101
|
Das P, Li J, Royyuru AK, Zhou R. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. J Comput Chem 2009; 30:1654-63. [PMID: 19399777 DOI: 10.1002/jcc.21274] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human-like (alpha-2,6-linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses. To define such mutations in the H5 subtype, here we provide a computational framework that combines molecular modeling with extensive free energy simulations. Our results show that the simulated binding affinities are in good agreement with currently available experimental data. Moreover, we predict that one double mutation (V135S and A138S) in HA significantly enhances alpha-2,6-linked receptor recognition by the H5 subtype. Our simulations indicate that this double mutation in H5N1 HA increases the binding affinity to alpha-2,6-linked sialic acid receptors by 2.6 +/- 0.7 kcal/mol per HA monomer that primarily arises from the electrostatic interactions. Further analyses reveal that introduction of this double mutation results in a conformational change in the receptor binding pocket of H5N1 HA. As a result, a major rearrangement occurs in the hydrogen-bonding network of HA with the human receptor, making the human receptor binding pattern of double mutant H5N1 HA surprisingly similar to that observed in human H1N1 HA. These large scale molecular simulations on single and double mutants thus provide new insights into our understanding toward human adaptation of the avian H5N1 virus.
Collapse
Affiliation(s)
- Payel Das
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | | | | | | |
Collapse
|
102
|
Babor M, Kortemme T. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Proteins 2009; 75:846-58. [PMID: 19194863 DOI: 10.1002/prot.22293] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The limited size of the germline antibody repertoire has to recognize a far larger number of potential antigens. The ability of a single antibody to bind multiple ligands due to conformational flexibility in the antigen-binding site can significantly enlarge the repertoire. Among the six complementarity determining regions (CDRs) that generally comprise the binding site, the CDR H3 loop is particularly variable. Computational protein design studies showed that predicted low energy sequences compatible with a given backbone structure often have considerable similarity to the corresponding native sequences of naturally occurring proteins, indicating that native protein sequences are close to optimal for their structures. Here, we take a step forward to determine whether conformational flexibility, believed to play a key functional role in germline antibodies, is also central in shaping their native sequence. In particular, we use a multi-constraint computational design strategy, along with the Rosetta scoring function, to propose that the native sequences of CDR H3 loops from germline antibodies are nearly optimal for conformational flexibility. Moreover, we find that antibody maturation may lead to sequences with a higher degree of optimization for a single conformation, while disfavoring sequences that are intrinsically flexible. In addition, this computational strategy allows us to predict mutations in the CDR H3 loop to stabilize the antigen-bound conformation, a computational mimic of affinity maturation, that may increase antigen binding affinity by preorganizing the antigen binding loop. In vivo affinity maturation data are consistent with our predictions. The method described here can be useful to design antibodies with higher selectivity and affinity by reducing conformational diversity.
Collapse
Affiliation(s)
- Mariana Babor
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158-2330, USA
| | | |
Collapse
|
103
|
Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLoS Comput Biol 2009; 5:e1000487. [PMID: 19714203 PMCID: PMC2722018 DOI: 10.1371/journal.pcbi.1000487] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. Mutations in protein kinases are implicated in many cancers, and an important goal of cancer research is to elucidate molecular effects of mutated kinase genes that contribute to tumorigenesis. We present a comprehensive computational study of molecular mechanisms of kinase activation by cancer-causing mutations. Using a battery of computational approaches, we have systematically investigated the effects of clinically important cancer mutants on dynamics of the ABL and EGFR kinase domains and regulatory multi-protein complexes. The results of this study have illuminated common and specific features of the activation mechanism in the normal and oncogenic forms of ABL and EGFR. We have found that mutants with the higher oncogenic activity may cause a partial destabilization of the inactive structure, while simultaneously facilitating activating transitions and the enhanced stabilization of the active conformation. Our results provided useful insights into thermodynamic and mechanistic aspects of the activation mechanism and highlighted the role of structurally distinct conformational states in kinase regulation. Ultimately, molecular signatures of activation mechanisms in the normal and oncogenic states may aid in the correlation of mutational effects with clinical outcomes and facilitate the development of therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
|
104
|
Xia Z, Zhu Z, Zhu J, Zhou R. Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophys J 2009; 96:1761-9. [PMID: 19254536 DOI: 10.1016/j.bpj.2008.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 11/20/2008] [Indexed: 01/30/2023] Open
Abstract
The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs (siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G) binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with standard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations first induce the loss of stacking interactions between p19 and siRNA, Trp(42)-Cyt1 (Cyt1 from the 5' to 3' strand) and Trp(39)-Gua'19 (Gua19 from the 3' to 5' strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-type. The steered molecular dynamics simulations also show that the mutant p19 complex is "decompounded" very fast under a constant separation force, whereas the wild-type remains largely intact under the same steering force. Moreover, we have used the free energy perturbation to predict a binding affinity loss of 6.98 +/- 0.95 kcal/mol for the single mutation W39G, and 12.8 +/- 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution ( approximately 90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking the strong stacking interaction between Cyt1 and Gua'19 with end-capping tryptophans. These large scale simulations might provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.
Collapse
Affiliation(s)
- Zhen Xia
- Institute of Bioinformatics, Zhejang University, Hangzhou 310027, People's Republic of China
| | | | | | | |
Collapse
|
105
|
Zhou R, Das P, Royyuru AK. Single mutation induced H3N2 hemagglutinin antibody neutralization: a free energy perturbation study. J Phys Chem B 2009; 112:15813-20. [PMID: 19367871 DOI: 10.1021/jp805529z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The single mutation effect on the binding affinity of H3N2 viral protein hemagglutinin (HA) with the monoclonical antibody fragment (Fab) is studied in this paper using the free energy perturbation (FEP) simulations. An all-atom protein model with explicit solvents is used to perform an aggregate of several microsecond FEP molecular dynamics simulations. A recent experiment shows that a single mutation in H3N2 HA, T131I, increases the antibody-antigen dissociation constant Kd by a factor of approximately 4000 (equivalent to a binding affinity decrease of approximately 5 kcal/mol), thus introducing an escape of the antibody (Ab) neutralization. Our FEP result confirms this experimental finding by estimating the HA-Ab binding affinity decrease of 5.2 +/- 0.9 kcal/mol but with a somewhat different molecular mechanism from the experimental findings. Detailed analysis reveals that this large binding affinity decrease in the T131I mutant is mainly due to the displacement of two bridge water molecules otherwise present in the wild-type HA/Ab interface. The decomposition of the binding free energy supports this observation, as the major contribution to the binding affinity is from the electrostatic interactions. In addition, we find that the loss of the binding affinity is also related to the large conformational distortion of one loop (loop 155-161) in the unbound state of the mutant. We then simulate all other possible mutations for this specific mutation site T131, and predict a few more mutations with even larger decreases in the binding affinity (i.e., better candidates for antibody neutralization), such as T131W, T131Y, and T131F. As for further validation, we have also modeled another mutation, S157L, with experimental binding affinity available (Kd increasing approximately 500 times), and found a binding affinity decrease of 4.1 +/- 1.0 kcal/mol, which is again in excellent agreement with experiment. These large scale simulations might provide new insights into the detailed physical interaction, possible future escape mutation, and antibody-antigen coevolution relationship between influenza virus and human antibodies.
Collapse
Affiliation(s)
- Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA.
| | | | | |
Collapse
|
106
|
Abstract
The traditional view that proteins possess absolute functional specificity and a single, fixed structure conflicts with their marked ability to adapt and evolve new functions and structures. We consider an alternative, "avant-garde view" in which proteins are conformationally dynamic and exhibit functional promiscuity. We surmise that these properties are the foundation stones of protein evolvability; they facilitate the divergence of new functions within existing folds and the evolution of entirely new folds. Packing modes of proteins also affect their evolvability, and poorly packed, disordered, and conformationally diverse proteins may exhibit high evolvability. This dynamic view of protein structure, function, and evolvability is extrapolated to describe hypothetical scenarios for the evolution of the early proteins and future research directions in the area of protein dynamism and evolution.
Collapse
Affiliation(s)
- Nobuhiko Tokuriki
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
107
|
Walker LM, Bowley DR, Burton DR. Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J Mol Biol 2009; 389:365-75. [PMID: 19376130 DOI: 10.1016/j.jmb.2009.04.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/15/2022]
Abstract
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.
Collapse
Affiliation(s)
- Laura M Walker
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
108
|
Bobst CE, Zhang M, Kaltashov IA. Existence of a noncanonical state of iron-bound transferrin at endosomal pH revealed by hydrogen exchange and mass spectrometry. J Mol Biol 2009; 388:954-67. [PMID: 19324057 DOI: 10.1016/j.jmb.2009.03.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/19/2009] [Accepted: 03/17/2009] [Indexed: 11/30/2022]
Abstract
Transferrin (Tf) is an enigmatic metalloprotein that exhibits a profound conformational change upon binding of ferric ion and a synergistic anion (oxalate or carbonate). While the apo and holo forms of the protein have well-defined and stable conformations termed "open" and "closed," certain aspects of Tf behavior imply the existence of alternative protein states. In this work, hydrogen/deuterium exchange was used in combination with mass spectrometry to map solvent-accessible surfaces of the iron-bound and iron-free forms of the N-terminal lobe of human serum Tf at both neutral and endosomal pH levels. While the deuterium uptake is significantly decelerated in the iron-bound state of the protein (compared with the apo form) at neutral pH, the changes are distributed very unevenly across the protein sequence. Protein segments exhibiting most noticeable gain in protection map onto the interdomain cleft region housing the iron-binding site. At the same time, protection levels of segments located in the bulk of the protein are largely unaffected by the presence of the metal. These observations are fully consistent with the notion of a metal-induced switch from the open to the closed conformation with solvent-inaccessible interdomain cleft. However, differences in the exchange behavior between the apo and holo forms of Tf become much less noticeable at endosomal pH, including the segments located in the interdomain cleft region. Intriguingly, a significant patch in the cleft region becomes slightly less protected in the presence of the metal, suggesting that the holoprotein exists in the open conformation under these slightly acidic conditions. The existence of a noncanonical state of holoTf was postulated several years ago; however, this work provides, for the first time, conclusive evidence that such alternative states are indeed populated in solution.
Collapse
Affiliation(s)
- Cedric E Bobst
- Department of Chemistry, Lederle Graduate Research Tower, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
109
|
Dixit A, Torkamani A, Schork NJ, Verkhivker G. Computational modeling of structurally conserved cancer mutations in the RET and MET kinases: the impact on protein structure, dynamics, and stability. Biophys J 2009; 96:858-74. [PMID: 19186126 DOI: 10.1016/j.bpj.2008.10.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/27/2008] [Indexed: 02/08/2023] Open
Abstract
Structural and biochemical characterization of protein kinases that confer oncogene addiction and harbor a large number of disease-associated mutations, including RET and MET kinases, have provided insights into molecular mechanisms associated with the protein kinase activation in human cancer. In this article, structural modeling, molecular dynamics, and free energy simulations of a structurally conserved mutational hotspot, shared by M918T in RET and M1250T in MET kinases, are undertaken to quantify the molecular mechanism of activation and the functional role of cancer mutations in altering protein kinase structure, dynamics, and stability. The mechanistic basis of the activating RET and MET cancer mutations may be driven by an appreciable free energy destabilization of the inactive kinase state in the mutational forms. According to our results, the locally enhanced mobility of the cancer mutants and a higher conformational entropy are counterbalanced by a larger enthalpy loss and result in the decreased thermodynamic stability. The computed protein stability differences between the wild-type and cancer kinase mutants are consistent with circular dichroism spectroscopy and differential scanning calorimetry experiments. These results support the molecular mechanism of activation, which causes a detrimental imbalance in the dynamic equilibrium shifted toward the active form of the enzyme. Furthermore, computer simulations of the inhibitor binding with the oncogenic and drug-resistant RET mutations have also provided a plausible molecular rationale for the observed differences in the inhibition profiles, which is consistent with the experimental data. Finally, structural mapping of RET and MET cancer mutations and the computed protein stability changes suggest a similar mechanism of activation, whereby the cancer mutations which display the higher oncogenic activity tend to have the greatest destabilization effect on the inactive kinase structure.
Collapse
Affiliation(s)
- Anshuman Dixit
- Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, USA
| | | | | | | |
Collapse
|
110
|
Wu S, Zhuravlev PI, Papoian GA. High resolution approach to the native state ensemble kinetics and thermodynamics. Biophys J 2008; 95:5524-32. [PMID: 18805918 PMCID: PMC2599834 DOI: 10.1529/biophysj.108.136697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.
Collapse
Affiliation(s)
- Sangwook Wu
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
111
|
Armstrong KM, Insaidoo FK, Baker BM. Thermodynamics of T-cell receptor-peptide/MHC interactions: progress and opportunities. J Mol Recognit 2008; 21:275-87. [PMID: 18496839 DOI: 10.1002/jmr.896] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
alphabeta T-cell receptors (TCRs) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van't Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases, the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but also for understanding specifics of individual interactions and the engineering of TCRs with desired molecular recognition properties.
Collapse
Affiliation(s)
- Kathryn M Armstrong
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
112
|
Arcangeli C, Cantale C, Galeffi P, Rosato V. Structure and dynamics of the anti-AMCV scFv(F8): effects of selected mutations on the antigen combining site. J Struct Biol 2008; 164:119-33. [PMID: 18662789 DOI: 10.1016/j.jsb.2008.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/16/2008] [Accepted: 06/27/2008] [Indexed: 11/26/2022]
Abstract
The recombinant antibody fragment scFv(F8), which recognizes the coat protein of the plant virus AMCV, is characterized by peculiar high in vitro stability and functional folding even in reducing environments, making it fit for designing stable antibodies with desired properties. Mutagenesis and functional analysis evidenced two residues, at positions 47 and 58 of the V(H) chain, playing a crucial role in the antigen binding recognition. Here, we used a computational procedure to assess the effects of these mutations on the stability, structure and dynamics of the antigen-binding site. Structural models of the wild type scFv(F8) and of its H47 and H58 mutants were built by homology modelling and assessed by multiple 15.5ns of molecular dynamics simulations. Computational results indicate that the 47H substitution strongly affects the CDR-H(2) conformation, destabilizes the V(H)/V(L) interface and confers high conformational flexibility to the antigen-binding site, leading the mutant to functional loss. The mutation at position H58 strenghtens the binding site, bestowing a high antigen specificity on the mutant. The essential dynamics and the analysis of the protein-solvent interface further corroborate the correspondence between the extent of the structurally-determined flexibility of the binding site with the different functional behaviours proved by the wild-type and its mutants. These results may have useful implications for structure-based design of antibody combining site.
Collapse
Affiliation(s)
- Caterina Arcangeli
- ENEA, Dipartimento FIM, Sezione Calcolo e Modellistica, CR Casaccia, Via Anguillarese 301, I-00123 Rome, Italy.
| | | | | | | |
Collapse
|
113
|
Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE. Exploring the energy landscape of antibody-antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 2008; 47:7237-47. [PMID: 18549243 DOI: 10.1021/bi800374q] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The production of antibodies that selectively bind virtually any foreign compound is the hallmark of the immune system. While much is understood about how sequence diversity contributes to this remarkable feat of molecular recognition, little is known about how sequence diversity impacts antibody dynamics, which is also expected to contribute to molecular recognition. Toward this goal, we examined a panel of antibodies elicited to the chromophoric antigen fluorescein. On the basis of isothermal titration calorimetry, we selected six antibodies that bind fluorescein with diverse binding entropies, suggestive of varying contributions of dynamics to molecular recognition. Sequencing revealed that two pairs of antibodies employ homologous heavy chains that were derived from common germline genes, while the other two heavy chains and all six of the light chains were derived from different germline genes and are not homologous. Interestingly, more than half of all the somatic mutations acquired during affinity maturation among the six antibodies are located in positions unlikely to contact fluorescein directly. To quantify and compare the dynamics of the antibody-fluorescein complexes, three-pulse photon echo peak shift and transient grating spectroscopy were employed. All of the antibodies exhibited motions on three distinct time scales, ultrafast motions on the <100 fs time scale, diffusive motions on the picosecond time scale, and motions that occur on time scales longer than nanoseconds and thus appear static. However, the exact frequency of the picosecond time scale motion and the relative contribution of the different motions vary significantly among the antibody-chromophore complexes, revealing a high level of dynamic diversity. Using a hierarchical model, we relate the data to features of the antibodies' energy landscapes as well as their flexibility in terms of elasticity and plasticity. In all, the data provide a consistent picture of antibody flexibility, which interestingly appears to be correlated with binding entropy as well as with germline gene use and the mutations introduced during affinity maturation. The data also provide a gauge of the dynamic diversity of the antibody repertoire and suggest that this diversity might contribute to molecular recognition by facilitating the recognition of the broadest range of foreign molecules.
Collapse
Affiliation(s)
- Megan C Thielges
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
114
|
Entropic contributions and the influence of the hydrophobic environment in promiscuous protein-protein association. Proc Natl Acad Sci U S A 2008; 105:7456-61. [PMID: 18495919 DOI: 10.1073/pnas.0800452105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms by which a promiscuous protein can strongly interact with several different proteins using the same binding interface are not completely understood. An example is protein kinase A (PKA), which uses a single face on its docking/dimerization domain to interact with multiple A-kinase anchoring proteins (AKAP) that localize it to different parts of the cell. In the current study, the configurational entropy contributions to the binding between the AKAP protein HT31 with the D/D domain of RII alpha-regulatory subunit of PKA were examined. The results show that the majority of configurational entropy loss for the interaction was due to decreased fluctuations within rotamer states of the side chains. The result is in contrast to the widely held approximation that the decrease in the number of rotamer states available to the side chains forms the major component. Further analysis showed that there was a direct linear relationship between total configurational entropy and the number of favorable, alternative contacts available within hydrophobic environments. The hydrophobic binding pocket of the D/D domain provides alternative contact points for the side chains of AKAP peptides that allow them to adopt different binding conformations. The increase in binding conformations provides an increase in binding entropy and hence binding affinity. We infer that a general strategy for a promiscuous protein is to provide alternative contact points at its interface to increase binding affinity while the plasticity required for binding to multiple partners is retained. Implications are discussed for understanding and treating diseases in which promiscuous protein interactions are used.
Collapse
|
115
|
Acierno JP, Braden BC, Klinke S, Goldbaum FA, Cauerhff A. Affinity Maturation Increases the Stability and Plasticity of the Fv Domain of Anti-protein Antibodies. J Mol Biol 2007; 374:130-46. [DOI: 10.1016/j.jmb.2007.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/13/2007] [Accepted: 09/05/2007] [Indexed: 11/26/2022]
|
116
|
McKinney BA, Kallewaard NL, Crowe JE, Meiler J. Using the natural evolution of a rotavirus-specific human monoclonal antibody to predict the complex topography of a viral antigenic site. Immunome Res 2007; 3:8. [PMID: 17877819 PMCID: PMC2042970 DOI: 10.1186/1745-7580-3-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/18/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the interaction between viral proteins and neutralizing antibodies at atomic resolution is hindered by a lack of experimentally solved complexes. Progress in computational docking has led to the prediction of increasingly high-quality model antibody-antigen complexes. The accuracy of atomic-level docking predictions is improved when integrated with experimental information and expert knowledge. METHODS Binding affinity data associated with somatic mutations of a rotavirus-specific human adult antibody (RV6-26) are used to filter potential docking orientations of an antibody homology model with respect to the rotavirus VP6 crystal structure. The antibody structure is used to probe the VP6 trimer for candidate interface residues. RESULTS Three conformational epitopes are proposed. These epitopes are candidate antigenic regions for site-directed mutagenesis of VP6, which will help further elucidate antigenic function. A pseudo-atomic resolution RV6-26 antibody-VP6 complex is proposed consistent with current experimental information. CONCLUSION The use of mutagenesis constraints in docking calculations allows for the identification of a small number of alternative arrangements of the antigen-antibody interface. The mutagenesis information from the natural evolution of a neutralizing antibody can be used to discriminate between residue-scale models and create distance constraints for atomic-resolution docking. The integration of binding affinity data or other information with computation may be an advantageous approach to assist peptide engineering or therapeutic antibody design.
Collapse
Affiliation(s)
- Brett A McKinney
- Department of Genetics, University of Alabama School of Medicine, 720 20Street South, Birmingham, 35294, USA
| | - Nicole L Kallewaard
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 34Street and Civic Center Boulevard, Philadelphia, 19104 USA
| | - James E Crowe
- Program in Vaccine Sciences, Departments of Microbiology and Immunology and Pediatrics, Vanderbilt University Medical Center, 21Avenue South and Garland Avenue, Nashville, 37232, USA
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, 2201 West End Avenue, Nashville, 37232, USA
| |
Collapse
|