186/s40478-019-0773-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumour in children but also rarely occur in adults. Sonic Hedgehog (SHH) driven MB is associated with aberrant activation of the SHH signalling pathway. SMO inhibitors, sonidegib and vismodegib, have been used as selective antagonist of the hedgehog pathway that acts by binding to SMO, and inhibits activation of the downstream hedgehog target genes. Several clinical trials investigating SMO inhibitors for the treatment of relapsed MB patients have been published. Methods We conducted a systemic review and meta-analysis among these Phase I and II clinical trials. The pooled effect of SMO inhibitors in relapsed MB were analysed using Reviewer Manager 5.3 software. The clinical efficacy of SMO inhibitors on SHH subtype of MB were measured by the objective response rate. The risk difference was obtained by comparing the ORR between SHH and non-SHH subtypes of MB. Results The five studies all had clear criteria for patient recruitment, adequate follow-up time for endpoint assessment and clear definition of tumour responses. MB patients had good compliance in the trials. The pooled objective response rate (ORR) of SMO inhibitor was 37% and 0 against SHH-driven and other MBs. The pooled ORR of sonidegib was 55% among MBSHH and 0 among MBnon-SHH subgroup. Vismodegib also had no efficacy on non-SHH subtype of MB. The sonidegib against SHH-driven MB produced the ORR 1.87-fold higher than that of vismodegib (95%CI 1.23, 6.69). Among paediatric patients, the efficacy of sonidegib was 3.67-fold higher than vismodegib (p < 0.05). A total of 320 cases received SMO inhibitor therapy and 36 cases reported grade 3/4 dose-limiting toxicity (DLT). The rate of grade 3/4 DLT was similar between patients receiving vismodegib and sonidegib (11.6% vs. 11.2%). Conclusion Sonidegib and vismodegib were well tolerated and demonstrated anti-tumour activity in SHH-driven paediatric and adult MB by effectively inhibiting Hh signalling. These results support the ongoing clinical trials using SMO inhibitors in combination with conventional chemotherapies for the treatment of relapsed MBSHH.
Collapse
|
129
|
Blaeschke F, Paul MC, Schuhmann MU, Rabsteyn A, Schroeder C, Casadei N, Matthes J, Mohr C, Lotfi R, Wagner B, Kaeuferle T, Feucht J, Willier S, Handgretinger R, StevanoviĆ S, Lang P, Feuchtinger T. Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy. Cytotherapy 2019; 21:973-986. [PMID: 31351799 DOI: 10.1016/j.jcyt.2019.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in childhood and adolescence. Although some patients present with distinct genetic alterations, such as mutated TP53 or MYC amplification, pediatric medulloblastoma is a tumor entity with minimal mutational load and low immunogenicity. METHODS We identified tumor-specific mutations using next-generation sequencing of medulloblastoma DNA and RNA derived from primary tumor samples from pediatric patients. Tumor-specific mutations were confirmed using deep sequencing and in silico analyses predicted high binding affinity of the neoantigen-derived peptides to the patients' human leukocyte antigen molecules. Tumor-specific peptides were synthesized and used to induce a de novo T-cell response characterized by interferon gamma and tumor necrosis factor alpha release of CD8+ cytotoxic T cells in vitro. RESULTS Despite low mutational tumor burden, at least two immunogenic tumor-specific peptides were identified in each patient. T cells showed a balanced CD4/CD8 ratio and mostly effector memory phenotype. Induction of a CD8-specific T-cell response was achieved for the neoepitopes derived from Histidine Ammonia-Lyase (HAL), Neuraminidase 2 (NEU2), Proprotein Convertase Subtilisin (PCSK9), Programmed Cell Death 10 (PDCD10), Supervillin (SVIL) and tRNA Splicing Endonuclease Subunit 54 (TSEN54) variants. CONCLUSION Detection of patient-specific, tumor-derived neoantigens confirms that even in tumors with low mutational load a molecular design of targets for specific T-cell immunotherapy is possible. The identified neoantigens may guide future approaches of adoptive T-cell transfer, transgenic T-cell receptor transfer or tumor vaccination.
Collapse
Affiliation(s)
- Franziska Blaeschke
- Dr. von Hauner Children's Hospital University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Milan Cedric Paul
- Dr. von Hauner Children's Hospital University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Ulrich Schuhmann
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Armin Rabsteyn
- Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jakob Matthes
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Christopher Mohr
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany; Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Ramin Lotfi
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, Ulm, Germany
| | - Beate Wagner
- Department of Transfusion Medicine and Hemostaseology, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Theresa Kaeuferle
- Dr. von Hauner Children's Hospital University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Judith Feucht
- Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, Tübingen, Germany; Memorial Sloan Kettering Cancer Center, Center for Cell Engineering, New York, New York, USA
| | - Semjon Willier
- Dr. von Hauner Children's Hospital University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, Tübingen, Germany
| | - Stefan StevanoviĆ
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Peter Lang
- Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, Tübingen, Germany
| | - Tobias Feuchtinger
- Dr. von Hauner Children's Hospital University Hospital, Ludwig Maximilian University Munich, Munich, Germany.
| |
Collapse
|
130
|
Du F, Yuelling L, Lee EH, Wang Y, Liao S, Cheng Y, Zhang L, Zheng C, Peri S, Cai KQ, Ng JMY, Curran T, Li P, Yang ZJ. Leukotriene Synthesis Is Critical for Medulloblastoma Progression. Clin Cancer Res 2019; 25:6475-6486. [PMID: 31300449 DOI: 10.1158/1078-0432.ccr-18-3549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Here, we examined the role of leukotrienes, well-known inflammatory mediators, in the tumorigenesis of hedgehog pathway-associated medulloblastoma, and tested the efficacies of antagonists of leukotriene biosynthesis in medulloblastoma treatment.Experimental Design: We examined the leukotriene levels in medulloblastoma cells by ELISA. We next tested whether leukotriene synthesis in medulloblastoma cells relied on activation of hedgehog pathway, or the presence of hedgehog ligand secreted by astrocytes. We then investigated whether leukotriene mediated hedgehog-induced Nestin expression in tumor cells. The functions of leukotriene in tumor cell proliferation and tumor growth in medulloblastoma were determined through knocking down 5-lipoxygenase (a critical enzyme for leukotriene synthesis) by shRNAs, or using 5-lipoxygenase-deficient mice. Finally, the efficacies of antagonists of leukotriene synthesis in medulloblastoma treatment were tested in vivo and in vitro. RESULTS Leukotriene was significantly upregulated in medulloblastoma cells. Increased leukotriene synthesis relied on hedgehog ligand secreted by astrocytes, a major component of medulloblastoma microenvironment. Leukotriene stimulated tumor cells to express Nestin, a cytoskeletal protein essential for medulloblastoma growth. Genetic blockage of leukotriene synthesis dramatically suppressed medulloblastoma cell proliferation and tumor growth in vivo. Pharmaceutical inhibition of leukotriene synthesis markedly repressed medulloblastoma cell proliferation, but had no effect on proliferation of normal neuronal progenitors. Moreover, antagonists of leukotriene synthesis exhibited promising tumor inhibitory efficacies on drug-resistant medulloblastoma. CONCLUSIONS Our findings reveal a novel signaling pathway that is critical for medulloblastoma cell proliferation and tumor progression, and that leukotriene biosynthesis represents a promising therapeutic target for medulloblastoma treatment.
Collapse
Affiliation(s)
- Fang Du
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Larra Yuelling
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Eric H Lee
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shengyou Liao
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Cheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Li Zhang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Suraj Peri
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Peng Li
- Department of Pharmacognosy and Traditional Chinese Pharmacology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| |
Collapse
|
131
|
An X, Bai Q, Bai F, Shi D, Liu H, Yao X. Deciphering the Allosteric Effect of Antagonist Vismodegib on Smoothened Receptor Deactivation Using Metadynamics Simulation. Front Chem 2019; 7:406. [PMID: 31214579 PMCID: PMC6558189 DOI: 10.3389/fchem.2019.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
The smoothened receptor (Smo) plays a key role in Hedgehog (Hh) signaling pathway and it has been regarded as an efficacious therapeutic target for basal cell carcinoma (BCC) and medulloblastoma (MB). Nevertheless, the resistance mutation and active mutants of Smo have put forward the requirement of finding more effective inhibitors. Herein, we performed metadynamics simulations on Smo bound with vismodegib (Smo-Vismod) and with cholesterol (Smo-CLR), respectively, to explore the inhibition mechanism of vismodegib. The simulation results indicated that vismodegib-induced shifts of TM5, TM6, and TM7, which permitted the extracellular extension of TM6 and extracellular loop3 (ECL3) to enter the extracellular cysteine-rich domain (CRD) groove. Therefore, an open CRD groove that has not been noticed previously was observed in Smo-Vismod complex. As a consequence, the occupied CRD groove prevents the binding of cholesterol. In addition, the HD and ECLs play crucial roles in the interaction of CRD and TMD. These results reveal that TM5, TM6, and TM7 play important roles in allosteric inhibition the activation of Smo and disrupting cholesterol binding by vismodegib binding. Our results are expected to contribute to understanding the allosteric inhibition mechanism of Smo by vismodegib. Moreover, the detailed conformational changes contribute to the development of novel Smo inhibitors against resistance mutation and active mutants of Smo.
Collapse
Affiliation(s)
- Xiaoli An
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Qifeng Bai
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Fang Bai
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
132
|
CDK7 inhibition suppresses aberrant hedgehog pathway and overcomes resistance to smoothened antagonists. Proc Natl Acad Sci U S A 2019; 116:12986-12995. [PMID: 31182587 DOI: 10.1073/pnas.1815780116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aberrant hedgehog (Hh) pathway plays important roles in multiple cancer types, therefore serving as a promising drug target. Current clinically available hedgehog-targeted drugs act mostly by antagonizing the upstream component smoothened; however, both primary and acquired resistance to FDA-approved smoothened inhibitor (SMOi) drugs have been described. We have recently demonstrated that the BET inhibitor effectively suppresses SMOi-resistant Hh-driven cancers through antagonizing transcription of GLI1 and GLI2, the core transcriptional factors of Hh pathway, suggesting epigenetic or transcriptional targeted therapy represents an anti-Hh therapeutic strategy that can overcome SMOi resistance. Here we performed an unbiased screening of epigenetic or transcriptional targeted small molecules to test their inhibitory effects on GLI1 and GLI2 transcription or cell viability of Hh-driven tumor lines. THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), is identified as the top hit in our screening. We then confirmed that antagonizing CDK7 by either small-molecule inhibitors or the CRISPR-Cas9 approach causes substantial suppression of GLI1 and GLI2 transcription, resulting in effective inhibition of Hh-driven cancers in vitro and in vivo. More importantly, antagonizing CDK7 retains inhibitory activity against Hh-driven cancers with almost all so-far described primary or acquired SMOi resistance. Furthermore, we reveal a synergy between CDK7 inhibition and BET inhibition on antagonizing aberrant Hh pathway and Hh-driven cancers that are either responsive or resistant to SMOi. Our results illustrate transcriptional inhibition through targeting CDK7 as a promising therapeutic strategy for treating Hh-driven cancers, especially those with primary or acquired resistance to SMOi drugs.
Collapse
|
133
|
Schwake M, Schipmann S, Müther M, Köchling M, Brentrup A, Stummer W. 5-ALA fluorescence-guided surgery in pediatric brain tumors-a systematic review. Acta Neurochir (Wien) 2019; 161:1099-1108. [PMID: 30989383 DOI: 10.1007/s00701-019-03898-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA)-guided resection of gliomas in adults enables better differentiation between tumor and normal brain tissue, allowing a higher degree of resection, and improves patient outcomes. In recent years, several reports have emerged regarding the use of 5-ALA in other brain tumor entities, including pediatric brains tumors. Since gross total resection (GTR) of many brain tumors in children is crucial and the role of 5-ALA-guided resection of these tumors is not clear, we sought to perform a comprehensive literature review on this topic. METHODS A systematic literature review of EMBASE and MEDLINE/PubMed databases revealed 19 eligible publications encompassing 175 5-ALA-guided operations on pediatric brain tumors. To prevent bias, publications were revised independently by two authors. RESULTS We found that 5-ALA-guided resection enabled the surgeons to identify the tumor more easily and was considered helpful mainly in cases of glioblastoma (GBM, 21/27, 78%), anaplastic ependymoma WHO grade III (10/14, 71%), and anaplastic astrocytoma (4/6, 67%). In contrast, cases of pilocytic astrocytomas (PAs) and medulloblastomas 5-ALA-guided surgery did not show consistent fluorescent signals and 5-ALA was considered helpful only in 12% and 22% of cases, respectively. Accumulation of fluorescent porphyrins seems to depend on WHO tumor grading. One important finding is that when 5-ALA-guided resections were considered helpful, the degree of resection was higher than is cases where it was not helpful. The rate of adverse events related to 5-ALA was negligible, especially new postoperative sequelae. CONCLUSION 5-ALA could play a role in resection of pediatric brain tumors. However, further prospective clinical trials are needed.
Collapse
|
134
|
Kaur K, Jha P, Pathak P, Suri V, Sharma MC, Garg A, Suri A, Sarkar C. Approach to molecular subgrouping of medulloblastomas: Comparison of NanoString nCounter assay versus combination of immunohistochemistry and fluorescence in-situ hybridization in resource constrained centres. J Neurooncol 2019; 143:393-403. [DOI: 10.1007/s11060-019-03187-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
|
135
|
Merve A, Millner TO, Marino S. Integrated phenotype-genotype approach in diagnosis and classification of common central nervous system tumours. Histopathology 2019; 75:299-311. [PMID: 30820974 DOI: 10.1111/his.13849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
After nearly a century of histological classification of central nervous system tumours, the 2016 revised WHO classification has incorporated molecular features with clinical and prognostic relevance into brain tumour classification. In this review, we discuss the latest integrated phenotype-genotype approach to the most common intrinsic brain tumours in adults and children. The key genetic mutations and abnormalities, essential to the definition of these tumours, in line with the current WHO classification are described. Practical dilemmas, including 'difficult' tumours, the utility of DNA methylation classifiers and relevant recent advances post-WHO 2016 consensus are also discussed.
Collapse
Affiliation(s)
- Ashirwad Merve
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.,Department of Histopathology, Camelia Botnar Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
136
|
Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 2019; 133:953-970. [PMID: 31036756 DOI: 10.1042/cs20180845] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Hedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI-DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.
Collapse
|
137
|
Peer E, Tesanovic S, Aberger F. Next-Generation Hedgehog/GLI Pathway Inhibitors for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040538. [PMID: 30991683 PMCID: PMC6520835 DOI: 10.3390/cancers11040538] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells (CSC), which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. Efficacious therapeutic approaches targeting CSC pathways, such as HH/GLI signaling in combination with chemo, radiation or immunotherapy are, therefore, of high medical need. Pharmacological inhibition of HH/GLI pathway activity represents a promising approach to eliminate malignant CSC. Clinically approved HH/GLI pathway inhibitors target the essential pathway effector Smoothened (SMO) with striking therapeutic efficacy in skin and brain cancer patients. However, multiple genetic and molecular mechanisms resulting in de novo and acquired resistance to SMO inhibitors pose major limitations to anti-HH/GLI therapies and, thus, the eradication of CSC. In this review, we summarize reasons for clinical failure of SMO inhibitors, including mechanisms caused by genetic alterations in HH pathway effectors or triggered by additional oncogenic signals activating GLI transcription factors in a noncanonical manner. We then discuss emerging novel and rationale-based approaches to overcome SMO-inhibitor resistance, focusing on pharmacological perturbations of enzymatic modifiers of GLI activity and on compounds either directly targeting oncogenic GLI factors or interfering with synergistic crosstalk signals known to boost the oncogenicity of HH/GLI signaling.
Collapse
Affiliation(s)
- Elisabeth Peer
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Suzana Tesanovic
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Fritz Aberger
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
138
|
Cormerais Y, Pagnuzzi‐Boncompagni M, Schrötter S, Giuliano S, Tambutté E, Endou H, Wempe MF, Pagès G, Pouysségur J, Picco V. Inhibition of the amino-acid transporter LAT1 demonstrates anti-neoplastic activity in medulloblastoma. J Cell Mol Med 2019; 23:2711-2718. [PMID: 30784173 PMCID: PMC6433660 DOI: 10.1111/jcmm.14176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Most cases of medulloblastoma (MB) occur in young children. While the overall survival rate can be relatively high, current treatments combining surgery, chemo- and radiotherapy are very destructive for patient development and quality of life. Moreover, aggressive forms and recurrences of MB cannot be controlled by classical therapies. Therefore, new therapeutic approaches yielding good efficacy and low toxicity for healthy tissues are required to improve patient outcome. Cancer cells sustain their proliferation by optimizing their nutrient uptake capacities. The L-type amino acid transporter 1 (LAT1) is an essential amino acid carrier overexpressed in aggressive human cancers that was described as a potential therapeutic target. In this study, we investigated the therapeutic potential of JPH203, a LAT1-specific pharmacological inhibitor, on two independent MB cell lines belonging to subgroups 3 (HD-MB03) and Shh (DAOY). We show that while displaying low toxicity towards normal cerebral cells, JPH203 disrupts AA homeostasis, mTORC1 activity, proliferation and survival in MB cells. Moreover, we demonstrate that a long-term treatment with JPH203 does not lead to resistance in MB cells. Therefore, this study suggests that targeting LAT1 with JPH203 is a promising therapeutic approach for MB treatment.
Collapse
Affiliation(s)
- Yann Cormerais
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Present address:
Department of Genetics and Complex DiseasesHarvard T. H. Chan School of Public HealthBostonMassachusetts
| | | | - Sandra Schrötter
- Department of Genetics and Complex DiseasesHarvard T. H. Chan School of Public HealthBostonMassachusetts
| | - Sandy Giuliano
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| | - Eric Tambutté
- Marine Biology DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| | | | - Michael F. Wempe
- School of PharmacyAnschutz Medical Campus, University of Colorado DenverAuroraColorado
| | - Gilles Pagès
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University of Cote d’AzurNiceFrance
| | - Jacques Pouysségur
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University of Cote d’AzurNiceFrance
| | - Vincent Picco
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| |
Collapse
|
139
|
State of the art of Smo antagonists for cancer therapy: advances in the target receptor and new ligand structures. Future Med Chem 2019; 11:617-638. [PMID: 30912670 DOI: 10.4155/fmc-2018-0497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the Hedgehog signaling pathway has been associated with cancer, it has emerged as a therapeutic target for cancer therapy. The main target among the key Hedgehog proteins is the GPCR-like Smo receptor. Therefore, some Smo antagonists that have entered clinical trials, including the US FDA-approved drugs vismodegib and sonidegib, to treat basal cell carcinoma and medulloblastoma. However, early resistance of these drugs has spawned the need to understand the molecular bases of this phenomena. We therefore reviewed details about Smo receptor structures and the best Smo antagonist chemical structures. In addition, we discussed strategies that should be considered to develop new, safer generations of Smo antagonists that avoid current clinical limitations.
Collapse
|
140
|
Curran T. Reproducibility of academic preclinical translational research: lessons from the development of Hedgehog pathway inhibitors to treat cancer. Open Biol 2019; 8:rsob.180098. [PMID: 30068568 PMCID: PMC6119869 DOI: 10.1098/rsob.180098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
Academic translational research is growing at a great pace at a time in which questions have been raised about the reproducibility of preclinical findings. The development of Hedgehog (HH) pathway inhibitors for the treatment of cancer over the past two decades offers a case study for understanding the root causes of failure to predict clinical outcomes arising from academic preclinical translational research. Although such inhibitors were once hoped to be efficacious in up to 25% of human cancer, clinical studies showed responses only in basal cell carcinoma and the HH subtype of medulloblastoma. Close examination of the published studies reveals limitations in the models used, lack of quantitative standards, utilization of high drug concentrations associated with non-specific toxicities and improper use of cell line and mouse models. In part, these issues arise from scientific complexity, for example, the failure of tumour cell lines to maintain HH pathway activity in vitro, but a greater contributing factor appears to be the influence of unconscious bias. There was a strong expectation that HH pathway inhibitors would make a profound impact on human cancer and experiments were designed with this assumption in mind.
Collapse
Affiliation(s)
- Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MI 64108, USA
| |
Collapse
|
141
|
Menyhárt O, Győrffy B. Principles of tumorigenesis and emerging molecular drivers of SHH-activated medulloblastomas. Ann Clin Transl Neurol 2019; 6:990-1005. [PMID: 31139698 PMCID: PMC6529984 DOI: 10.1002/acn3.762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
SHH-activated medulloblastomas (SHH-MB) account for 25-30% of all medulloblastomas (MB) and occur with a bimodal age distribution, encompassing many infant and adult, but fewer childhood cases. Different age groups are characterized by distinct survival outcomes and age-specific alterations of regulatory pathways. Here, we review SHH-specific genetic aberrations and signaling pathways. Over 95% of SHH-MBs contain at least one driver event - the activating mutations frequently affect sonic hedgehog signaling (PTCH1, SMO, SUFU), genome maintenance (TP53), and chromatin modulation (KMT2D, KMT2C, HAT complexes), while genes responsible for transcriptional regulation (MYCN) are recurrently amplified. SHH-MBs have the highest prevalence of damaging germline mutations among all MBs. TP53-mutant MBs are enriched among older children and have the worst prognosis among all SHH-MBs. Numerous genetic aberrations, including mutations of TERT, DDX3X, and the PI3K/AKT/mTOR pathway are almost exclusive to adult patients. We elaborate on the newest development within the evolution of molecular subclassification, and compare proposed risk categories across emerging classification systems. We discuss discoveries based on preclinical models and elaborate on the applicability of potential new therapies, including BET bromodomain inhibitors, statins, inhibitors of SMO, AURK, PLK, cMET, targeting stem-like cells, and emerging immunotherapeutic strategies. An enormous amount of data on the genetic background of SHH-MB have accumulated, nevertheless, subgroup affiliation does not provide reliable prediction about response to therapy. Emerging subtypes within SHH-MB offer more layered risk stratifications. Rational clinical trial designs with the incorporation of available molecular knowledge are inevitable. Improved collaboration across the scientific community will be imperative for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| |
Collapse
|
142
|
Łastowska M, Karkucińska-Więckowska A, Waschek JA, Niewiadomski P. Differential Expression of Mitochondrial Biogenesis Markers in Mouse and Human SHH-Subtype Medulloblastoma. Cells 2019; 8:E216. [PMID: 30841515 PMCID: PMC6468894 DOI: 10.3390/cells8030216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is a brain tumor that arises predominantly in infants and children. It is the most common pediatric brain malignancy. Around 25% of medulloblastomas are driven by constitutive activation of the Hedgehog signaling pathway. Hedgehog-driven medulloblastoma is often studied in the laboratory using genetic mouse models with overactive Hedgehog signaling, which recapitulate many of the pathological features of human Hedgehog-dependent tumors. However, we show here that on a molecular level the human and mouse HH-dependent MB are quite distinct, with human, but not mouse, tumors characterized by the presence of markers of increased oxidative phosphorylation and mitochondrial biogenesis. The latter suggests that, unlike for many other types of tumors, a switch to glycolytic metabolism might not be co-opted by human SHH-MB to perpetuate their survival and growth. This needs to be taken into consideration and could potentially be exploited in the design of therapies.
Collapse
Affiliation(s)
- Maria Łastowska
- Department of Pathology, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730 Warsaw, Poland.
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| | | | - James A Waschek
- Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
143
|
Salaritabar A, Berindan-Neagoe I, Darvish B, Hadjiakhoondi F, Manayi A, Devi KP, Barreca D, Orhan IE, Süntar I, Farooqi AA, Gulei D, Nabavi SF, Sureda A, Daglia M, Dehpour AR, Nabavi SM, Shirooie S. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res 2019; 141:466-480. [DOI: 10.1016/j.phrs.2019.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/24/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
|
144
|
The Importance of the Hedgehog Signaling Pathway in Tumorigenesis of Spinal and Cranial Chordoma. J Clin Med 2019; 8:jcm8020248. [PMID: 30769952 PMCID: PMC6406847 DOI: 10.3390/jcm8020248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Chordomas is rare malignant bone tumors thought to arise from remnants of embryonic notochord along the spine, frequently at the skull base and sacrum. Although chordoma is slow growing tumors, while are extremely recurrent, and aggressive, as well as the rate of prognosis remains poorly. Radical surgery and high-dose radiation are the most used treatments. Currently, there is no effective chemotherapeutic standard for chordomas. The Hedgehog (HH) pathway adjusts various processes included in expansion and differentiation of tissues and organs throughout the fetus’s life, furthermore cell growth and differentiation in the adult organism, of the cell in an adult organism, in which acute anesthesia is involved in multiple cancers. To study the role of signaling the hedgehog in the base of the skull and sacrum chordomas, the expression of SHH and GLI-1 levels were detected immuno histochemically, Additionally, PTCH-1 and GLI-1 expressions were distinguished by in- Situ- hybridization. Based on the findings presented herein, it is likely that the HH signal cascade was revealed even in cranial, where consecoently spinal chordoma and their recurrences play an important role. Our staining exhibited a canonical, ligand- dependent and autocrine Hedgehog signaling in skull base and sacrum chordomas including relapse. Due to the high levels of SHH and GLI-1 expression in all investigated chordoma samples, the study suggests a possible autocrine ligand-dependent activation of the canonical HH signaling cascade. A paracrine or non-canonical pathway cannot be excluded. Our results suggest that Hedgehog-inhibitors, like SHH-, GLI- and SMO- inhibitors, might serve as a potential and effective target for the treatment of chordomas.
Collapse
|
145
|
Abstract
Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.
Collapse
|
146
|
Cyclopamine tartrate, a modulator of hedgehog signaling and mitochondrial respiration, effectively arrests lung tumor growth and progression. Sci Rep 2019; 9:1405. [PMID: 30723259 PMCID: PMC6363760 DOI: 10.1038/s41598-018-38345-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death, despite the advent of targeted therapies and immunotherapies. Therefore, it is crucial to identify novel molecular features unique to lung tumors. Here, we show that cyclopamine tartrate (CycT) strongly suppresses the growth of subcutaneously implanted non-small cell lung cancer (NSCLC) xenografts and nearly eradicated orthotopically implanted NSCLC xenografts. CycT reduces heme synthesis and degradation in NSCLC cells and suppresses oxygen consumption in purified mitochondria. In orthotopic tumors, CycT decreases the levels of proteins and enzymes crucial for heme synthesis, uptake, and oxidative phosphorylation (OXPHOS). CycT also decreases the levels of two regulators promoting OXPHOS, MYC and MCL1, and effectively alleviates tumor hypoxia. Evidently, CycT acts via multiple modes to suppress OXPHOS. One mode is to directly inhibit mitochondrial respiration/OXPHOS. Another mode is to inhibit heme synthesis and degradation. Both modes appear to be independent of hedgehog signaling. Addition of heme to NSCLC cells partially reverses the effect of CycT on oxygen consumption, proliferation, and tumorigenic functions. Together, our results strongly suggest that CycT suppress tumor growth in the lung by inhibiting heme metabolism and OXPHOS. Targeting heme metabolism and OXPHOS may be an effective strategy to combat lung cancer.
Collapse
|
147
|
Teske KA, Dash RC, Morel SR, Chau LQ, Wechsler-Reya RJ, Hadden MK. Development of posaconazole-based analogues as hedgehog signaling pathway inhibitors. Eur J Med Chem 2019; 163:320-332. [PMID: 30529635 PMCID: PMC6358021 DOI: 10.1016/j.ejmech.2018.11.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023]
Abstract
Inhibition of the hedgehog (Hh) signaling pathway has been validated as a therapeutic strategy to treat basal cell carcinoma and holds potential for several other forms of human cancer. Itraconazole and posaconazole are clinically useful triazole anti-fungals that are being repurposed as anti-cancer agents based on their ability to inhibit the Hh pathway. We have previously demonstrated that removal of the triazole from itraconazole does not affect its ability to inhibit the Hh pathway while abolishing its primary side effect, potent inhibition of Cyp3A4. To develop structure-activity relationships for the related posaconazole scaffold, we synthesized and evaluated a series of des-triazole analogues designed through both ligand- and structure-based methods. These compounds demonstrated improved anti-Hh properties compared to posaconazole and enhanced stability without inhibiting Cyp3A4. In addition, we utilized a series of molecular dynamics and binding energy studies to probe specific interactions between the compounds and their proposed binding site on Smoothened. These studies strongly suggest that the tetrahydrofuran region of the scaffold projects out of the binding site and that π-π interactions between the compound and Smoothened play a key role in stabilizing the bound analogues.
Collapse
Affiliation(s)
- Kelly A Teske
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269, USA
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269, USA
| | - Shana R Morel
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269, USA
| | - Lianne Q Chau
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269, USA.
| |
Collapse
|
148
|
Raleigh DR, Reiter JF. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J Clin Invest 2019; 129:465-475. [PMID: 30707108 DOI: 10.1172/jci120850] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog pathway is critical for the development of diverse organs. Misactivation of the Hedgehog pathway can cause developmental abnormalities and cancers, including medulloblastoma, the most common pediatric brain tumor, and basal cell carcinoma, the most common cancer in the United States. Here, we review how basic, translational, and clinical studies of the Hedgehog pathway have helped reveal how cells communicate, how intercellular communication controls development, how signaling goes awry to cause cancer, and how to use targeted molecular agents to treat both inherited and sporadic cancers.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology.,Department of Neurological Surgery, and
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| |
Collapse
|
149
|
Garzia L, Kijima N, Morrissy AS, De Antonellis P, Guerreiro-Stucklin A, Holgado BL, Wu X, Wang X, Parsons M, Zayne K, Manno A, Kuzan-Fischer C, Nor C, Donovan LK, Liu J, Qin L, Garancher A, Liu KW, Mansouri S, Luu B, Thompson YY, Ramaswamy V, Peacock J, Farooq H, Skowron P, Shih DJH, Li A, Ensan S, Robbins CS, Cybulsky M, Mitra S, Ma Y, Moore R, Mungall A, Cho YJ, Weiss WA, Chan JA, Hawkins CE, Massimino M, Jabado N, Zapotocky M, Sumerauer D, Bouffet E, Dirks P, Tabori U, Sorensen PHB, Brastianos PK, Aldape K, Jones SJM, Marra MA, Woodgett JR, Wechsler-Reya RJ, Fults DW, Taylor MD. A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell 2019; 172:1050-1062.e14. [PMID: 29474906 DOI: 10.1016/j.cell.2018.01.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.
Collapse
Affiliation(s)
- Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Noriyuki Kijima
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - A Sorana Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Pasqualino De Antonellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ana Guerreiro-Stucklin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michael Parsons
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Kory Zayne
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alex Manno
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia Kuzan-Fischer
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carolina Nor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Laura K Donovan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jessica Liu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lei Qin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alexandra Garancher
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kun-Wei Liu
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sheila Mansouri
- MacFeeters-Hamilton Brain Tumour Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Betty Luu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yuan Yao Thompson
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - John Peacock
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David J H Shih
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Angela Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sherine Ensan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Clinton S Robbins
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Myron Cybulsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Siddhartha Mitra
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Andy Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Yoon-Jae Cho
- Departments of Pediatrics, Neurological Surgery and Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - William A Weiss
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia E Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Nada Jabado
- Division of Hematology/Oncology, McGill University, Montreal, QC, Canada
| | - Michal Zapotocky
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Dirks
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Poul H B Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | - Kenneth Aldape
- MacFeeters-Hamilton Brain Tumour Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Daniel W Fults
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
150
|
McKenzie JA, Maschhoff C, Liu X, Migotsky N, Silva MJ, Gardner MJ. Activation of hedgehog signaling by systemic agonist improves fracture healing in aged mice. J Orthop Res 2019; 37:51-59. [PMID: 29663560 PMCID: PMC6226344 DOI: 10.1002/jor.24017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process of many coordinated biological pathways. This system can go awry resulting in nonunion, which leads to significant patient morbidity. The Hedgehog (Hh) signaling pathway is upregulated in fracture healing. We hypothesized that the Hh signaling pathway can be pharmacologically modulated to positively affect fracture healing. Diaphyseal femur fractures were created in elderly mice (18 months, C57BL/6 females), which have a blunted and delayed healing response compared to younger mice, and were stabilized with intramedullary pins. To activate the Hh pathway we targeted the receptor Smoothened using an agonist (Hh-Ag1.5 [Hh-Ag]) and compared this to a vehicle control. Expression of Hh target genes were significantly increased in the fracture callus of the agonist group compared to controls, indicating pathway activation. Expression of osteogenic and chondrogenic-related genes was greatly upregulated in fracture callus versus intact femora, although Hh agonist treatment did not consistently enhance this response. Blindly graded, radiographic callus healing scores were significantly higher in the Hh-Ag groups at post operative day (POD) 14, indicating earlier callus bridging. On microCT, Hh-Ag treatment led to greater callus volume (+40%) and bone volume (+25%) at POD21. By day 14, callus vascularity, as assessed by 3D microCT angiography vessel volume, was 85% greater in the Hh-Ag group. Finally, mechanical strength of the calluses in the Hh-Ag groups was significantly greater than in the control groups at POD21. In conclusion, systemic administration of a Hh agonist appears to improve the osseous and vascular healing responses in a mouse fracture healing-impaired model. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
| | | | - Xiaochen Liu
- Washington University Orthopedics, St. Louis, MO
| | | | | | - Michael J. Gardner
- Washington University Orthopedics, St. Louis, MO,Stanford University Orthopedics, Stanford, CA
| |
Collapse
|