101
|
Whole-genome tiling array analysis of Mycobacterium leprae RNA reveals high expression of pseudogenes and noncoding regions. J Bacteriol 2009; 191:3321-7. [PMID: 19286800 DOI: 10.1128/jb.00120-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Whole-genome sequence analysis of Mycobacterium leprae has revealed a limited number of protein-coding genes, with half of the genome composed of pseudogenes and noncoding regions. We previously showed that some M. leprae pseudogenes are transcribed at high levels and that their expression levels change following infection. In order to clarify the RNA expression profile of the M. leprae genome, a tiling array in which overlapping 60-mer probes cover the entire 3.3-Mbp genome was designed. The array was hybridized with M. leprae RNA from the SHR/NCrj-rnu nude rat, and the results were compared to results from an open reading frame array and confirmed by reverse transcription-PCR. RNA expression was detected from genes, pseudogenes, and noncoding regions. The signal intensities obtained from noncoding regions were higher than those from pseudogenes. Expressed noncoding regions include the M. leprae unique repetitive sequence RLEP and other sequences without any homology to known functional noncoding RNAs. Although the biological functions of RNA transcribed from M. leprae pseudogenes and noncoding regions are not known, RNA expression analysis will provide insights into the bacteriological significance of the species. In addition, our study suggests that M. leprae will be a useful model organism for the study of the molecular mechanism underlying the creation of pseudogenes and the role of microRNAs derived from noncoding regions.
Collapse
|
102
|
High-throughput bioluminescence-based mutant screening strategy for identification of bacterial virulence genes. Appl Environ Microbiol 2009; 75:2166-75. [PMID: 19201969 DOI: 10.1128/aem.02449-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A high-throughput bioluminescence screening procedure for identification of virulence genes in bacteria was developed and applied to the fish pathogen Edwardsiella ictaluri. A random transposon mutant library expressing bioluminescence was constructed and robotically arrayed on 384-well plates. Mutants were cultivated and mixed with catfish serum and neutrophils in 96-well plates, and bioluminescence was used to detect mutants that are more susceptible to killing by these host factors. The virulence and vaccine efficacy of selected mutants were determined in channel catfish. Transposon insertion sites in 13 mutants attenuated in the natural host were mapped to the E. ictaluri genome. Ten unique genes were mutated, including genes encoding a negative regulator of sigmaE activity, a glycine cleavage system protein, tricarboxylic acid cycle enzymes, an O polysaccharide biosynthesis enzyme, proteins encoded on the native plasmid pEI1, and a fimbrial chaperon protein. Three of these mutants were found to have potential as live attenuated vaccines. This study demonstrates a novel application of bioluminescence to identify bacterial genes required for host resistance; as a result, efficacious and genetically defined live attenuated vaccine candidates were developed.
Collapse
|
103
|
Faucher SP, Forest C, Béland M, Daigle F. A novel PhoP-regulated locus encoding the cytolysin ClyA and the secreted invasin TaiA of Salmonella enterica serovar Typhi is involved in virulence. Microbiology (Reading) 2009; 155:477-488. [DOI: 10.1099/mic.0.022988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica serovar Typhi causes a human-restricted systemic infection called typhoid fever. We have identified a Typhi genomic region encoding two ORFs, STY1498 and STY1499, that are expressed during infection of human macrophages and organized in an operon. STY1498 corresponds to clyA, which encodes a pore-forming cytolysin, and STY1499 encodes a 27 kDa protein, without any attributed function, which we have named TaiA (Typhi-associated invasin A). In order to evaluate the roles of these genes in Typhi pathogenesis, isogenic Typhi strains harbouring a non-polar mutation of either clyA or taiA were constructed. In macrophages, taiA was involved in increasing phagocytosis, as taiA deletion reduced bacterial uptake, whereas clyA reduced or controlled bacterial growth, as clyA deletion enhanced Typhi survival within macrophages without affecting cytotoxicity. In epithelial cells, deletion of taiA had no effect on invasion, whereas deletion of clyA enhanced the Typhi invasion rate, and reduced cytotoxicity. Overexpression of taiA in Typhi or in Escherichia coli resulted in a higher invasion rate of epithelial cells. We have demonstrated that TaiA is secreted independently of both the Salmonella pathogenicity island (SPI)-1 and the SPI-2 type three secretion systems. We have shown that this operon is regulated by the virulence-associated regulator PhoP. Moreover, our results revealed that products of this operon might be involved in promoting the use of macrophages as a sheltered reservoir for Typhi and allowing long-term persistence inside the host.
Collapse
Affiliation(s)
- Sébastien P. Faucher
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Chantal Forest
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Maxime Béland
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - France Daigle
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
104
|
Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA. Transcriptome studies on Streptococcus pneumoniae, illustration of early response genes to THP-1 human macrophages. Genomics 2009; 93:72-82. [DOI: 10.1016/j.ygeno.2008.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/07/2008] [Accepted: 09/17/2008] [Indexed: 01/03/2023]
|
105
|
Al Dahouk S, Jubier-Maurin V, Scholz HC, Tomaso H, Karges W, Neubauer H, Köhler S. Quantitative analysis of the intramacrophagic Brucella suis proteome reveals metabolic adaptation to late stage of cellular infection. Proteomics 2008; 8:3862-70. [PMID: 18704908 DOI: 10.1002/pmic.200800026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A 2-D DIGE approach allowed the characterization of the intramacrophagic proteome of the intracellular pathogen Brucella suis at the late stage of in vitro infection by efficient discrimination between bacterial and host cell proteins. Using a subtraction model, a total of 168 proteins showing altered concentrations in comparison with extracellularly grown, stationary-phase bacteria were identified. The majority of the 44 proteins significantly regulated at this stage of infection were involved in bacterial metabolism and 40% were present in lowered concentrations, supporting the hypothesis of an adaptive response by quantitative reduction of processes participating in energy, protein, and nucleic acid metabolism. In the future, the 2-D DIGE-based approach will permit to decipher specifically and quantitatively the intracellular proteomes of various pathogens during adaptation to their specific host cell environments.
Collapse
Affiliation(s)
- Sascha Al Dahouk
- Centre d'Etudes d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Université Montpellier 1, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
106
|
Shen DK, Filopon D, Chaker H, Boullanger S, Derouazi M, Polack B, Toussaint B. High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. MICROBIOLOGY-SGM 2008; 154:2195-2208. [PMID: 18667553 DOI: 10.1099/mic.0.2007/013680-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Pseudomonas aeruginosa type III secretion system (T3SS) is known to be a very important virulence factor in acute human infections, but it is less important in maintaining chronic infections in which T3SS genes are downregulated. In vitro, the activation of T3SS expression involves a positive activating loop that acts on the transcriptional regulator ExsA. We have observed that in vivo T3SS expression is cell density-dependent in a manner that does not need known quorum-sensing (QS) signals. In addition, stationary-phase culture supernatants added to exponential-phase growing strains can inhibit T3SS expression. The analysis of transposon insertion mutants showed that the production of such T3SS-inhibiting signals might depend on tryptophan synthase and hence tryptophan, which is the precursor of signalling molecules such as indole-3-acetic acid (IAA), kynurenine and Pseudomonas quinolone signal (PQS). Commercially available tryptophan-derived molecules were tested for their role in the regulation of T3SS expression. At millimolar concentrations, IAA, 1-naphthalacetic acid (NAA) and 3-hydroxykynurenine inhibited T3SS expression. Inactivation of the tryptophan dioxygenase-encoding kynA gene resulted in a decrease in the T3SS-inhibiting activity of supernatants. These observations suggest that tryptophan catabolites are involved in the downregulation of T3SS expression in the transition from a low- to a high-cell-density state.
Collapse
Affiliation(s)
- Da-Kang Shen
- Department of Microbiology and Parasitology, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, PR China.,GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Didier Filopon
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Hichem Chaker
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Stephanie Boullanger
- Service Spectrométrie de Masse, CERMAV-CNRS, BP53, 38041 Grenoble cedex 9, France
| | - Madiha Derouazi
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Benoit Polack
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Bertrand Toussaint
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| |
Collapse
|
107
|
Escherichia coli O157:H7 survives within human macrophages: global gene expression profile and involvement of the Shiga toxins. Infect Immun 2008; 76:4814-22. [PMID: 18725421 DOI: 10.1128/iai.00446-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne pathogen that specifically binds to the follicle-associated epithelium in the intestine, which rapidly brings this bacterial pathogen in contact with underlying human macrophages. Very little information is available about the interaction between E. coli O157:H7 and human macrophages. We evaluated the uptake and survival of strain EDL933 during infection of human macrophages. Surprisingly, EDL933 survived and multiplied in human macrophages at 24 h postinfection. The global gene expression profile of this pathogen during macrophage infection was determined. Inside human macrophages, upregulation of E. coli O157:H7 genes carried on O islands (such as pagC, the genes for both of the Shiga toxins, and the two iron transport system operons fit and chu) was observed. Genes involved in acid resistance and in the SOS response were upregulated. However, genes of the locus of enterocyte effacement or genes involved in peroxide resistance were not differentially expressed. Many genes with putative or unknown functions were upregulated inside human macrophages and may be newly discovered virulence factors. As the Shiga toxin genes were upregulated in macrophages, survival and cytotoxicity assays were performed with isogenic Shiga toxin mutants. The initial uptake of Shiga toxins mutants was higher than that of the wild type; however, the survival rates were significantly lower at 24 h postinfection. Thus, Shiga toxins are implicated in the interaction between E. coli O157:H7 and human macrophages. Understanding the molecular mechanisms used by E. coli to survive within macrophages may help in the identification of targets for new therapeutic agents.
Collapse
|
108
|
Armalytė J, Šeputienė V, Melefors Ö, Sužiedėlienė E. An Escherichia coli asr mutant has decreased fitness during colonization in a mouse model. Res Microbiol 2008; 159:486-93. [DOI: 10.1016/j.resmic.2008.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 11/28/2022]
|
109
|
Shelburne SA, Keith DB, Davenport MT, Horstmann N, Brennan RG, Musser JM. Molecular characterization of group A Streptococcus maltodextrin catabolism and its role in pharyngitis. Mol Microbiol 2008; 69:436-52. [PMID: 18485073 PMCID: PMC2761070 DOI: 10.1111/j.1365-2958.2008.06290.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously demonstrated that the cell-surface lipoprotein MalE contributes to GAS maltose/maltodextrin utilization, but MalE inactivation does not completely abrogate GAS catabolism of maltose or maltotriose. Using a genome-wide approach, we identified the GAS phosphotransferase system (PTS) responsible for non-MalE maltose/maltotriose transport. This PTS is encoded by an open reading frame (M5005_spy1692) previously annotated as ptsG based on homology with the glucose PTS in Bacillus subtilis. Genetic inactivation of M5005_spy1692 significantly reduced transport rates of radiolabelled maltose and maltotriose, but not glucose, leading us to propose its reannotation as malT for maltose transporter. The DeltamalT, DeltamalE and DeltamalE:malT strains were significantly attenuated in their growth in human saliva and in their ability to catabolize alpha-glucans digested by purified human salivary alpha-amylase. Compared with wild-type, the three isogenic mutant strains were significantly impaired in their ability to colonize the mouse oropharynx. Finally, we discovered that the transcript levels of maltodextrin utilization genes are regulated by competitive binding of the maltose repressor MalR and catabolite control protein A. These data provide novel insights into regulation of the GAS maltodextrin genes and their role in GAS host-pathogen interaction, thereby increasing the understanding of links between nutrient acquisition and virulence in common human pathogens.
Collapse
Affiliation(s)
- Samuel A. Shelburne
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B. Keith
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T. Davenport
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicola Horstmann
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
110
|
Bauer ME, Fortney KR, Harrison A, Janowicz DM, Munson RS, Spinola SM. Identification of Haemophilus ducreyi genes expressed during human infection. MICROBIOLOGY (READING, ENGLAND) 2008; 154:1152-1160. [PMID: 18375807 PMCID: PMC2852322 DOI: 10.1099/mic.0.2007/013953-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To identify Haemophilus ducreyi transcripts that are expressed during human infection, we used selective capture of transcribed sequences (SCOTS) with RNA isolated from pustules obtained from three volunteers infected with H. ducreyi, and with RNA isolated from broth-grown bacteria used to infect volunteers. With SCOTS, competitive hybridization of tissue-derived and broth-derived sequences identifies genes that may be preferentially expressed in vivo. Among the three tissue specimens, we identified 531 genes expressed in vivo. Southern blot analysis of 60 genes from each tissue showed that 87 % of the identified genes hybridized better with cDNA derived from tissue specimens than with cDNA derived from broth-grown bacteria. RT-PCR on nine additional pustules confirmed in vivo expression of 10 of 11 selected genes in other volunteers. Of the 531 genes, 139 were identified in at least two volunteers. These 139 genes fell into several functional categories, including biosynthesis and metabolism, regulation, and cellular processes, such as transcription, translation, cell division, DNA replication and repair, and transport. Detection of genes involved in anaerobic and aerobic respiration indicated that H. ducreyi likely encounters both microenvironments within the pustule. Other genes detected suggest an increase in DNA damage and stress in vivo. Genes involved in virulence in other bacterial pathogens and 32 genes encoding hypothetical proteins were identified, and may represent novel virulence factors. We identified three genes, lspA1, lspA2 and tadA, known to be required for virulence in humans. This is the first study to broadly define transcripts expressed by H. ducreyi in humans.
Collapse
Affiliation(s)
- Margaret E. Bauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Room MS420, Indianapolis, IN, 46202, USA
| | - Kate R. Fortney
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive Room EH 435, Indianapolis, IN, 46202, USA
| | - Alistair Harrison
- The Center for Microbial Pathogenesis in The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, Ohio 43205-2696, USA
| | - Diane M. Janowicz
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive Room EH 435, Indianapolis, IN, 46202, USA
| | - Robert S. Munson
- The Center for Microbial Pathogenesis in The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, Ohio 43205-2696, USA
- The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, Ohio 43205-2696, USA
| | - Stanley M. Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Room MS420, Indianapolis, IN, 46202, USA
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive Room EH 435, Indianapolis, IN, 46202, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
111
|
Faucher SP, Viau C, Gros PP, Daigle F, Le Moual H. The prpZ gene cluster encoding eukaryotic-type Ser/Thr protein kinases and phosphatases is repressed by oxidative stress and involved in Salmonella enterica serovar Typhi survival in human macrophages. FEMS Microbiol Lett 2008; 281:160-6. [PMID: 18312574 DOI: 10.1111/j.1574-6968.2008.01094.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The prpZ gene cluster consists of three ORFs coding for proteins with homology to eukaryotic-type Ser/Thr protein phosphatases 2C (prpZ) and Ser/Thr protein kinases (prkY and prkX). This cluster is present in the sequenced genomes of Salmonella enterica serovar Typhi (S. Typhi) strains Ty2 and CT18. This study investigated the genetic organization of this gene cluster, its regulation and its putative involvement in virulence. The three genes are transcribed as a polycistronic mRNA as demonstrated by reverse transcriptase (RT)-PCR. Analysis of a prpZ::lacZ transcriptional fusion showed that the prpZ locus is expressed throughout the growth phase. LacZ activity and real-time RT-PCR showed that transcription of the mRNA is negatively regulated upon exposure of cells to HOCl and, to a lesser extent, hydrogen peroxide. A deletion mutant of the prpZ gene cluster showed a significantly lower level of survival than the parental strain Ty2 in human macrophages at 48 h postinfection. Together these data suggest that prpZ, prkY and prkX are virulence genes that may be part of a signaling pathway controlling long-term survival of S. Typhi in host cells.
Collapse
Affiliation(s)
- Sébastien P Faucher
- Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
112
|
Growth control in the Salmonella-containing vacuole. Curr Opin Microbiol 2008; 11:46-52. [PMID: 18282735 DOI: 10.1016/j.mib.2008.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/10/2008] [Accepted: 01/10/2008] [Indexed: 12/24/2022]
Abstract
Salmonella enterica is an intracellular bacterial pathogen that inhabits membrane-bound vacuoles of eukaryotic cells. Coined as the 'Salmonella-containing vacuole' (SCV), this compartment has been studied for two decades as a replicative niche. Recent findings reveal, however, marked differences in the lifestyle of bacteria enclosed in the SCV of varied host cell types. In fibroblasts, the emerging view supports a model of bacteria facing in the SCV a 'to grow' or 'not to grow' dilemma, which is solved by entering in a dormancy-like state. Fine-tuning of host cell defense/survival routes, drastic metabolic shift down, adaptation to hypoxia conditions, and attenuation of own virulence systems emerge as strategies used by Salmonella to intentionally reduce the growth rate inside the SCV.
Collapse
|
113
|
La MV, Raoult D, Renesto P. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev 2008; 32:440-60. [PMID: 18266740 DOI: 10.1111/j.1574-6976.2008.00103.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA microarrays are a powerful and promising approach to gain a detailed understanding of the bacterial response and the molecular cross-talk that can occur as a consequence of host-pathogen interactions. However, published studies mainly describe the host response to infection. Analysis of bacterial gene regulation in the course of infection has confronted many challenges. This review summarizes the different strategies used over the last few years to investigate, at the genomic scale, and using microarrays, the alterations in the bacterial transcriptome in response to interactions with host cells. Thirty-seven studies involving 19 different bacterial pathogens were compiled and analyzed. Our in silico comparison of the transcription profiles of bacteria grown in broth or in contact with eukaryotic cells revealed some features commonly observed when bacteria interact with host cells, including stringent response and cell surface remodeling.
Collapse
Affiliation(s)
- My-Van La
- Unité des Rickettsies, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, France
| | | | | |
Collapse
|
114
|
Eswarappa SM, Panguluri KK, Hensel M, Chakravortty D. The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. MICROBIOLOGY (READING, ENGLAND) 2008; 154:666-678. [PMID: 18227269 DOI: 10.1099/mic.0.2007/011114-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Pathogenic micro-organisms have evolved many strategies to counteract the antimicrobial peptides (AMPs) that they encounter upon entry into host systems. These strategies play vital roles in the virulence of pathogenic micro-organisms. The Salmonella enterica serovar Typhimurium genome has a gene cluster consisting of yejA, yejB, yejE and yejF genes, which encode a putative ATP-binding cassette (ABC) transporter. Our study shows that these genes constitute an operon. We deleted the yejF gene, which encodes the ATPase component of the putative ABC transporter. The DeltayejF strain showed increased sensitivity to protamine, melittin, polymyxin B, human defensin (HBD)-1 and HBD-2, and was compromised in its capacity to proliferate inside activated macrophages and epithelial cells. Inside Intestine 407 cells, Salmonella was found to co-localize with human defensins HD-5 and HBD-1; this suggests that the ability to counteract AMPs in the intracellular milieu is important for Salmonella. In a murine typhoid model, the DeltayejF strain displayed decreased virulence when infected intragastrically. These findings suggest that the putative transporter encoded by the yejABEF operon is involved in counteracting AMPs, and that it contributes to the virulence of Salmonella.
Collapse
Affiliation(s)
- Sandeepa M Eswarappa
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kiran Kumar Panguluri
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Michael Hensel
- Institute of Clinical Microbiology, Immunology and Hygiene, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dipshikha Chakravortty
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
115
|
A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci U S A 2008; 105:1698-703. [PMID: 18230719 DOI: 10.1073/pnas.0711767105] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although central to pathogenesis, the molecular mechanisms used by microbes to regulate virulence factor production in specific environments during host-pathogen interaction are poorly defined. Several recent ex vivo and in vivo studies have found that the level of group A Streptococcus (GAS) virulence factor gene transcripts is temporally related to altered expression of genes encoding carbohydrate utilization proteins. These findings stimulated us to analyze the role in pathogenesis of catabolite control protein A (CcpA), a GAS ortholog of a key global regulator of carbohydrate metabolism in Bacillus subtilis. Inasmuch as the genomewide effects of CcpA in a human pathogen are unknown, we analyzed the transcriptome of a DeltaccpA isogenic mutant strain grown in nutrient-rich medium. CcpA influences the transcript levels of many carbohydrate utilization genes and several well characterized GAS virulence factors, including the potent cytolysin streptolysin S. Compared with the wild-type parental strain, the DeltaccpA isogenic mutant strain was significantly less virulent in a mouse model of invasive infection. Moreover, the isogenic mutant strain was significantly impaired in ability to colonize the mouse oropharynx. When grown in human saliva, a nutrient-limited environment, CcpA influenced production of several key virulence factors not influenced during growth in nutrient-rich medium. Purified recombinant CcpA bound to the promoter region of the gene encoding streptolysin S. Our discovery that GAS virulence and complex carbohydrate utilization are directly linked through CcpA provides enhanced understanding of a mechanism used by a Gram-positive pathogen to modulate virulence factor production in specific environments.
Collapse
|
116
|
Lamarche MG, Wanner BL, Crépin S, Harel J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 2008; 32:461-73. [PMID: 18248418 DOI: 10.1111/j.1574-6976.2008.00101.x] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bacterial pathogens regulate virulence factor gene expression coordinately in response to environmental stimuli, including nutrient starvation. The phosphate (Pho) regulon plays a key role in phosphate homeostasis. It is controlled by the PhoR/PhoB two-component regulatory system. PhoR is an integral membrane signaling histidine kinase that, through an interaction with the ABC-type phosphate-specific transport (Pst) system and a protein called PhoU, somehow senses environmental inorganic phosphate (P(i)) levels. Under conditions of P(i) limitation (or in the absence of a Pst component or PhoU), PhoR activates its partner response regulator PhoB by phosphorylation, which, in turn, up- or down-regulates target genes. Single-cell profiling of PhoB activation has shown recently that Pho regulon gene expression exhibits a stochastic, "all-or-none" behavior. Recent studies have also shown that the Pho regulon plays a role in the virulence of several bacteria. Here, we present a comprehensive overview of the role of the Pho regulon in bacterial virulence. The Pho regulon is clearly not a simple regulatory circuit for controlling phosphate homeostasis; it is part of a complex network important for both bacterial virulence and stress response.
Collapse
Affiliation(s)
- Martin G Lamarche
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
117
|
Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, Mottaz HM, Rue J, Adkins JN, Heffron F, Smith RD. Proteomics analysis of the causative agent of typhoid fever. J Proteome Res 2008; 7:546-57. [PMID: 18166006 DOI: 10.1021/pr070434u] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Typhoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serotype Typhi ( S. typhi). S. typhi infection is a complex process that involves numerous bacterially encoded virulence determinants, and these are thought to confer both stringent human host specificity and a high mortality rate. In the present study, we used a liquid chromatography-mass spectrometry (LC-MS)-based proteomics strategy to investigate the proteome of logarithmic, stationary phase, and low pH/low magnesium (MgM) S. typhi cultures. This represents the first large-scale comprehensive characterization of the S. typhi proteome. Our analysis identified a total of 2066 S. typhi proteins. In an effort to identify putative S. typhi-specific virulence factors, we then compared our S. typhi results to those obtained in a previously published study of the S. typhimurium proteome under similar conditions ( Adkins, J. N. et al. Mol. Cell. Proteomics 2006, 5, 1450-1461 ). Comparative proteomics analysis of S. typhi strain Ty2 and S. typhimurium strain LT2 revealed a subset of highly expressed proteins unique to S. typhi that were exclusively detected under conditions that are thought to mimic the infective state in macrophage cells. These proteins included CdtB, HlyE, and gene products of t0142, t1108, t1109, t1476, and t1602. The differential expression of T1108, T1476, and HlyE was confirmed by Western blot analysis. When our observations are taken together with the current literature, they suggest that this subset of proteins may play a role in S. typhi pathogenesis and human host specificity.
Collapse
Affiliation(s)
- Charles Ansong
- Biological Sciences Division, and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.
Collapse
|
119
|
Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, Bongaerts RJM, Ahmad N, Rhen M, Hinton JCD. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 2007; 10:958-84. [PMID: 18031307 PMCID: PMC2343689 DOI: 10.1111/j.1462-5822.2007.01099.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biogenesis of the Salmonella-containing vacuole within mammalian cells has been intensively studied over recent years. However, the ability of Salmonella to sense and adapt to the intracellular environment of different types of host cells has received much less attention. To address this issue, we report the transcriptome of Salmonella enterica serovar Typhimurium SL1344 within epithelial cells and show comparisons with Salmonella gene expression inside macrophages. We report that S. Typhimurium expresses a characteristic intracellular transcriptomic signature in response to the environments it encounters within different cell types. The signature involves the upregulation of the mgtBC, pstACS and iro genes for magnesium, phosphate and iron uptake, and Salmonella pathogenicity island 2 (SPI2). Surprisingly, in addition to SPI2, the invasion-associated SPI1 pathogenicity island and the genes involved in flagellar biosynthesis were expressed inside epithelial cells at later stages of the infection, while they were constantly downregulated in macrophage-like cells. To our knowledge, this is the first report of the simultaneous transcription of all three Type Three Secretion Systems (T3SS) within an intracellular Salmonella population. We discovered that S. Typhimurium strain SL1344 was strongly cytotoxic to epithelial cells after 6 h of infection and hypothesize that the time-dependent changes in Salmonella gene expression within epithelial cells reflects the bacterial response to host cells that have been injured by the infection process.
Collapse
Affiliation(s)
- I Hautefort
- Molecular Microbiology Group, Institute of Food Research, Norwich NR4 7UA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Global transcriptome analysis of Borrelia burgdorferi during association with human neuroglial cells. Infect Immun 2007; 76:298-307. [PMID: 17984208 DOI: 10.1128/iai.00866-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As adherence and entry of a pathogen into a host cell are key components to an infection, identifying the molecular mechanisms responsible for cellular association will provide a better understanding of a microbe's pathogenesis. We previously established an in vitro model for Borrelia burgdorferi infection of human neuroglial cells. To expand on our earlier study, we performed B. burgdorferi whole-genome expression analysis following a 20-hour infection of human neuroglial cells to identify borrelial genes that were differentially regulated during host-cell association compared with cultured Borrelia in cell-free medium. This study identifies several regulated genes, the products of which may be important mediators of cellular pathogenesis.
Collapse
|
121
|
Ojha S, Kostrzynska M. Examination of animal and zoonotic pathogens using microarrays. Vet Res 2007; 39:4. [DOI: 10.1051/vetres:2007042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/27/2007] [Indexed: 01/13/2023] Open
|
122
|
Haghjoo E, Galán JE. Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella Typhi. Mol Microbiol 2007; 64:1549-61. [PMID: 17555437 DOI: 10.1111/j.1365-2958.2007.05754.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of typhoid fever, is an exclusively human pathogen. Little is known about specific factors that may confer to this bacterium its unique pathogenic features. One of these determinants is CdtB, a homologue of the active subunit of the cytolethal distending toxin, which causes DNA damage leading to cell cycle arrest and distension of intoxicated cells. A unique property of S. Typhi CdtB is that it is only synthesized when this bacterium is within an intracellular compartment. Through a genetic screen, we have identified a transcriptional regulatory protein that controls the intracellular expression of cdtB. This regulator, which we have named IgeR, is a member of the DeoR family of transcriptional regulatory proteins and is highly conserved in all S. enterica serovars. IgeR directly binds the cdtB promoter and represses its expression in the extracellular environment. Microarray analysis identified additional IgeR-regulated genes that are involved in virulence. Constitutive expression of igeR resulted in the reduction of intracellular expression of cdtB by S. Typhi and in significant impairment of the virulence of Salmonella enterica serovar Typhimurium (S. Typhimurium) in mice. We propose that IgeR may co-ordinate gene expression during Salmonella's transition from an extracellular to an intracellular environment.
Collapse
Affiliation(s)
- Erik Haghjoo
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
123
|
Waddell SJ, Butcher PD, Stoker NG. RNA profiling in host-pathogen interactions. Curr Opin Microbiol 2007; 10:297-302. [PMID: 17574903 PMCID: PMC3128493 DOI: 10.1016/j.mib.2007.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/29/2007] [Indexed: 12/21/2022]
Abstract
The development of novel anti-bacterial treatment strategies will be aided by an increased understanding of the interactions that take place between bacteria and host cells during infection. Global expression profiling using microarray technologies can help to describe and define the mechanisms required by bacterial pathogens to cause disease and the host responses required to defeat bacterial infection.
Collapse
Affiliation(s)
- Simon J Waddell
- Medical Microbiology, Division of Cellular & Molecular Medicine, St George's University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | | | | |
Collapse
|
124
|
Fittipaldi N, Gottschalk M, Vanier G, Daigle F, Harel J. Use of selective capture of transcribed sequences to identify genes preferentially expressed by Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Appl Environ Microbiol 2007; 73:4359-64. [PMID: 17483264 PMCID: PMC1932796 DOI: 10.1128/aem.00258-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
By using the selective capture of transcribed sequences (SCOTS) approach, we identified 28 genes preferentially expressed by the major swine pathogen and zoonotic agent Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Several of these genes may be considered new S. suis candidate virulence factors. Results from this study demonstrate the suitability of SCOTS for the elucidation of gene expression in streptococcal species and may contribute to a better understanding of the pathogenesis of S. suis infections.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- GREMIP, Faculté de Médecine Vétérinaire, Université de Montréal, CP 5000, St-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|
125
|
Alix E, Blanc-Potard AB. MgtC: a key player in intramacrophage survival. Trends Microbiol 2007; 15:252-6. [PMID: 17416526 DOI: 10.1016/j.tim.2007.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/19/2007] [Accepted: 03/28/2007] [Indexed: 01/09/2023]
Abstract
Several bacterial pathogens have evolved strategies to survive in macrophages and create a replicative niche within phagosomes. The bacterial factor MgtC is a key player in intramacrophage survival, being important for virulence in diverse intracellular pathogens. MgtC is also required for growth under magnesium limitation. Recent studies provide new clues on the role of MgtC in macrophages, which seems to be unlinked to adaptation to a low Mg(2+) microenvironment. In addition, we discuss the unexpected finding that MgtC modulates host P-type ATPase activity.
Collapse
Affiliation(s)
- Eric Alix
- Inserm, Espri 26, Avenue J.F. Kennedy, 30908 Nîmes cedex 02, France
| | | |
Collapse
|
126
|
|
127
|
Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F. [Salmonella transcriptome during macrophage infection]. Med Sci (Paris) 2006; 22:792-3. [PMID: 17026919 DOI: 10.1051/medsci/20062210792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
128
|
O Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 62:869-82. [PMID: 16999831 DOI: 10.1111/j.1365-2958.2006.05416.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptation of bacterial pathogens to an intracellular environment requires resetting of the expression levels of a wide range of both virulence and housekeeping genes. We investigated the possibility that changes in DNA supercoiling could modulate the expression of genes known to be important in the intracellular growth of the pathogen Salmonella enterica serovar Typhimurium. Our data show that DNA becomes relaxed when Salmonella grows in murine macrophage but not in epithelial cells, indicating that DNA supercoiling plays a role in discrimination between two types of intracellular environment. The ssrA regulatory gene within the SPI-2 pathogenicity island that is required for survival in macrophage was found to be upregulated by DNA relaxation. This enhancement of expression also required the Fis nucleoid-associated protein. Manipulating the level of the Fis protein modulated both the level of DNA supercoiling and ssrA transcription. We discuss a model of bacterial intracellular adaptation in which Fis and DNA supercoiling collaborate to fine-tune virulence gene expression.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
129
|
Malorny B, Bunge C, Guerra B, Prietz S, Helmuth R. Molecular characterisation of Salmonella strains by an oligonucleotide multiprobe microarray. Mol Cell Probes 2006; 21:56-65. [PMID: 17029709 DOI: 10.1016/j.mcp.2006.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 07/26/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
A DNA microarray has been developed for the simultaneous characterisation and typing of Salmonella enterica subsp. enterica isolates. One-hundred and nine 35-40 mer oligonucleotides probes detect flagellar and somatic antigen encoding genes (serogroup or serotype specific), important virulence genes located within or outside the pathogenicity islands, phage-associated genes and antibiotic resistance determinants. The probes were printed on glass slides and whole genomic Cy5-labelled Salmonella DNA was hybridised to the substrate. A set of 19 different Salmonella strains and one Escherichia coli strain has been selected as positive and negative controls for each probe. The validity of the results is confirmed by gene-specific PCRs or phenotypic methods (serotyping, MIC determination for various antimicrobial agents). Of 2071 data points generated, an agreement of 97.4% has been obtained between microarray and PCR/phenotypic results. Twenty-six data points (1.3%) were classified as uncertain and, similarly, 1.3% showed a discordant result. The microarray described here is a new tool to study the epidemiology of Salmonella strains on the genotypic level and might become a powerful method in risk assessment studies.
Collapse
Affiliation(s)
- Burkhard Malorny
- National Salmonella Reference Laboratory, Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | | | | | | | | |
Collapse
|
130
|
Ong ST, Ho JZS, Ho B, Ding JL. Iron-withholding strategy in innate immunity. Immunobiology 2006; 211:295-314. [PMID: 16697921 DOI: 10.1016/j.imbio.2006.02.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The knowledge of how organisms fight infections has largely been built upon the ability of host innate immune molecules to recognize microbial determinants. Although of overwhelming importance, pathogen recognition is but only one of the facets of innate immunity. A primitive yet effective antimicrobial mechanism which operates by depriving microbial organisms of their nutrients has been brought into the forefront of innate immunity once again. Such a tactic is commonly referred to as the iron-withholding strategy of innate immunity. In this review, we introduce various vertebrate iron-binding proteins and their invertebrate homologues, so as to impress upon readers an obscured arm of innate immune defense. An excellent comprehension of the mechanics of innate immunity paves the way for the possibility that novel antimicrobial therapeutics may emerge one day to overcome the prevalent antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Sek Tong Ong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | | | |
Collapse
|