101
|
Dalal Y, Furuyama T, Vermaak D, Henikoff S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci U S A 2007; 104:15974-81. [PMID: 17893333 PMCID: PMC1993840 DOI: 10.1073/pnas.0707648104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Indexed: 12/18/2022] Open
Abstract
Centromeres are defining features of eukaryotic chromosomes, providing sites of attachment for segregation during mitosis and meiosis. The fundamental unit of centromere structure is the centromeric nucleosome, which differs from the conventional nucleosome by the presence of a centromere-specific histone variant (CenH3) in place of canonical H3. We have shown that the CenH3 nucleosome core found in interphase Drosophila cells is a heterotypic tetramer, a "hemisome" consisting of one molecule each of CenH3, H4, H2A, and H2B, rather than the octamer of canonical histones that is found in bulk nucleosomes. The surprising discovery of hemisomes at centromeres calls for a reevaluation of evidence that has long been interpreted in terms of a more conventional nucleosome. We describe how the hemisome structure of centromeric nucleosomes can account for enigmatic properties of centromeres, including kinetochore accessibility, epigenetic inheritance, rapid turnover of misincorporated CenH3, and transcriptional quiescence of pericentric heterochromatin. Structural differences mediated by loop 1 are proposed to account for the formation of stable tetramers containing CenH3 rather than stable octamers containing H3. Asymmetric CenH3 hemisomes might interrupt the global condensation of octameric H3 arrays and present an asymmetric surface for kinetochore formation. We suggest that this simple mechanism for differentiation between centromeric and packaging nucleosomes evolved from an archaea-like ancestor at the dawn of eukaryotic evolution.
Collapse
Affiliation(s)
| | - Takehito Furuyama
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| | | | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| |
Collapse
|
102
|
Abstract
Hat1 is the sole known example of a type B histone acetyltransferase. While it has long been presumed that type B histone acetyltransferases participate in the acetylation of newly synthesized histones during the process of chromatin assembly, definitive evidence linking these enzymes to this process has been scarce. This review will discuss recent results that have begun to shed light on the roles of Hat1 and also address several outstanding questions relating to the cellular function of this enzyme.
Collapse
Affiliation(s)
- M R Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
103
|
Furuyama S, Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci U S A 2007; 104:14706-11. [PMID: 17804787 PMCID: PMC1976213 DOI: 10.1073/pnas.0706985104] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation ensures that DNA is equally divided between daughter cells during each round of cell division. The centromere (CEN) is the specific locus on each chromosome that directs formation of the kinetochore, the multiprotein complex that interacts with the spindle microtubules to promote proper chromosomal alignment and segregation during mitosis. CENs are organized into a specialized chromatin structure due to the incorporation of an essential CEN-specific histone H3 variant (CenH3) in the centromeric nucleosomes of all eukaryotes. Consistent with its essential role at the CEN, the loss or up-regulation of CenH3 results in mitotic defects. Despite the requirement for CenH3 in CEN function, it is unclear how CenH3 nucleosomes structurally organize centromeric DNA to promote formation of the kinetochore. To address this issue, we developed a modified chromatin immunoprecipitation approach to analyze the number and position of CenH3 nucleosomes at the budding yeast CEN. Using this technique, we show that yeast CENs have a single CenH3 nucleosome positioned over the CEN-determining elements. Therefore, a single CenH3 nucleosome forms the minimal unit of centromeric chromatin necessary for kinetochore assembly and proper chromosome segregation.
Collapse
Affiliation(s)
- Suzanne Furuyama
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109
| |
Collapse
|
104
|
Loyola A, Almouzni G. Marking histone H3 variants: how, when and why? Trends Biochem Sci 2007; 32:425-33. [PMID: 17764953 DOI: 10.1016/j.tibs.2007.08.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/18/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
DNA in eukaryotic cells is compacted into chromatin, a regular repeated structure in which the nucleosome represents the basic unit. The nucleosome not only serves to compact the genetic material but also provides information that affects nuclear functions including DNA replication, repair and transcription. This information is conveyed through numerous combinations of histone post-translational modifications (PTMs) and histone variants. A recent challenge has been to understand how and when these combinations of PTMs are imposed and to what extent they are determined by the choice of a specific histone variant. Here we focus on histone H3 variants and the PTMs that they carry before and after their assembly into chromatin. We review and discuss recent knowledge about how the choice and initial modifications of a specific variant might affect PTM states and eventually the final epigenetic state of a chromosomal domain.
Collapse
Affiliation(s)
- Alejandra Loyola
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | | |
Collapse
|
105
|
Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 2007; 129:1153-64. [PMID: 17574026 DOI: 10.1016/j.cell.2007.04.026] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/28/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
The budding yeast histone H3 variant, Cse4, replaces conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs assembly of the kinetochore, a multiprotein complex mediating chromosome segregation. We have identified Scm3, a nonhistone protein that colocalizes with Cse4 and is required for its centromeric association. Bacterially expressed Scm3 binds directly to and reconstitutes a stoichiometric complex with Cse4 and histone H4 but not with conventional histone H3 and H4. A conserved acidic domain of Scm3 is responsible for directing the Cse4-specific interaction. Strikingly, binding of Scm3 can replace histones H2A-H2B from preassembled Cse4-containing histone octamers. This incompatibility between Scm3 and histones H2A-H2B is correlated with diminished in vivo occupancy of histone H2B, H2A, and H2AZ at centromeres. Our findings indicate that nonhistone Scm3 serves to assemble and maintain Cse4-H4 at centromeres and may replace histone H2A-H2B dimers in a centromere-specific nucleosome core.
Collapse
Affiliation(s)
- Gaku Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
106
|
Stoler S, Rogers K, Weitze S, Morey L, Fitzgerald-Hayes M, Baker RE. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A 2007; 104:10571-6. [PMID: 17548816 PMCID: PMC1885823 DOI: 10.1073/pnas.0703178104] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A universal mark of centromeric chromatin is its packaging by a variant of histone H3 known as centromeric H3 (CenH3). The mechanism by which CenH3s are incorporated specifically into centromere DNA or the specialized function they serve there is not known. In a genetic approach to identify factors involved in CenH3 deposition, we screened for dosage suppressors of a temperature-sensitive cse4 allele in Saccharomyces cerevisiae (Cse4 is the S. cerevisiae CenH3). Independent screens yielded ORF YDL139C, which we named SCM3. Dosage suppression by SCM3 was specific for alleles affecting the histone fold domain of Cse4. Copurification and two-hybrid studies showed that Scm3 and Cse4 interact in vivo, and chromatin immunoprecipitation revealed that Scm3, like Cse4, is found associated with centromere DNA. Scm3 contains two essential protein domains, a Leu-rich nuclear export signal and a heptad repeat domain that is widely conserved in fungi. A conditional scm3 allele was generated to allow us to deplete Scm3. Upon Scm3 depletion, cells undergo a Mad2-dependent G2/M arrest, and centromere localization of Cse4 is perturbed. We suggest that S. cerevisiae Scm3 defines a previously undescribed family of fungal kinetochore proteins important for CenH3 localization.
Collapse
Affiliation(s)
- Sam Stoler
- *Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003; and
| | - Kelly Rogers
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Scott Weitze
- *Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003; and
| | - Lisa Morey
- *Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003; and
| | - Molly Fitzgerald-Hayes
- *Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003; and
| | - Richard E. Baker
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
107
|
Przewloka MR, Zhang W, Costa P, Archambault V, D'Avino PP, Lilley KS, Laue ED, McAinsh AD, Glover DM. Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS One 2007; 2:e478. [PMID: 17534428 PMCID: PMC1868777 DOI: 10.1371/journal.pone.0000478] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/01/2007] [Indexed: 01/10/2023] Open
Abstract
Background Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. Methodology/Principal Findings We employed bioinformatics, proteomics and cell biology methods to identify and analyze the interaction network of Drosophila kinetochore proteins. We have shown that three Drosophila proteins highly diverged from human and yeast Ndc80, Nuf2 and Mis12 are indeed their orthologues. Affinity purification of these proteins from cultured Drosophila cells identified a further five interacting proteins with weak similarity to subunits of the SPC105/KNL-1, MIND/MIS12 and NDC80 kinetochore complexes together with known kinetochore associated proteins such as dynein/dynactin, spindle assembly checkpoint components and heterochromatin proteins. All eight kinetochore complex proteins were present at the kinetochore during mitosis and MIND/MIS12 complex proteins were also centromeric during interphase. Their down-regulation led to dramatic defects in chromosome congression/segregation frequently accompanied by mitotic spindle elongation. The systematic depletion of each individual protein allowed us to establish dependency relationships for their recruitment onto the kinetochore. This revealed the sequential recruitment of individual members of first, the MIND/MIS12 and then, NDC80 complex. Conclusions/Significance The Drosophila MIND/MIS12 and NDC80 complexes and the Spc105 protein, like their counterparts from other eukaryotic species, are essential for chromosome congression and segregation, but are highly diverged in sequence. Hierarchical dependence relationships of individual proteins regulate the assembly of Drosophila kinetochore complexes in a manner similar, but not identical, to other organisms.
Collapse
Affiliation(s)
- Marcin R. Przewloka
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (MRP); (DMG)
| | - Wei Zhang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Patricia Costa
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Vincent Archambault
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Pier Paolo D'Avino
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. McAinsh
- Chromosome Segregation Laboratory, Marie Curie Research Institute, The Chart, Oxted, United Kingdom
| | - David M. Glover
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (MRP); (DMG)
| |
Collapse
|
108
|
Conde e Silva N, Black BE, Sivolob A, Filipski J, Cleveland DW, Prunell A. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J Mol Biol 2007; 370:555-73. [PMID: 17524417 DOI: 10.1016/j.jmb.2007.04.064] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/06/2007] [Accepted: 04/25/2007] [Indexed: 01/25/2023]
Abstract
CENP-A is a histone variant that replaces conventional H3 in nucleosomes of functional centromeres. We report here, from reconstitutions of CENP-A- and H3-containing nucleosomes on linear DNA fragments and the comparison of their electrophoretic mobility, that CENP-A induces some positioning of its own and some unwrapping at the entry-exit relative to canonical nucleosomes on both 5 S DNA and the alpha-satellite sequence on which it is normally loaded. This steady-state unwrapping was quantified to 7(+/-2) bp by nucleosome reconstitutions on a series of DNA minicircles, followed by their relaxation with topoisomerase I. The unwrapping was found to ease nucleosome invasion by exonuclease III, to hinder the binding of a linker histone, and to promote the release of an H2A-H2B dimer by nucleosome assembly protein 1 (NAP-1). The (CENP-A-H4)2 tetramer was also more readily destabilized with heparin than the (H3-H4)2 tetramer, suggesting that CENP-A has evolved to confer its nucleosome a specific ability to disassemble. This dual relative instability is proposed to facilitate the progressive clearance of CENP-A nucleosomes that assemble promiscuously in euchromatin, especially as is seen following CENP-A transient over-expression.
Collapse
Affiliation(s)
- Natalia Conde e Silva
- Institut Jacques Monod (UMR CNRS 7592), 2 place Jussieu, 75251 Paris Cédex 05, France
| | | | | | | | | | | |
Collapse
|
109
|
Zhang LF, Huynh KD, Lee JT. Perinucleolar Targeting of the Inactive X during S Phase: Evidence for a Role in the Maintenance of Silencing. Cell 2007; 129:693-706. [PMID: 17512404 DOI: 10.1016/j.cell.2007.03.036] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 12/11/2006] [Accepted: 03/01/2007] [Indexed: 11/16/2022]
Abstract
In mammalian females, two X chromosomes are epigenetically distinguished as active and inactive chromosomes to balance X-linked gene dosages between males and females. How the Xs are maintained differently in the same nucleus remains unknown. Here, we demonstrate that the inactive X (Xi) is targeted to a distinct nuclear compartment following pairing with its homologous partner. During mid-to-late S phase, 80%-90% of Xi contact the nucleolus and reside within a Snf2h-enriched ring. Autosomes carrying ectopic X-inactivation center sequences are also targeted to the perinucleolar compartment. Deleting Xist results in a loss of nucleolar association and an inability to maintain Xi heterochromatin, leading to Xi reactivation at the single gene level. We propose that the Xi must continuously visit the perinucleolar compartment to maintain its epigenetic state. These data raise a mechanism by which chromatin states can be replicated by spatial and temporal separation in the nucleus.
Collapse
Affiliation(s)
- Li-Feng Zhang
- Howard Hughes Medical Institute, Boston, MA 02114 USA
| | | | | |
Collapse
|
110
|
Abstract
At the foundation of all eukaryotic kinetochores is a unique histone variant, known as CenH3 (centromere histone H3). We are starting to identify the histone chaperones responsible for CenH3 deposition at centromere DNA, and the mechanisms that restrict CenH3 from chromosome arms. The specialized nucleosome that contains CenH3 in place of canonical histone H3 lies at the interface between microtubules and chromosomes and directs kinetochore protein assembly. By contrast, pericentric chromatin is highly elastic and can stretch or recoil in response to microtubule shortening or growth in mitosis. The variety in histone modification is likely to play a key role in regulating the behavior of these distinct chromatin domains.
Collapse
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
111
|
Abstract
Centromere assembly provides a unique example of how elaborate protein structures can be assembled onto DNA, independent of sequence, and then stably propagated through numerous cell divisions. Here, we review the possible epigenetic strategies that organisms ranging from yeast to human use to assemble and propagate active centromeres.
Collapse
Affiliation(s)
- Corey A Morris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
112
|
Abstract
Centromeric nucleosomes contain a histone H3 variant called centromere protein A (CENP-A) that is required for kinetochore assembly and chromosome segregation. Two new studies, Jansen et al. (see p. 795 of this issue) and Maddox et al. (see p. 757 of this issue), address when CENP-A is deposited at centromeres during the cell division cycle and identify an evolutionally conserved protein required for CENP-A deposition. Together, these studies advance our understanding of centromeric chromatin assembly and provide a framework for investigating the molecular mechanisms that underlie the centromere-specific loading of CENP-A.
Collapse
|
113
|
Collins KA, Camahort R, Seidel C, Gerton JL, Biggins S. The overexpression of a Saccharomyces cerevisiae centromeric histone H3 variant mutant protein leads to a defect in kinetochore biorientation. Genetics 2007; 175:513-25. [PMID: 17151247 PMCID: PMC1800591 DOI: 10.1534/genetics.106.064410] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 11/15/2006] [Indexed: 11/18/2022] Open
Abstract
Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained.
Collapse
Affiliation(s)
- Kimberly A Collins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1042, USA
| | | | | | | | | |
Collapse
|
114
|
Schuh M, Lehner CF, Heidmann S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 2007; 17:237-43. [PMID: 17222555 DOI: 10.1016/j.cub.2006.11.051] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/08/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The centromere/kinetochore complex is indispensable for accurate segregation of chromosomes during cell divisions when it serves as the attachment site for spindle microtubules. Centromere identity in metazoans is believed to be governed by epigenetic mechanisms, because the highly repetitive centromeric DNA is neither sufficient nor required for specifying the assembly site of the kinetochore. A candidate for an epigenetic mark is the centromere-specific histone H3 variant CENP-A that replaces H3 in alternating blocks of chromatin exclusively in active centromeres. CENP-A acts as an initiator of kinetochore assembly, but the detailed dynamics of the deposition of metazoan CENP-A and of other constitutive kinetochore components are largely unknown. Here we show by quantitative fluorescence measurements in living early embryos that functional fluorescent fusion proteins of the Drosophila CENP-A and CENP-C homologs are rapidly incorporated into centromeres during anaphase. This incorporation is independent of ongoing DNA synthesis and pulling forces generated by the mitotic spindle, but strictly coupled to mitotic progression. Thus, our findings uncover a strikingly dynamic behavior of centromere components in anaphase.
Collapse
Affiliation(s)
- Melina Schuh
- Bayreuth Center for Molecular Biosciences (BZMB), Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
115
|
Dawe RK, Henikoff S. Centromeres put epigenetics in the driver's seat. Trends Biochem Sci 2006; 31:662-9. [PMID: 17074489 DOI: 10.1016/j.tibs.2006.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/19/2006] [Accepted: 10/20/2006] [Indexed: 01/01/2023]
Abstract
A defining feature of chromosomes is the centromere, the site for spindle attachment at mitosis and meiosis. Intriguingly, centromeres of plants and animals are maintained by both sequence-specific and sequence-independent (epigenetic) processes. Epigenetic inheritance might enable kinetochores (the structures that attach centromeres to spindles) to maintain an optimal size. However, centromeres are susceptible to the evolution of "selfish" DNA repeats that bind to kinetochore proteins. We argue that such sequence-specific interactions are evolutionarily unstable because they enable repeat arrays to influence kinetochore size. Changes in kinetochore size could affect the interaction of kinetochores with the spindle and, in principle, skew Mendelian segregation. We propose that key kinetochore proteins have adapted to disrupt such sequence-specific interactions and restore epigenetic inheritance.
Collapse
Affiliation(s)
- R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
116
|
Moreno-Moreno O, Torras-Llort M, Azorín F. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 2006; 34:6247-55. [PMID: 17090596 PMCID: PMC1693906 DOI: 10.1093/nar/gkl902] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Centromere identity is determined by the formation of a specialized chromatin structure containing the centromere-specific histone H3 variant CENP-A. The precise molecular mechanism(s) accounting for the specific deposition of CENP-A at centromeres are still poorly understood. Centromeric deposition of CENP-A, which is independent of DNA replication, might involve specific chromatin assembly complexes and/or specific interactions with kinetochore components. However, transiently expressed CENP-A incorporates throughout chromatin indicating that CENP-A nucleosomes can also be promiscuously deposited during DNA replication. Therefore, additional mechanisms must exist to prevent deposition of CENP-A nucleosomes during replication and/or to remove them afterwards. Here, using transient expression experiments performed in Drosophila Kc cells, we show that proteasome-mediated degradation restricts localization of Drosophila CENP-A (CID) to centromeres by eliminating mislocalized CID as well as by regulating available CID levels. Regulating available CID levels appears essential to ensure centromeric deposition of transiently expressed CID as, when expression is increased in the presence of proteasome inhibitors, newly synthesized CID mislocalizes. Mislocalization of CID affects cell cycle progression as a high percentage of cells showing mislocalized CID are reactive against αPSer10H3 antibodies, enter mitosis at a very low frequency and show strong segregation defects. However, cells showing reduced amounts of mislocalized CID show normal cell cycle progression.
Collapse
Affiliation(s)
| | | | - Fernando Azorín
- To whom correspondence should be addressed at Dpto Biologia Molecular i Cel·lular, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Josep Samitier, 1-5 08028 Barcelona, Spain. Tel: 3493 403 4958; Fax: 3493 403 4979;
| |
Collapse
|