101
|
Hines DJ, Clark KF, Greenwood SJ. Global gene expression profiling ofHomarus americanus(Crustacea) larval stages during development and metamorphosis. INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2013.834278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
102
|
Abstract
MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.
Collapse
|
103
|
Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, Zhang D, Eads BD, Carlson J, Brown JB, Eisman RC, Andrews J, Kaufman T, Cherbas P, Celniker SE, Graveley BR, Lai EC. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 2013; 1:277-89. [PMID: 22685694 DOI: 10.1016/j.celrep.2012.01.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Mehrabadi M, Hussain M, Asgari S. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J Gen Virol 2013; 94:1385-1397. [DOI: 10.1099/vir.0.051060-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signalling and immune response. Studies also suggest that miRNAs are important in host–virus interactions where the host limits virus infection by differentially expressing miRNAs that target essential viral genes. Here, we identified conserved and new miRNAs from Spodoptera frugiperda cells (Sf9) using a combination of deep sequencing and bioinformatics as well as experimental approaches. S. frugiperda miRNAs share common features of miRNAs in other organisms, such as uracil (U) at the 5′ end of miRNA. The 5′ ends of the miRNAs were more conserved than the 3′ ends, revealing evolutionary protection of the seed region in miRNAs. The predominant miRNAs were found to be conserved among arthropods. The majority of homologous miRNAs were found in Bombyx mori, with 76 of the 90 identified miRNAs. We found that seed shifting and arm switching have happened in this insect's miRNAs. Expression levels of the majority of miRNAs changed following baculovirus infection. Results revealed that baculovirus infection mainly led to an overall suppression of cellular miRNAs. We found four different genes being regulated by sfr-miR-184 at the post-transcriptional level. The data presented here further support conservation of miRNAs in insects and other organisms. In addition, the results reveal a differential expression of host miRNAs upon baculovirus infection, suggesting their potential roles in host–virus interactions. Seed shifting and arm switching happened during evolution of miRNAs in different insects and caused miRNA diversification, which led to changes in the target repository of miRNAs.
Collapse
Affiliation(s)
- Mohammad Mehrabadi
- Department of Plant Protection, University of Tehran, Karaj 31584, Iran
- School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mazhar Hussain
- School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sassan Asgari
- School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
105
|
Wei X, Li H, Miao J, Liu B, Zhan Y, Wu D, Zhang Y, Wang L, Fan Y, Gu H, Wang W, Yuan Z. miR-9*- and miR-124a-Mediated switching of chromatin remodelling complexes is altered in rat spina bifida aperta. Neurochem Res 2013; 38:1605-15. [PMID: 23677776 DOI: 10.1007/s11064-013-1062-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
Neural tube defects (NTDs) are complex congenital malformations resulting from incomplete neurulation. Our previous work has demonstrated that motor and sensory neurons develop defectively in rat embryos with spina bifida aperta. To identify whether neural development-associated miRNAs play a role in the neurological deficits of NTDs, we screened a panel of neural development-related miRNAs, including miR-9, miR-9*, miR-124a, miR-10a, miR10b, miR-34a, miR-221 and miR-222, in the spinal cords of rats with retinoic acid-induced spina bifida aperta. We discovered that the expression of miR-9, miR-9* and miR-124a was specifically down-regulated compared to spinal cords without spina bifida. To further clarify whether down-regulation of miR-9* and miR-124a contributes to the neurological deficits of NTDs, we investigated the levels of genes involved in switching in the subunit composition of Swi/Snf-like BAF (Brg/Brm associated factor) complexes modulated by miR-9* and miR-124a and neuronal differentiation. In addition to the down-regulation of miR-9* and miR-124a expression, we also observed increased expression of repressor element silencing transcription factor (REST) and BAF53a and decreased expression of BAF53b, Brg1 and NeuroD1. Our results suggest that REST-regulated miR-9*- and the miR-124a-mediated chromatin remodelling regulatory mechanism may participate in the neuronal deficits of spina bifida.
Collapse
Affiliation(s)
- Xiaowei Wei
- Key Laboratory of the Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, Dominguez M. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis. PLoS Biol 2013; 11:e1001554. [PMID: 23667323 PMCID: PMC3646720 DOI: 10.1371/journal.pbio.1001554] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Analysis of tumorigenesis in Drosophila reveals a tumor-suppressor role for Hedgehog signaling in the context of oncogenic Notch signaling. Fine-tuned Notch and Hedgehog signalling pathways via attenuators and dampers have long been recognized as important mechanisms to ensure the proper size and differentiation of many organs and tissues. This notion is further supported by identification of mutations in these pathways in human cancer cells. However, although it is common that the Notch and Hedgehog pathways influence growth and patterning within the same organ through the establishment of organizing regions, the cross-talk between these two pathways and how the distinct organizing activities are integrated during growth is poorly understood. Here, in an unbiased genetic screen in the Drosophila melanogaster eye, we found that tumour-like growth was provoked by cooperation between the microRNA miR-7 and the Notch pathway. Surprisingly, the molecular basis of this cooperation between miR-7 and Notch converged on the silencing of Hedgehog signalling. In mechanistic terms, miR-7 silenced the interference hedgehog (ihog) Hedgehog receptor, while Notch repressed expression of the brother of ihog (boi) Hedgehog receptor. Tumourigenesis was induced co-operatively following Notch activation and reduced Hedgehog signalling, either via overexpression of the microRNA or through specific down-regulation of ihog, hedgehog, smoothened, or cubitus interruptus or via overexpression of the cubitus interruptus repressor form. Conversely, increasing Hedgehog signalling prevented eye overgrowth induced by the microRNA and Notch pathway. Further, we show that blocking Hh signal transduction in clones of cells mutant for smoothened also enhance the organizing activity and growth by Delta-Notch signalling in the wing primordium. Together, these findings uncover a hitherto unsuspected tumour suppressor role for the Hedgehog signalling and reveal an unanticipated cooperative antagonism between two pathways extensively used in growth control and cancer. Growth control mechanisms ensure that organs attain the correct final size, generally averting tumour growth. This control is often linked to spatially confined domains known as organizers (conserved signalling centres), established along the dorsal-ventral and anterior-posterior axes of the organ by the Notch and Hedgehog pathways, respectively. The organizers emit signals that dictate growth, cell fate specification, and differentiation. However, how the distinct organizing signals received are integrated by cells within a growing organ remains a mystery. By studying how Delta-Notch signalling drives tumorigenesis, we identified the conserved microRNA miR-7 as a co-operative element in tumorigenesis mediated by Delta. We found that the cooperation between the microRNA and Delta-Notch pathway converged on the silencing of two obligatory and functionally redundant Hedgehog receptors, interference hedgehog and brother of ihog. Downregulation of other hedgehog pathway genes via RNA interference or genetic mosaics revealed a tumour suppressor role for Hedgehog signalling in the context of the oncogenic Notch pathway. Given the conservation of miR-7, as well as of the Notch and Hedgehog pathways, the conclusions we have drawn from these studies on Drosophila may be applicable to some human cancers.
Collapse
Affiliation(s)
| | | | | | - Maria Dominguez
- Instituto de Neurociencias, CSIC-UMH, Alicante, Spain
- * E-mail:
| |
Collapse
|
107
|
Abstract
Here we describe a protocol for the fabrication and use of a microfluidic device to rapidly orient >700 Drosophila embryos in parallel for end-on imaging. The protocol describes master microfabrication (∼1 d), polydimethylsiloxane molding (few hours), system setup and device operation (few minutes) and imaging (depending on application). Our microfluidics-based approach described here is one of the first to facilitate rapid orientation for end-on imaging, and it is a major breakthrough for quantitative studies on Drosophila embryogenesis. The operating principle of the embryo trap is based on passive hydrodynamics, and it does not require direct manipulation of embryos by the user; biologists following the protocol should be able to repeat these procedures. The compact design and fabrication materials used allow the device to be used with traditional microscopy setups and do not require specialized fixtures. Furthermore, with slight modification, this array can be applied to the handling of other model organisms and oblong objects.
Collapse
|
108
|
Epigenetics in fertilization and preimplantation embryo development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:423-32. [PMID: 23454467 DOI: 10.1016/j.pbiomolbio.2013.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/10/2013] [Accepted: 02/20/2013] [Indexed: 12/30/2022]
Abstract
Epigenetic reprogramming of the parental genomes upon fertilization is required for proper embryonic development. It has long been appreciated that asymmetric distribution of histone modifications as well as differences in the level of DNA methylation exist between the parental pronuclei in mammalian zygotes and during preimplantation development. The speed at which the paternal genome is demethylated after entering the oocyte and the fact that rapid demethylation occurs in the absence of DNA replication have led many to hypothesize that a DNA demethylase must exist. However, such an enzyme has not been found. That the genome of mammalian preimplantation embryos undergo a wave of global demethylation was first reported 25 years ago but only in the past three years has data surfaced that can partially explain the elusive nature of this phenomenon. In addition to the global reorganization of the methylation and histone modification patterns, oocyte development prior to germinal vesicle breakdown involves the production of numerous small RNA, including miRNA. Despite their presence, miRNA functional activity is thought to be limited in the mature mouse oocyte. Additionally, molecular signatures in the 3' untranslated region of maternally expressed transcripts may impact mRNA stability during the transcriptionally quiescent period following germinal vesicle breakdown and prior to the maternal to zygote transition. In this review, we reference some of the recent works which attempt to shed light into the importance of the dynamic epigenetic landscape observed during oocyte maturation and preimplantation embryo development in mammals.
Collapse
|
109
|
Coordinated Networks of microRNAs and Transcription Factors with Evolutionary Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:169-87. [DOI: 10.1007/978-94-007-5590-1_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
110
|
Yan B, Liu B, Zhu CD, Li KL, Yue LJ, Zhao JL, Gong XL, Wang CH. microRNA regulation of skin pigmentation in fish. J Cell Sci 2013; 126:3401-8. [DOI: 10.1242/jcs.125831] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial roles in numerous biological processes. However, the role of miRNAs in skin color determination in fish has not been completely determined. Here, we identified that 13 miRNAs are differentially expressed between red and white skin. The analysis of miRNA spatial and temporal expression patterns suggests that miR-429 is potential regulator of skin pigmentation. miR-429 silencing results in a obvious change in skin pigmentation. Bioinformatics analysis and luciferase reporter assay shows that miR-429 directly regulates Foxd3 expression by targeting its 3′ untranslated (3′-UTR) region. miR-429 silencing leads to a significant increase in Foxd3 expression in vivo, thereby repressing the transcription of MITF and its downstream genes such as TYR, TYRP1, or TYRP2. These findings would provide a novel insight into the determination of skin color in fish.
Collapse
|
111
|
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide single-stranded RNA molecules that originate from hairpin precursors and regulate gene expression at the posttranscriptional level by basepairing with target messenger RNA and blocking its translation or inducing its degradation. miRNAs play important roles in a variety of biological processes, including development, proliferation, differentiation, cell fate determination, apoptosis, signal transduction, host-viral interactions, and tumorigenesis. Methodological advances in miRNA studies allowed identification of biological roles for many miRNAs, and establishing the spatiotemporal expression patterns of miRNAs is one of the approaches to elucidate their biological functions. Expression pattern analysis of miRNAs helps to identify potential genetic interactors that exhibit similar expression patterns and this, combined with further supporting experiments, helps to identify the genetic pathways in which the specific miRNAs are involved. In this chapter, we describe a detailed protocol for the analysis of miRNA expression patterns in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Meltem Isik
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
112
|
Abstract
Since the last common ancestor of Metazoa, animals have evolved complex body plans with specialized cells and spatial organization of tissues and organs. Arguably, one of the most significant innovations during animal evolutionary history was the establishment of a bilateral plane of symmetry on which morphological features (e.g. tissues, organs, appendages, skeleton) could be given specific coordinates within the animal along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes. Hox genes are a known group of eumetazoan transcription factors central to regulating A-P patterning, but less well known and under current investigation is the broader regulatory landscape incorporating these genes, including microRNA (miRNA) regulation. The degree to which evolutionarily conserved targeting of Hox genes by Hox-embedded miRNAs contributes directly to A-P patterning is under investigation, yielding contrasting information dependent on the organism and miRNA of interest. The widespread A-P patterning defects observed in recent miR-196 loss-of-function studies solidifies the importance of miRNA regulation in Hox genetic hierarchies, and elucidating the developmental and evolutionary importance of all Hox-embedded miRNAs remains a challenge for the future.
Collapse
Affiliation(s)
- Alysha Heimberg
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, 3800, Australia
| | | |
Collapse
|
113
|
Zondag L, Dearden PK, Wilson MJ. Deep sequencing and expression of microRNAs from early honeybee (Apis mellifera) embryos reveals a role in regulating early embryonic patterning. BMC Evol Biol 2012; 12:211. [PMID: 23121997 PMCID: PMC3562263 DOI: 10.1186/1471-2148-12-211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/22/2012] [Indexed: 01/23/2023] Open
Abstract
Background Recent evidence supports the proposal that the observed diversity of animal body plans has been produced through alterations to the complexity of the regulatory genome rather than increases in the protein-coding content of a genome. One significant form of gene regulation is the contribution made by the non-coding content of the genome. Non-coding RNAs play roles in embryonic development of animals and these functions might be expected to evolve rapidly. Using next-generation sequencing and in situ hybridization, we have examined the miRNA content of early honeybee embryos. Results Through small RNA sequencing we found that 28% of known miRNAs are expressed in the early embryo. We also identified developmentally expressed microRNAs that are unique to the Apoidea clade. Examination of expression patterns implied these miRNAs have roles in patterning the anterior-posterior and dorso-ventral axes as well as the extraembryonic membranes. Knockdown of Dicer, a key component of miRNA processing, confirmed that miRNAs are likely to have a role in patterning these tissues. Conclusions Examination of the expression patterns of novel miRNAs, some unique to the Apis group, indicated that they are likely to play a role in early honeybee development. Known miRNAs that are deeply conserved in animal phyla display differences in expression pattern between honeybee and Drosophila, particularly at early stages of development. This may indicate miRNAs play a rapidly evolving role in regulating developmental pathways, most likely through changes to the way their expression is regulated.
Collapse
Affiliation(s)
- Lisa Zondag
- Laboratory for Evolution and Development, Genetics Otago and National Research Centre for Growth and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
114
|
Chen Z, Liang S, Zhao Y, Han Z. miR-92b regulates Mef2 levels through a negative-feedback circuit during Drosophila muscle development. Development 2012; 139:3543-52. [PMID: 22899845 DOI: 10.1242/dev.082719] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mef2 is the key transcription factor for muscle development and differentiation in Drosophila. It activates hundreds of downstream target genes, including itself. Precise control of Mef2 levels is essential for muscle development as different Mef2 protein levels activate distinct sets of muscle genes, but how this is achieved remains unclear. Here, we have identified a novel heart- and muscle-specific microRNA, miR-92b, which is activated by Mef2 and subsequently downregulates Mef2 through binding to its 3'UTR, forming a negative regulatory circuit that fine-tunes the level of Mef2. Deletion of miR-92b caused abnormally high Mef2 expression, leading to muscle defects and lethality. Blocking miR-92b function using microRNA sponge techniques also increased Mef2 levels and caused muscle defects similar to those seen with the miR-92b deletion. Additionally, overexpression of miR-92b reduced Mef2 levels and caused muscle defects similar to those seen in Mef2 RNAi, and Mef2 overexpression led to reversal of these defects. Our results suggest that the negative feedback circuit between miR-92b and Mef2 efficiently maintains the stable expression of both components that is required for homeostasis during Drosophila muscle development.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan Medical School, 109 Zina Pitcher Place, 4029 BSRB, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
115
|
Bejarano F, Bortolamiol-Becet D, Dai Q, Sun K, Saj A, Chou YT, Raleigh DR, Kim K, Ni JQ, Duan H, Yang JS, Fulga TA, Van Vactor D, Perrimon N, Lai EC. A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 2012; 139:2821-31. [PMID: 22745315 DOI: 10.1242/dev.079939] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are endogenous short RNAs that mediate vast networks of post-transcriptional gene regulation. Although computational searches and experimental profiling provide evidence for hundreds of functional targets for individual miRNAs, such data rarely provide clear insight into the phenotypic consequences of manipulating miRNAs in vivo. We describe a genome-wide collection of 165 Drosophila miRNA transgenes and find that a majority induced specific developmental defects, including phenocopies of mutants in myriad cell-signaling and patterning genes. Such connections allowed us to validate several likely targets for miRNA-induced phenotypes. Importantly, few of these phenotypes could be predicted from computationally predicted target lists, thus highlighting the value of whole-animal readouts of miRNA activities. Finally, we provide an example of the relevance of these data to miRNA loss-of-function conditions. Whereas misexpression of several K box miRNAs inhibited Notch pathway activity, reciprocal genetic interaction tests with miRNA sponges demonstrated endogenous roles of the K box miRNA family in restricting Notch signaling. In summary, we provide extensive evidence that misexpression of individual miRNAs often induces specific mutant phenotypes that can guide their functional study. By extension, these data suggest that the deregulation of individual miRNAs in other animals may frequently yield relatively specific phenotypes during disease conditions.
Collapse
Affiliation(s)
- Fernando Bejarano
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Gokhale S, Hariharan M, Brahmachari SK, Gadgil C. A simple method for incorporating dynamic effects of intronic miRNA mediated regulation. MOLECULAR BIOSYSTEMS 2012; 8:2145-52. [PMID: 22699750 DOI: 10.1039/c2mb25046b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of microRNA (miRNA) in modulating gene expression at the post-transcriptional level is well known. Such regulation has been shown to influence the dynamics of several regulatory networks including the cell cycle. In this study we incorporated regulatory effects of intronic miRNA into an existing mathematical model of the cell cycle through the use of an existing 'proxy' protein--the host protein. It was observed that the incorporation of intronic miRNA mediated regulation improved the performance of the model resulting in a closer match to experimental results. To test the universality of this approach we compared the effects of intronic miRNA mediated regulation and host protein mediated regulation. Further, we compared miRNA mediated and protein mediated positive and negative feedback regulations of the target protein. We found that the target protein profiles were predominantly similar. These observations show the applicability of our method for incorporating intronic miRNA mediated dynamic effects in models for regulation of gene expression.
Collapse
Affiliation(s)
- Sucheta Gokhale
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | | | | | | |
Collapse
|
117
|
Zhao X, Wu J, Zheng M, Gao F, Ju G. Specification and maintenance of oligodendrocyte precursor cells from neural progenitor cells: involvement of microRNA-7a. Mol Biol Cell 2012; 23:2867-78. [PMID: 22696677 PMCID: PMC3408414 DOI: 10.1091/mbc.e12-04-0270] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A gain-of-function study showed that miR-7a promoted the generation of oligodendrocytes (OL) and retained the cells in their precursor stage. Inhibiting miR-7a reduced oligodendrogenesis but expanded neuronal population. miR-7a might exert these effects by repressing the expression of proneural genes and regulators for OL differentiation. The generation of myelinating cells from multipotential neural stem cells in the CNS requires the initiation of specific gene expression programs in oligodendrocytes (OLs). We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating genes crucial for OL development. Here we identified miR-7a as one of the highly enriched miRNAs in oligodendrocyte precursor cells (OPCs), overexpression of which in either neural progenitor cells (NPCs) or embryonic mouse cortex promoted the generation of OL lineage cells. Blocking the function of miR-7a in differentiating NPCs led to a reduction in OL number and an expansion of neuronal populations simultaneously. We also found that overexpression of this miRNA in purified OPC cultures promoted cell proliferation and inhibited further maturation. In addition, miR-7a might exert the effects just mentioned partially by directly repressing proneuronal differentiation factors including Pax6 and NeuroD4, or proOL genes involved in oligodendrocyte maturation. These results suggest that miRNA pathway is essential in determining cell fate commitment for OLs and thus providing a new strategy for modulating this process in OL loss diseases.
Collapse
Affiliation(s)
- Xianghui Zhao
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | |
Collapse
|
118
|
Blythe MJ, Malla S, Everall R, Shih YH, Lemay V, Moreton J, Wilson R, Aboobaker AA. High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies. PLoS One 2012; 7:e33784. [PMID: 22448274 PMCID: PMC3309017 DOI: 10.1371/journal.pone.0033784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/17/2012] [Indexed: 12/19/2022] Open
Abstract
Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community.
Collapse
Affiliation(s)
- Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard Everall
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Yu-huan Shih
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Virginie Lemay
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Joanna Moreton
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Raymond Wilson
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
119
|
Marco A, Hooks K, Griffiths-Jones S. Evolution and function of the extended miR-2 microRNA family. RNA Biol 2012; 9:242-8. [PMID: 22336713 PMCID: PMC3384581 DOI: 10.4161/rna.19160] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs are essential post-transcriptional regulators. Many animal microRNAs are clustered in the genome, and it has been shown that clustered microRNAs may be transcribed as a single transcript. Polycistronic microRNAs are often members of the same family, suggesting a role of tandem duplication in the emergence of clusters. The mir-2 microRNA family is the largest in Drosophila melanogaster, with 8 members that are mostly clustered in the genome. Previous studies suggest that the copy number and genomic distribution of mir-2 family members has been subject to significant change during evolution. The effects of such changes on their function are still unknown. Here we study the evolution of function in the mir-2 family. Our analyses show that, in spite of the change in number and organization among invertebrates, most mir-2 loci produce very similar mature microRNA products. Multiple mature miR-2 sequences are predicted to target genes involved in neural development in Drosophila. These targeting properties are conserved in the distant species Caenorhabditis elegans. Duplication followed by functional diversification is frequent during protein-coding gene evolution. However, our results suggest that the production of microRNA clusters by gene duplication rarely involves functional changes. This pattern of functional redundancy among clustered paralogous microRNAs reflects birth-and-death evolutionary dynamics. However, we identified a small number of mir-2 sequences in Drosophila that may have undergone functional shifts associated with genomic rearrangements. Therefore, redundancy in microRNA families may facilitate the acquisition of novel functional features.
Collapse
Affiliation(s)
- Antonio Marco
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
120
|
Siddiqui NU, Li X, Luo H, Karaiskakis A, Hou H, Kislinger T, Westwood JT, Morris Q, Lipshitz HD. Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells. Genome Biol 2012; 13:R11. [PMID: 22348290 PMCID: PMC3334568 DOI: 10.1186/gb-2012-13-2-r11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/12/2012] [Accepted: 02/20/2012] [Indexed: 11/23/2022] Open
Abstract
Background During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells. Results We purified PGCs from Drosophila embryos, defined their proteome and transcriptome, and assessed the content, scale and dynamics of their MZT. Transcripts encoding proteins that implement particular types of biological functions group into nine distinct expression profiles, reflecting coordinate control at the transcriptional and posttranscriptional levels. mRNAs encoding germ-plasm components and cell-cell signaling molecules are rapidly degraded while new transcription produces mRNAs encoding the core transcriptional and protein synthetic machineries. The RNA-binding protein Smaug is essential for the PGC MZT, clearing transcripts encoding proteins that regulate stem cell behavior, transcriptional and posttranscriptional processes. Computational analyses suggest that Smaug and AU-rich element binding proteins function independently to control transcript elimination. Conclusions The scale of the MZT is similar in the soma and PGCs. However, the timing and content of their MZTs differ, reflecting the distinct developmental imperatives of these cell types. The PGC MZT is delayed relative to that in the soma, likely because relief of PGC-specific transcriptional silencing is required for zygotic genome activation as well as for efficient maternal transcript clearance.
Collapse
Affiliation(s)
- Najeeb U Siddiqui
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Sun K, Westholm JO, Tsurudome K, Hagen JW, Lu Y, Kohwi M, Betel D, Gao FB, Haghighi AP, Doe CQ, Lai EC. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet 2012; 8:e1002515. [PMID: 22347817 PMCID: PMC3276548 DOI: 10.1371/journal.pgen.1002515] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/15/2011] [Indexed: 01/31/2023] Open
Abstract
miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology. microRNAs are abundant ∼22 nucleotide RNAs inferred to mediate pervasive post-transcriptional control of most genes. Still, relatively little is understood about their endogenous requirements and impact, especially in animal systems. We analyzed a knockout of Drosophila mir-124, which is conserved in sequence and neuronal expression across the animal kingdom, and predicted to have hundreds of mRNA targets. While dispensable for gross neural specification and differentiation, deletion of mir-124 caused short lifespan, increased variation in dendrite numbers, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Loss of miR-124 broadly upregulated its direct targets but did not support the proposed mutual exclusion model, as its functional target genes were relatively highly expressed in neurons. One notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons phenocopies loss of miR-124. Derepression of the direct miR-124 target network had many secondary effects, including over-activity of other post-transcriptional repressors and impaired transition from neuroblast to neuronal transcriptome signatures. Altogether, we demonstrate complex requirements for this conserved miRNA on gene expression and neurophysiology.
Collapse
Affiliation(s)
- Kailiang Sun
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
A complex 'mRNA degradation code' controls gene expression during animal development. Trends Genet 2012; 28:78-88. [PMID: 22257633 DOI: 10.1016/j.tig.2011.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022]
Abstract
Current understanding of the molecular mechanisms underlying mRNA degradation indicates that specific mRNA degradation rates are primarily encoded within the mRNA message itself in the form of cis-regulatory elements bearing particular primary sequences and/or secondary-structures. Such control elements are operated by RNA-binding proteins (RBPs) and/or miRNA-containing complexes. Based on the large number of RBPs and miRNAs encoded in metazoan genomes, their complex developmental expression and that specific RBP and miRNA interactions with mRNAs can lead to distinct degradation rates, I propose that developmental gene expression is shaped by a complex 'mRNA degradation code' with high information capacity. Localised cellular events involving the modification of RBP and/or miRNA target sequences in mRNAs by alternative polyadenylation added to the activation of specific RBP and miRNA activities via cell signalling are predicted to further expand the capacity of the mRNA degradation code by coupling it to dynamic events experienced by cells at specific spatiotemporal coordinates within the developing embryo.
Collapse
|
123
|
He C, Li Z, Chen P, Huang H, Hurst LD, Chen J. Young intragenic miRNAs are less coexpressed with host genes than old ones: implications of miRNA-host gene coevolution. Nucleic Acids Res 2012; 40:4002-12. [PMID: 22238379 PMCID: PMC3351155 DOI: 10.1093/nar/gkr1312] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key regulators of gene expression. Intragenic miRNAs account for ∼50% of mammalian miRNAs. Classic studies reported that they are usually coexpressed with host genes. Here, using genome-wide miRNA and gene expression profiles from five sample sets, we show that evolutionarily conserved (‘old’) intragenic miRNAs tend to be coexpressed with host genes, but non-conserved (‘young’) ones rarely do so. This result is robust: in all sample sets, the coexpression rate of young miRNAs is significantly lower than that of conserved ones even after controlling for abundance. As a result, although young miRNAs dominate in human genome, the majority of intragenic miRNAs that show coexpression with host genes are phylogenetically old ones. For younger miRNAs, extrapolation of their expression profiles from those of their host genes should be treated with caution. We propose a model to explain this phenomenon in which the majority of young miRNAs are unlikely to be coexpressed with host genes; however, for some fraction of young miRNAs coexpression with their host genes, initially imbued by chromatin level effects, is advantageous and these are the ones likely to embed into the system and evolve ever higher levels of coexpression, possibly by evolving piggybacking mechanisms.
Collapse
Affiliation(s)
- Chunjiang He
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
124
|
Cross Talk Between the Notch Signaling and Noncoding RNA on the Fate of Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:175-93. [DOI: 10.1016/b978-0-12-398459-3.00008-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
125
|
Abstract
Although a great deal is known about the identity, biogenesis, and targeting capacity of microRNAs (miRNAs) in animal cells, far less is known about their functional requirements at the organismal level. Much remains to be understood about the necessity of miRNAs for overt phenotypes, the identity of critical miRNA targets, and the control of miRNA transcription. In this review, we provide an overview of genetic strategies to study miRNAs in the Drosophila system, including loss- and gain-of-function techniques, genetic interaction strategies, and transgenic reporters of miRNA expression and activity. As we illustrate the usage of these techniques in intact Drosophila, we see certain recurrent themes for miRNA functions, including energy homeostasis, apoptosis suppression, growth control, and regulation of core cell signaling pathways. Overall, we hope that this exposition of Drosophila genetic techniques, well known to the legions of fly geneticists and used to study all genes, can inform the general miRNA community that focuses on other biochemical, molecular, computational, and structural avenues. Clearly, it is the combination of these myriad techniques that has accelerated miRNA research to its extraordinary pace.
Collapse
Affiliation(s)
- Qi Dai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| | - Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| |
Collapse
|
126
|
Abstract
MicroRNAs play essential roles during animal development, including in developing muscle. Many microRNAs are expressed during muscle development and some, like miR-1 and miR-133, are muscle specific. Muscle microRNAs are integrated into myogenic regulatory networks: their expression is under the transcriptional and posttranscriptional control of myogenic factors, and they in turn have widespread control of muscle gene expression. This review summarizes recent work characterizing the function of microRNAs in muscle biology and specifically focuses on the genetic analysis of muscle microRNAs in a variety of model organisms including worms, flies, zebrafish, and mice.
Collapse
Affiliation(s)
- Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
127
|
Mansfield JH, McGlinn E. Evolution, Expression, and Developmental Function of Hox-Embedded miRNAs. Curr Top Dev Biol 2012; 99:31-57. [DOI: 10.1016/b978-0-12-387038-4.00002-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
128
|
Abstract
In the past decade, microRNAs (miRNAs) have been uncovered as key regulators of gene expression at the post-transcriptional level. The ancient origin of miRNAs, their dramatic expansion in bilaterian animals and their function in providing robustness to transcriptional programmes suggest that miRNAs are instrumental in the evolution of organismal complexity. Advances in understanding miRNA biology, combined with the increasing availability of diverse sequenced genomes, have begun to reveal the molecular mechanisms that underlie the evolution of miRNAs and their targets. Insights are also emerging into how the evolution of miRNA-containing regulatory networks has contributed to organismal complexity.
Collapse
Affiliation(s)
- Eugene Berezikov
- Hubrecht Institute, KNAW, University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
129
|
Chen JS, Pedro MS, Zeller RW. miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. Development 2011; 138:4943-53. [DOI: 10.1242/dev.068049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nervous system-enriched microRNA miR-124 is necessary for proper nervous system development, although the mechanism remains poorly understood. Here, through a comprehensive analysis of miR-124 and its gene targets, we demonstrate that, in the chordate ascidian Ciona intestinalis, miR-124 plays an extensive role in promoting nervous system development. We discovered that feedback interaction between miR-124 and Notch signaling regulates the epidermal-peripheral nervous system (PNS) fate choice in tail midline cells. Notch signaling silences miR-124 in epidermal midline cells, whereas in PNS midline cells miR-124 silences Notch, Neuralized and all three Ciona Hairy/Enhancer-of-Split genes. Furthermore, ectopic expression of miR-124 is sufficient to convert epidermal midline cells into PNS neurons, consistent with a role in modulating Notch signaling. More broadly, genome-wide target extraction with validation using an in vivo tissue-specific sensor assay indicates that miR-124 shapes neuronal progenitor fields by downregulating non-neural genes, notably the muscle specifier Macho-1 and 50 Brachyury-regulated notochord genes, as well as several anti-neural factors including SCP1 and PTBP1. 3′UTR conservation analysis reveals that miR-124 targeting of SCP1 is likely to have arisen as a shared, derived trait in the vertebrate/tunicate ancestor and targeting of PTBP1 is conserved among bilaterians except for ecdysozoans, while extensive Notch pathway targeting appears to be Ciona specific. Altogether, our results provide a comprehensive insight into the specific mechanisms by which miR-124 promotes neuronal development.
Collapse
Affiliation(s)
- Jerry S. Chen
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Matthew San Pedro
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Robert W. Zeller
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Center for Applied and Experimental Genomics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
130
|
Neural-specific elongation of 3' UTRs during Drosophila development. Proc Natl Acad Sci U S A 2011; 108:15864-9. [PMID: 21896737 DOI: 10.1073/pnas.1112672108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 3' termini of eukaryotic mRNAs influence transcript stability, translation efficiency, and subcellular localization. Here we report that a subset of developmental regulatory genes, enriched in critical RNA-processing factors, exhibits synchronous lengthening of their 3' UTRs during embryogenesis. The resulting UTRs are up to 20-fold longer than those found on typical Drosophila mRNAs. The large mRNAs emerge shortly after the onset of zygotic transcription, with several of these genes acquiring additional, phased UTR extensions later in embryogenesis. We show that these extended 3' UTR sequences are selectively expressed in neural tissues and contain putative recognition motifs for the translational repressor, Pumilio, which also exhibits the 3' lengthening phenomenon documented in this study. These findings suggest a previously unknown mode of posttranscriptional regulation that may contribute to the complexity of neurogenesis or neural function.
Collapse
|
131
|
Huang Y, Zou Q, Shen XJ, Tang SM, Wang SP, Zhao QL. Differential expression of microRNA-2b with potential target coding P25 in the fifth instar larvae posterior silk gland of the silkworm. Mol Biol 2011. [DOI: 10.1134/s0026893311040133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
132
|
Candiani S, Moronti L, De Pietri Tonelli D, Garbarino G, Pestarino M. A study of neural-related microRNAs in the developing amphioxus. EvoDevo 2011; 2:15. [PMID: 21722366 PMCID: PMC3145563 DOI: 10.1186/2041-9139-2-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/01/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs are small noncoding RNAs regulating expression of protein coding genes at post-transcriptional level and controlling several biological processes. At present microRNAs have been identified in various metazoans and seem also to be involved in brain development, neuronal differentiation and subtypes specification. An approach to better understand the role of microRNAs in animal gene expression is to determine temporal and tissue-specific expression patterns of microRNAs in different model organisms. Therefore, we have investigated the expression of six neural related microRNAs in amphioxus, an organism having an important phylogenetic position in terms of understanding the origin and evolution of chordates. RESULTS In amphioxus, all the microRNAs we examined are expressed in specific regions of the CNS, and some of them are correlated with specific cell types. In addition, miR-7, miR-137 and miR-184 are also expressed in endodermal and mesodermal tissues. Several potential targets expressed in the nervous system of amphioxus have been identified by computational prediction and some of them are coexpressed with one or more miRNAs. CONCLUSION We identified six miRNAs that are expressed in the nervous system of amphioxus in a variety of patterns. miR-124 is found in both differentiating and mature neurons, miR-9 in differentiated neurons, miR-7, miR-137 and miR-184 in restricted CNS regions, and miR-183 in cells of sensory organs. Therefore, such amphioxus miRNAs may play important roles in regional patterning and/or specification of neuronal cell types.
Collapse
Affiliation(s)
- Simona Candiani
- University of Genoa, Department of Biology, viale Benedetto XV 5, 16132 Genoa, Italy.
| | | | | | | | | |
Collapse
|
133
|
Axtell MJ, Westholm JO, Lai EC. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 2011. [PMID: 21554756 DOI: 10.1186/gb-2011-12-4-221?] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are pervasive in both plants and animals, but many aspects of their biogenesis, function and evolution differ. We reveal how these differences contribute to characteristic features of microRNA evolution in the two kingdoms.
Collapse
Affiliation(s)
- Michael J Axtell
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
134
|
Axtell MJ, Westholm JO, Lai EC. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 2011; 12:221. [PMID: 21554756 PMCID: PMC3218855 DOI: 10.1186/gb-2011-12-4-221] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are pervasive in both plants and animals, but many aspects of their biogenesis, function and evolution differ. We reveal how these differences contribute to characteristic features of microRNA evolution in the two kingdoms.
Collapse
Affiliation(s)
- Michael J Axtell
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
135
|
A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics 2011; 12:186. [PMID: 21486491 PMCID: PMC3107184 DOI: 10.1186/1471-2164-12-186] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 04/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Functional studies have demonstrated that microRNAs (miRNAs or miRs) play critical roles in a wide spectrum of biological processes including development and disease pathogenesis. To investigate the functional roles that miRNAs play during chicken skeletal muscle development, the miRNA transcriptomes of skeletal muscles from broiler and layer chickens were profiled using Solexa deep sequencing. RESULTS Some miRNAs have multiple isoforms and several miRNAs* are present at higher levels than their corresponding miRNAs. Thirty three novel and 189 known chicken miRNAs were identified using computational approaches. Subsequent miRNA transcriptome comparisons and real-time PCR validation experiments revealed 17 miRNAs that were differentially expressed between broilers and layers, and a number of targets of these miRNAs have been implicated in myogenesis regulation. Using integrative miRNA target-prediction and network-analysis approaches an interaction network of differentially expressed and muscle-related miRNAs and their putative targets was constructed, and miRNAs that could contribute to the divergent muscle growth of broiler and layer chickens by targeting the ACVR2B gene were identified, which can causes dramatic increases in muscle mass. CONCLUSIONS The present study provides the first transcriptome profiling-based evaluation of miRNA function during skeletal muscle development in chicken. Systematic predictions aided the identification of potential miRNAs and their targets, which could contribute to divergent muscle growth in broiler and layer chickens. Furthermore, these predictions generated information that can be utilized in further research investigating the involvement of interaction networks, containing miRNAs and their targets, in the regulation of muscle development.
Collapse
|
136
|
Abstract
Originally identified as moderate biological modifiers, microRNAs have recently emerged as powerful regulators of diverse cellular processes with especially important roles in disease and tissue remodeling. The rapid pace of studies on microRNA regulation and function necessitates the development of suitable techniques for measuring and modulating microRNAs in different model systems. This review summarizes experimental strategies for microRNA research and highlights the strengths and weaknesses of different approaches. The development of more specific and sensitive assays will further illuminate the biology behind microRNAs and will advance opportunities to safely pursue them as therapeutic modalities.
Collapse
Affiliation(s)
- Eva van Rooij
- miRagen Therapeutics Inc., 6200 Lookout Road, Boulder, CO 80301, USA.
| |
Collapse
|
137
|
Neveu P, Kye MJ, Qi S, Buchholz DE, Clegg DO, Sahin M, Park IH, Kim KS, Daley GQ, Kornblum HI, Shraiman BI, Kosik KS. MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. Cell Stem Cell 2011; 7:671-81. [PMID: 21112562 DOI: 10.1016/j.stem.2010.11.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/08/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
Reprogramming methodologies have provided multiple routes for achieving pluripotency. However, pluripotency is generally considered to be an almost singular state, with subtle differences described between induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs). We profiled miRNA expression levels across 49 human cell lines, including ESCs, iPSCs, differentiated cells, and cancer cell lines. We found that the resulting miRNA profiles divided the iPSCs and hESCs examined into two distinct categories irrespective of the cell line origin. The miRNAs that defined these two pluripotency categories also distinguished cancer cells from differentiated cells. Transcriptome analysis suggested that several gene sets related to p53 distinguished these categories, and overexpression of the p53-targeting miRNAs miR-92 and miR-141 in iPSCs was sufficient to change their classification status. Thus, our results suggest a subdivision of pluripotent stem cell states that is independent of their origin but related to p53 network status.
Collapse
Affiliation(s)
- Pierre Neveu
- Neuroscience Research Institute, University of California at Santa Barbara, 93106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Zhang C, Wang QT, Liu H, Zhang ZZ, Huang WL. Advancement and prospects of tumor gene therapy. CHINESE JOURNAL OF CANCER 2011; 30:182-8. [PMID: 21352695 PMCID: PMC4013314 DOI: 10.5732/cjc.010.10074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/15/2010] [Accepted: 04/15/2010] [Indexed: 12/17/2022]
Abstract
Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucleotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.
Collapse
Affiliation(s)
- Chao Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Qing-Tao Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - He Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Zhen-Zhu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Wen-Lin Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P. R. China;
- Research Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| |
Collapse
|
139
|
Surridge AK, Lopez-Gomollon S, Moxon S, Maroja LS, Rathjen T, Nadeau NJ, Dalmay T, Jiggins CD. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene. BMC Genomics 2011; 12:62. [PMID: 21266089 PMCID: PMC3039609 DOI: 10.1186/1471-2164-12-62] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. RESULTS We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. CONCLUSIONS Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the HmYb region and were expressed in developing pupal wings. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes.
Collapse
Affiliation(s)
- Alison K Surridge
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 2010; 21:203-15. [PMID: 21177969 DOI: 10.1101/gr.116657.110] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the initial annotation of miRNAs from cloned short RNAs by the Ambros, Tuschl, and Bartel groups in 2001, more than a hundred studies have sought to identify additional miRNAs in various species. We report here a meta-analysis of short RNA data from Drosophila melanogaster, aggregating published libraries with 76 data sets that we generated for the modENCODE project. In total, we began with more than 1 billion raw reads from 187 libraries comprising diverse developmental stages, specific tissue- and cell-types, mutant conditions, and/or Argonaute immunoprecipitations. We elucidated several features of known miRNA loci, including multiple phased byproducts of cropping and dicing, abundant alternative 5' termini of certain miRNAs, frequent 3' untemplated additions, and potential editing events. We also identified 49 novel genomic locations of miRNA production, and 61 additional candidate loci with limited evidence for miRNA biogenesis. Although these loci broaden the Drosophila miRNA catalog, this work supports the notion that a restricted set of cellular transcripts is competent to be specifically processed by the Drosha/Dicer-1 pathway. Unexpectedly, we detected miRNA production from coding and untranslated regions of mRNAs and found the phenomenon of miRNA production from the antisense strand of known loci to be common. Altogether, this study lays a comprehensive foundation for the study of miRNA diversity and evolution in a complex animal model.
Collapse
Affiliation(s)
- Eugene Berezikov
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R. MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 2010; 39:2869-79. [PMID: 21131276 PMCID: PMC3074159 DOI: 10.1093/nar/gkq904] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the fine control of cell proliferation and differentiation during the development of the nervous system. MiR-124, a neural specific miRNA, is expressed from the beginning of eye development in Xenopus, and has been shown to repress cell proliferation in the optic cup, however, its role at earlier developmental stages is unclear. Here, we show that this miRNA exerts a different role in cell proliferation at the optic vesicle stage, the stage which precedes optic cup formation. We show that miR-124 is both necessary and sufficient to promote cell proliferation and repress neurogenesis at the optic vesicle stage, playing an anti-neural role. Loss of miR-124 upregulates expression of neural markers NCAM, N-tubulin while gain of miR-124 downregulates these genes. Furthermore, miR-124 interacts with a conserved miR-124 binding site in the 3'-UTR of NeuroD1 and negatively regulates expression of the proneural marker NeuroD1, a bHLH transcription factor for neuronal differentiation. The miR-124-induced effect on cell proliferation can be antagonized by NeuroD1. These results reveal a novel regulatory role of miR-124 in neural development and uncover a previously unknown interaction between NeuroD1 and miR-124.
Collapse
Affiliation(s)
- Kaili Liu
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
142
|
Hilgers V, Bushati N, Cohen SM. Drosophila microRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis. PLoS Biol 2010; 8:e1000396. [PMID: 20563308 PMCID: PMC2885982 DOI: 10.1371/journal.pbio.1000396] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/06/2010] [Indexed: 12/19/2022] Open
Abstract
miR-263a/b are members of a conserved family of microRNAs that are expressed in peripheral sense organs across the animal kingdom. Here we present evidence that miR-263a and miR-263b play a role in protecting Drosophila mechanosensory bristles from apoptosis by down-regulating the pro-apoptotic gene head involution defective. Both microRNAs are expressed in the bristle progenitors, and despite a difference in their seed sequence, they share this key common target. In miR-263a and miR-263b deletion mutants, loss of bristles appears to be sporadic, suggesting that the role of the microRNAs may be to ensure robustness of the patterning process by promoting survival of these functionally specified cells. In the context of the retina, this mechanism ensures that the interommatidial bristles are protected during the developmentally programmed wave of cell death that prunes excess cells in order to refine the pattern of the pupal retina.
Collapse
Affiliation(s)
- Valérie Hilgers
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- PhD Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Natascha Bushati
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- * E-mail: (SMC); (NB)
| | - Stephen M. Cohen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: (SMC); (NB)
| |
Collapse
|
143
|
Abstract
A class of small, non-coding transcripts called microRNAs (miRNAs) that play a major role in post-transcriptional gene regulation has recently emerged and become the focus of intense research. MicroRNAs are abundant in the nervous system, where they have key roles in development and are likely to be important mediators of plasticity. A highly conserved pathway of miRNA biogenesis is closely linked to the transport and translatability of mRNAs in neurons. MicroRNAs have been shown to modulate programmed cell death during development. Although there are nearly 750 known human miRNA sequences, each of only approximately 20-25 nucleotides in length that bind to multiple mRNA targets, the accurate prediction of miRNA targets seems to lie just beyond our grasp. Nevertheless, the identification of such targets promises to provide new insights into many facets of neuronal function. In this review, we briefly describe miRNA biogenesis and the principle approaches for studying the function of miRNAs and potential application of miRNAs as biomarkers, diagnostic targets, and potential therapeutic tools of human diseases in general and neurological disorders in particular.
Collapse
|
144
|
Edelman LB, Chandrasekaran S, Price ND. Systems biology of embryogenesis. Reprod Fertil Dev 2010; 22:98-105. [PMID: 20003850 DOI: 10.1071/rd09215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The development of a complete organism from a single cell involves extraordinarily complex orchestration of biological processes that vary intricately across space and time. Systems biology seeks to describe how all elements of a biological system interact in order to understand, model and ultimately predict aspects of emergent biological processes. Embryogenesis represents an extraordinary opportunity (and challenge) for the application of systems biology. Systems approaches have already been used successfully to study various aspects of development, from complex intracellular networks to four-dimensional models of organogenesis. Going forward, great advancements and discoveries can be expected from systems approaches applied to embryogenesis and developmental biology.
Collapse
Affiliation(s)
- Lucas B Edelman
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
145
|
Localized expression pattern of miR-184 in Drosophila. Mol Biol Rep 2010; 38:355-8. [DOI: 10.1007/s11033-010-0115-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/16/2010] [Indexed: 11/27/2022]
|
146
|
Clark AM, Goldstein LD, Tevlin M, Tavaré S, Shaham S, Miska EA. The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res 2010; 38:3780-93. [PMID: 20176573 PMCID: PMC2887956 DOI: 10.1093/nar/gkq083] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miR-124 is a highly conserved microRNA (miRNA) whose in vivo function is poorly understood. Here, we identify miR-124 targets based on the analysis of the first mir-124 mutant in any organism. We find that miR-124 is expressed in many sensory neurons in Caenorhabditis elegans and onset of expression coincides with neuronal morphogenesis. We analyzed the transcriptome of miR-124 expressing and nonexpressing cells from wild-type and mir-124 mutants. We observe that many targets are co-expressed with and actively repressed by miR-124. These targets are expressed at reduced relative levels in sensory neurons compared to the rest of the animal. Our data from mir-124 mutant animals show that this effect is due to a large extent to the activity of miR-124. Genes with nonconserved target sites show reduced absolute expression levels in sensory neurons. In contrast, absolute expression levels of genes with conserved sites are comparable to control genes, suggesting a tuning function for many of these targets. We conclude that miR-124 contributes to defining cell-type-specific gene activity by repressing a diverse set of co-expressed genes.
Collapse
Affiliation(s)
- Alejandra M Clark
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, UK
| | | | | | | | | | | |
Collapse
|
147
|
Liu S, Gao S, Zhang D, Yin J, Xiang Z, Xia Q. MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori. BMC Genomics 2010; 11:85. [PMID: 20122259 PMCID: PMC2835664 DOI: 10.1186/1471-2164-11-85] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 02/02/2010] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Tissue-specific expression of miRNAs is highly relevant to their physiological roles in the corresponding tissues. However, to date, few miRNAs have been spatially identified in the silkworm. Results We establish for the first time the spatial expression patterns of nearly 100 miRNAs in multiple normal tissues (organs) of Bombyx mori females and males using microarray and Northern-blotting analyses. In all, only 10 miRNAs were universally distributed (including bmo-let-7 and bmo-bantam), while the majority were expressed exclusively or preferentially in specific tissue types (e.g., bmo-miR-275 and bmo-miR-1). Additionally, we examined the developmental patterns of miRNA expression during metamorphosis of the body wall, silk glands, midgut and fat body. In total, 63 miRNAs displayed significant alterations in abundance in at least 1 tissue during the developmental transition from larvae to pupae (e.g., bmo-miR-263b and bmo-miR-124). Expression patterns of five miRNAs were significantly increased during metamorphosis in all four tissues (e.g., bmo-miR-275 and bmo-miR-305), and two miRNA pairs, bmo-miR-10b-3p/5p and bmo-miR-281-3p/5p, showed coordinate expression. Conclusions In this study, we conducted preliminary spatial measurements of several miRNAs in the silkworm. Periods of rapid morphological change were associated with alterations in miRNA expression patterns in the body wall, silk glands, midgut and fat body during metamorphosis. Accordingly, we propose that corresponding ubiquitous or tissue-specific expression of miRNAs supports their critical roles in tissue specification. These results should facilitate future functional analyses.
Collapse
Affiliation(s)
- Shiping Liu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | | | | | | | | | | |
Collapse
|
148
|
Isik M, Korswagen HC, Berezikov E. Expression patterns of intronic microRNAs in Caenorhabditis elegans. SILENCE 2010; 1:5. [PMID: 20226079 PMCID: PMC2835999 DOI: 10.1186/1758-907x-1-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/01/2010] [Indexed: 02/07/2023]
Abstract
Background MicroRNAs (miRNA) are an abundant and ubiquitous class of small RNAs that play prominent roles in gene regulation. A significant fraction of miRNA genes reside in the introns of the host genes in the same orientation and are thought to be co-processed from the host gene mRNAs and thus depend on the host gene promoter for their expression. However, several lines of evidence for independent expression of intronic miRNAs exist in the literature but the extent of this independence remains unclear. Results We performed a systematic analysis of genomic regions surrounding intronic miRNAs in the nematode Caenorhabditis elegans and found that, in many cases, there are extended intronic sequences immediately upstream of the miRNAs that are well-conserved between the nematodes. We have generated transcriptional green fluorescent protein reporter fusions in transgenic C. elegans lines and demonstrated that, in all seven investigated cases, the conserved sequences show promoter properties and produce specific expression patterns that are different from the host gene expression patterns. The observed expression patterns are corroborated by the published small RNA sequencing data. Conclusions Our analysis reveals that the number of intronic miRNAs that do not rely on their host genes for expression is substantially higher than previously appreciated. At least one-third of the same-strand intronic miRNAs in C. elegans posses their own promoters and, thus, could be transcribed independently from their host genes. These findings provide a new insight into the regulation of miRNA genes and will be useful for the analysis of interactions between miRNAs and their host genes.
Collapse
Affiliation(s)
- Meltem Isik
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands.
| | | | | |
Collapse
|
149
|
Ancient animal microRNAs and the evolution of tissue identity. Nature 2010; 463:1084-8. [PMID: 20118916 DOI: 10.1038/nature08744] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/04/2009] [Indexed: 12/13/2022]
Abstract
The spectacular escalation in complexity in early bilaterian evolution correlates with a strong increase in the number of microRNAs. To explore the link between the birth of ancient microRNAs and body plan evolution, we set out to determine the ancient sites of activity of conserved bilaterian microRNA families in a comparative approach. We reason that any specific localization shared between protostomes and deuterostomes (the two major superphyla of bilaterian animals) should probably reflect an ancient specificity of that microRNA in their last common ancestor. Here, we investigate the expression of conserved bilaterian microRNAs in Platynereis dumerilii, a protostome retaining ancestral bilaterian features, in Capitella, another marine annelid, in the sea urchin Strongylocentrotus, a deuterostome, and in sea anemone Nematostella, representing an outgroup to the bilaterians. Our comparative data indicate that the oldest known animal microRNA, miR-100, and the related miR-125 and let-7 were initially active in neurosecretory cells located around the mouth. Other sets of ancient microRNAs were first present in locomotor ciliated cells, specific brain centres, or, more broadly, one of four major organ systems: central nervous system, sensory tissue, musculature and gut. These findings reveal that microRNA evolution and the establishment of tissue identities were closely coupled in bilaterian evolution. Also, they outline a minimum set of cell types and tissues that existed in the protostome-deuterostome ancestor.
Collapse
|
150
|
Hao L, Cai P, Jiang N, Wang H, Chen Q. Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 2010; 11:55. [PMID: 20092619 PMCID: PMC2820009 DOI: 10.1186/1471-2164-11-55] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/21/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Small endogenous non-coding RNAs (sncRNAs) such as small interfering RNA (siRNA), microRNA and other small RNA transcripts are derived from distinct loci in the genome and play critical roles in RNA-mediated gene silencing mechanisms in plants and metazoa. They are approximately 22 nucleotides long; regulate mRNA stability through perfect or imperfect match to the targets. The biological activities of sncRNAs have been related to many biological events, from resistance to microbe infections to cellular differentiation. The development of the zoonotic parasite Schistosoma japonicum parasite includes multiple steps of morphological alterations and biological differentiations, which provide a unique model for studies on the functions of small RNAs. Characterization of the genome-wide transcription of the sncRNAs will be a major step in understanding of the parasite biology. The objective of this study is to investigate the transcriptional profile and potential function of the small non-coding RNAs in the development of S. japanicum. RESULTS The endogenous siRNAs were found mainly derived from transposable elements (TE) or transposons and the natural antisense transcripts (NAT). In contrast to other organisms, the TE-derived siRNAs in S. japonicum were more predominant than other sncRNAs including microRNAs (miRNAs). Further, there were distinct length and 3'end variations in the sncRNAs, which were associated with the developmental differentiation of the parasite. Among the identified miRNA transcripts, there were 38 unique to S. japonicum and 16 that belonged to 13 miRNA families are common to other metazoan lineages. These miRNAs were either ubiquitously expressed, or they exhibited specific expression patterns related to the developmental stages or sex. Genes that encoded miRNAs are mainly located in clusters within the genome of S. japonicum. However, genes within one cluster could be differentially transcribed, which suggested that individual genes might be regulated by distinct mechanisms during parasite development. CONCLUSIONS Many miRNA and endogenous siRNA transcripts were identified in S. japonicum and the amount of siRNA was at least 4.4 and 1.6 times more than that of miRNA in both schistosomulum and adult worm stages respectively. SiRNAs are mainly derived from transposable elements (or transposons); while natural antisense transcripts (NAT)-derived siRNAs were much less. A majority of miRNA transcripts identified in the parasite were species-specific and the expression of certain miRNAs was found developmentally regulated. Both miRNA and siRNAs are potentially important regulators in the development of schistosomal parasites.
Collapse
Affiliation(s)
- Lili Hao
- Laboratory of Parasitology, Institute of Pathogen Biology/Institute of Basic Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | | | | | | | | |
Collapse
|