101
|
Toh KC, Stojković EA, van Stokkum IHM, Moffat K, Kennis JTM. Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Phys Chem Chem Phys 2011; 13:11985-97. [PMID: 21611667 DOI: 10.1039/c1cp00050k] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteriophytochromes (Bphs) are red-light photoreceptor proteins with a photosensory core that consists of three distinct domains, PAS, GAF and PHY, and covalently binds biliverdin (BV) to a conserved cysteine in the PAS domain. In a recent development, PAS-GAF variants were engineered for use as a near-infrared fluorescent marker in mammalian tissues (Tsien and co-workers, Science, 2009, 324, 804-807). Here, we report the fluorescence quantum yield and photochemistry of two highly-related Bphs from Rps. palustris, RpBphP2 (P2) and RpBphP3 (P3) with distinct photoconversion and fluorescence properties. We applied ultrafast spectroscopy to wild type P3 and P2 PAS-GAF proteins and their P3 D216A, Y272F and P2 D202A PAS-GAF-PHY mutant proteins. In these mutants hydrogen-bond interactions between a conserved aspartate (Asp) which connects the BV chromophore with the PHY domains are disrupted. The excited-state lifetime of the truncated P3 and P2 PAS-GAF proteins was significantly longer than in their PAS-GAF-PHY counterparts that constitute the full photosensory core. Mutation of the conserved Asp to Ala in the PAS-GAF-PHY protein had a similar but larger effect. The fluorescence quantum yields of the P3 D216A and Y272F mutants were 0.066, higher than that of wild type P3 (0.043) and similar to the engineered Bph of Tsien and co-workers. We conclude that elimination of a key hydrogen-bond interaction between Asp and a conserved Arg in the PHY domain is responsible for the excited-state lifetime increase in all Bph variants studied here. H/D exchange resulted in a 1.4-1.7 fold increase of excited-state lifetime. The results support a reaction model in which deactivation of the BV chromophore proceeds via excited-state proton transfer from the BV pyrrole nitrogens to the backbone of the conserved Asp or to a bound water. This work may aid in rational structure- and mechanism-based conversion of constructs based on P3 and other BPhs into efficient near-IR, deep tissue, fluorescent markers.
Collapse
Affiliation(s)
- K C Toh
- Biophysics Section, Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
102
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
103
|
Losi A, Gärtner W. Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light-Sensing Photoreceptors†. Photochem Photobiol 2011; 87:491-510. [DOI: 10.1111/j.1751-1097.2011.00913.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
104
|
Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc Natl Acad Sci U S A 2011; 108:3842-7. [PMID: 21325055 DOI: 10.1073/pnas.1013377108] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phytochrome photoreceptors mediate light responses in plants and in many microorganisms. Here we report studies using (1)H-(13)C magic-angle spinning NMR spectroscopy of the sensor module of cyanobacterial phytochrome Cph1. Two isoforms of the red-light absorbing Pr ground state are identified. Conclusive evidence that photoisomerization occurs at the C15-methine bridge leading to a β-facial disposition of the ring D is presented. In the far-red-light absorbing Pfr state, strong hydrogen-bonding interactions of the D-ring carbonyl group to Tyr-263 and of N24 to Asp-207 hold the chromophore in a tensed conformation. Signaling is triggered when Asp-207 is released from its salt bridge to Arg-472, probably inducing conformational changes in the tongue region. A second signal route is initiated by partner swapping of the B-ring propionate between Arg-254 and Arg-222.
Collapse
|
105
|
Strambi A, Durbeej B. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Photochem Photobiol Sci 2011; 10:569-79. [DOI: 10.1039/c0pp00307g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
106
|
Toh KC, Stojković EA, Rupenyan AB, van Stokkum IHM, Salumbides M, Groot ML, Moffat K, Kennis JTM. Primary reactions of bacteriophytochrome observed with ultrafast mid-infrared spectroscopy. J Phys Chem A 2010; 115:3778-86. [PMID: 21192725 DOI: 10.1021/jp106891x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C(15)═C(16) double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important recent development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Bphs covalently bind a biliverdin (BV) chromophore, naturally abundant in mammalian cells. Here, we report an ultrafast time-resolved mid-infrared spectroscopic study on the Pr state of two highly related Bphs from Rps. palustris , RpBphP2 (P2) and RpBphP3 (P3) with distinct photoconversion and fluorescence properties. We observed that the BV excited state of P2 decays in 58 ps, while the BV excited state of P3 decays in 362 ps. By combining ultrafast mid-IR spectroscopy with FTIR spectroscopy on P2 and P3 wild type and mutant proteins, we demonstrate that the hydrogen bond strength at the ring D carbonyl of the BV chromophore is significantly stronger in P3 as compared to P2. This result is consistent with the X-ray structures of Bph, which indicate one hydrogen bond from a conserved histidine to the BV ring D carbonyl for classical bacteriophytochromes such as P2, and one or two additional hydrogen bonds from a serine and a lysine side chain to the BV ring D carbonyl for P3. We conclude that the hydrogen-bond strength at BV ring D is a key determinant of excited-state lifetime and fluorescence quantum yield. Excited-state decay is followed by the formation of a primary intermediate that does not decay on the nanosecond time scale of the experiment, which shows a narrow absorption band at ∼1540 cm(-1). Possible origins of this product band are discussed. This work may aid in rational structure- and mechanism-based conversion of BPh into an efficient near-IR fluorescent marker.
Collapse
Affiliation(s)
- K C Toh
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Zienicke B, Chen LY, Khawn H, Hammam MAS, Kinoshita H, Reichert J, Ulrich AS, Inomata K, Lamparter T. Fluorescence of phytochrome adducts with synthetic locked chromophores. J Biol Chem 2010; 286:1103-13. [PMID: 21071442 DOI: 10.1074/jbc.m110.155143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.
Collapse
Affiliation(s)
- Benjamin Zienicke
- Botanical Institute, Karlsruhe Institute of Technology, Campus South, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Samma AA, Johnson CK, Song S, Alvarez S, Zimmer M. On the origin of fluorescence in bacteriophytochrome infrared fluorescent proteins. J Phys Chem B 2010; 114:15362-9. [PMID: 21047084 DOI: 10.1021/jp107119q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tsien et al. (Science, 2009, 324, 804-807) recently reported the creation of the first infrared fluorescent protein (IFP). It was engineered from bacterial phytochrome by removing the PHY and histidine kinase-related domains, by optimizing the protein to prevent dimerization, and by limiting the biliverdins conformational freedom, especially around its D ring. We have used database analyses and molecular dynamics simulations with freely rotating chromophoric dihedrals in order to model the dihedral freedom available to the biliverdin D ring in the excited state and to show that the tetrapyrrole ligands in phytochromes are flexible and can adopt many conformations; however, their conformational space is limited/defined by the chemospatial characteristics of the protein cavity. Our simulations confirm that the reduced accessibility to conformations geared to an excited state proton transfer may be responsible for the fluorescence in IFP, just as has been suggested by Kennis et al. (Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 9170-9175) for fluorescent bacteriophytochrome from Rhodopseudomonas palustris.
Collapse
Affiliation(s)
- Alex A Samma
- Chemistry Department, Connecticut College, New London, CT 06320, USA
| | | | | | | | | |
Collapse
|
109
|
Shang L, Rockwell NC, Martin SS, Lagarias JC. Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion. Biochemistry 2010; 49:6070-82. [PMID: 20565135 DOI: 10.1021/bi100756x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linear tetrapyrroles (bilins) perform important antioxidant and light-harvesting functions in cells from bacteria to humans. To explore the role of the propionate moieties in bilin metabolism, we report the semisynthesis of mono- and diamides of biliverdin IXalpha and those of its non-natural XIIIalpha isomer. Initially, these were examined as substrates of two types of NADPH-dependent biliverdin reductase, BVR and BvdR, and of the representative ferredoxin-dependent bilin reductase, phycocyanobilin:ferredoxin oxidoreductase (PcyA). Our studies indicate that the NADPH-dependent biliverdin reductases are less accommodating to amidation of the propionic acid side chains of biliverdin IXalpha than PcyA, which does not require free carboxylic acid side chains to yield its phytobilin product, phycocyanobilin. Bilin amides were also assembled with BV-type and phytobilin-type apophytochromes, demonstrating a role for the 8-propionate in the formation of the spectroscopically native P(r) dark states of these biliprotein photosensors. Neither ionizable propionate side chain proved to be essential to primary photoisomerization for both classes of phytochromes, but an unsubstituted 12-propionate was required for full photointerconversion of phytobilin-type phytochrome Cph1. Taken together, these studies provide insight into the roles of the ionizable propionate side chains in substrate discrimination by two bilin reductase families while further underscoring the mechanistic differences between the photoconversions of BV-type and phytobilin-type phytochromes.
Collapse
Affiliation(s)
- Lixia Shang
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
110
|
Piwowarski P, Ritter E, Hofmann KP, Hildebrandt P, von Stetten D, Scheerer P, Michael N, Lamparter T, Bartl F. Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy. Chemphyschem 2010; 11:1207-14. [PMID: 20333618 DOI: 10.1002/cphc.200901008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phytochromes, which regulate many biological processes in plants, bacteria, and fungi, can exist in two stable states, Pr and Pfr, that can be interconverted by light, via a number of intermediates such as meta-Rc. Herein we employ FTIR spectroscopy to study the Pr-to-Pfr conversion of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens. Static FTIR Pfr/Pr and meta-Rc/Pr difference spectra are disentangled in terms of cofactor and protein structural changes. Guided by DFT calculations on cofactor models, the chromophore conformational changes can be grouped into structural adjustments of the cofactor-protein interactions localized in the C-D dipyrrole moiety, that is, the photoisomerisation site, and in the A-B dipyrrole moiety including the protein attachment site. Whereas changes at the C and D rings appear to be largely completed in the meta-Rc state, the structural changes in the A-B unit occur during the transition from meta-Rc to Pfr, concomitant with the main protein structural changes, as demonstrated by static and time-resolved FTIR difference spectroscopy. We employ this technique to monitor, for the first time, the dynamics of the photocycle of phytochrome on the millisecond timescale. By extending the studies to genetically engineered protein variants of Agp1, we further demonstrate that H250 and D197 as well as the PHY domain are essential for formation of the Pfr state. Based on the IR spectroscopic and available crystallographic data we discuss the role of critical amino acid residues for the protein-cofactor interactions during the photoinduced reaction cycle.
Collapse
Affiliation(s)
- Patrick Piwowarski
- Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Photosensory proteins enable living things to detect the quantity and quality of the light environment and to transduce that physical signal into biochemical outputs which entrain their metabolism with the ambient light environment. Phytochromes, which photoconvert between red-absorbing P(r) and far-red-absorbing P(fr) states, are the most extensively studied of these interesting proteins. Critical regulators of a number of key adaptive processes in higher plants, including photomorphogenesis and shade avoidance, phytochromes are widespread in photosynthetic and nonphotosynthetic bacteria, and even in fungi. Cyanobacterial genomes also possess a plethora of more distant relatives of phytochromes known as cyanobacteriochromes (CBCRs). Biochemical characterization of representative CBCRs has demonstrated that this class of photosensors exhibits a broad range of wavelength sensitivities, spanning the entire visible spectrum. Distinct protein-bilin interactions are responsible for this astonishing array of wavelength sensitivities. Despite this spectral diversity, all members of the extended family of phytochrome photosensors appear to share a common photochemical mechanism for light sensing: photoisomerization of the 15/16 double bond of the bilin chromophore.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
112
|
Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2010; 107:10872-7. [PMID: 20534495 DOI: 10.1073/pnas.1001908107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are a collection of dimeric photoreceptors that direct a diverse array of responses in plants and microorganisms through photoconversion between a red light-absorbing ground state Pr, and a far-red light-absorbing photoactivated state Pfr. Photoconversion from Pr to Pfr is initiated by a light-driven rotation within the covalently attached bilin, which then triggers a series of protein conformational changes in the binding pocket. These movements ultimately affect an appended output module, which often has reversible protein kinase activity. Propagation of the light signal from the bilin to the output module likely depends on the dimerization interface but its architecture and response to phototransformation remain unclear. Here, we used single particle cryoelectron microscopy to determine the quaternary arrangement of the phytochrome dimer as Pr, using the bacteriophytochrome (BphP) from Deinococcus radiodurans. Contrary to the long-standing view that the two monomers are held together solely via their C-terminal region, we provide unambiguous evidence that the N-terminal bilin-binding region of BphP also provides a dimerization interface with the C-terminal kinase domain appearing as a more flexible appendage. The BphP monomers dimerize in parallel with the polypeptides intimately twisting around each other in a right-handed fashion. Based on this electron microscopic picture, we propose that the light-driven conformational changes transmitted from the chromophore to the output module along the spine of this extensive dimer interface is the central feature underpinning phytochrome signaling.
Collapse
|
113
|
Rohmer T, Lang C, Gärtner W, Hughes J, Matysik J. Role of the protein cavity in phytochrome chromoprotein assembly and double-bond isomerization: a comparison with model compounds. Photochem Photobiol 2010; 86:856-61. [PMID: 20492561 DOI: 10.1111/j.1751-1097.2010.00740.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Difference patterns of (13)C NMR chemicals shifts for the protonation of a free model compound in organic solution, as reported in the literature (M. Stanek, K. Grubmayr [1998] Chem. Eur. J.4, 1653-1659), were compared with changes in the protonation state occurring during holophytochrome assembly from phycocyanobilin (PCB) and the apoprotein. Both processes induce identical changes in the NMR signals, indicating that the assembly process is linked to protonation of the chromophore, yielding a cationic cofactor in a heterogeneous, quasi-liquid protein environment. The identity of both difference patterns implies that the protonation of a model compound in solution causes a partial stretching of the geometry of the macrocycle as found in the protein. In fact, the similarity of the difference pattern within the bilin family for identical chemical transformations represents a basis for future theoretical analysis. On the other hand, the change of the (13)C NMR chemical shift pattern upon the Pr --> Pfr photoisomerization is very different to that of the free model compound upon ZZZ --> ZZE photoisomerization. Hence, the character of the double-bond isomerization in phytochrome is essentially different from that of a classical photoinduced double-bond isomerization, emphasizing the role of the protein environment in the modulation of this light-induced process.
Collapse
Affiliation(s)
- Thierry Rohmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
114
|
Baca I, Sprockett D, Dvornyk V. Circadian input kinases and their homologs in cyanobacteria: evolutionary constraints versus architectural diversification. J Mol Evol 2010; 70:453-65. [PMID: 20437037 DOI: 10.1007/s00239-010-9344-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 04/08/2010] [Indexed: 11/30/2022]
Abstract
The circadian input kinase A (cikA) gene encodes a protein relaying environmental signal to the central circadian oscillator in cyanobacteria. The CikA protein has a variable architecture and usually consists of four tandemly arrayed domains: GAF, histidine kinase (HisKA), histidine kinase-like ATPase (HATPase_c), and a pseudo-receiver (REC). Among them, HisKA and HATPase_c are the least polymorphic, and REC is not present in heterocystic filamentous cyanobacteria. CikA contains several conserved motifs that are likely important for circadian function. There are at least three types of circadian systems, each of which possesses a different set of circadian genes. The originally described circadian system (kaiABC system) possesses both cikA and kaiA, while the others lack either only cikA (kaiABC (Delta)) or both (kaiBC). The results we obtained allowed us to approximate the time of the cikA origin to be about 2600-2200 MYA and the time of its loss in the species with the kaiABC (Delta) or kaiBC system between 1100 and 600 MYA. Circadian specialization of CikA, as opposed to its non-circadian homologs, is a result of several factors, including the unique conserved domain architecture and high evolutionary constraints of some domains and regions, which were previously identified as critical for the circadian function of the gene.
Collapse
Affiliation(s)
- Ivan Baca
- Institute of Genetics, National Academy of Sciences of Moldova, Chisinau, Moldova.
| | | | | |
Collapse
|
115
|
Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome. Proc Natl Acad Sci U S A 2010; 107:9170-5. [PMID: 20435909 DOI: 10.1073/pnas.0911535107] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C15 horizontal lineC16 double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important new development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Here we report that an unusual Bph, RpBphP3 from Rhodopseudomonas palustris, denoted P3, is fluorescent. This Bph modulates synthesis of light-harvesting complex in combination with a second Bph exhibiting classical photochemistry, RpBphP2, denoted P2. We identify the factors that determine the fluorescence and isomerization quantum yields through the application of ultrafast spectroscopy to wild-type and mutants of P2 and P3. The excited-state lifetime of the biliverdin chromophore in P3 was significantly longer at 330-500 ps than in P2 and other classical phytochromes and accompanied by a significantly reduced isomerization quantum yield. H/D exchange reduces the rate of decay from the excited state of biliverdin by a factor of 1.4 and increases the isomerization quantum yield. Comparison of the properties of the P2 and P3 variants shows that the quantum yields of fluorescence and isomerization are determined by excited-state deprotonation of biliverdin at the pyrrole rings, in competition with hydrogen-bond rupture between the D-ring and the apoprotein. This work provides a basis for structure-based conversion of Bph into an efficient near-IR fluorescent marker.
Collapse
|
116
|
Röben M, Hahn J, Klein E, Lamparter T, Psakis G, Hughes J, Schmieder P. NMR Spectroscopic Investigation of Mobility and Hydrogen Bonding of the Chromophore in the Binding Pocket of Phytochrome Proteins. Chemphyschem 2010; 11:1248-57. [DOI: 10.1002/cphc.200900897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
117
|
Scheerer P, Michael N, Park JH, Nagano S, Choe HW, Inomata K, Borucki B, Krauß N, Lamparter T. Light-Induced Conformational Changes of the Chromophore and the Protein in Phytochromes: Bacterial Phytochromes as Model Systems. Chemphyschem 2010; 11:1090-105. [DOI: 10.1002/cphc.200900913] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
118
|
Rajkovic I, Hallmann J, Grübel S, More R, Quevedo W, Petri M, Techert S. Development of a multipurpose vacuum chamber for serial optical and diffraction experiments with free electron laser radiation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:045105. [PMID: 20441366 DOI: 10.1063/1.3327816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this paper we present a development of a multipurpose vacuum chamber which primal function is to be used in pump/probe experiments with free electron laser (FEL) radiation. The chamber is constructed for serial diffraction and serial spectroscopy allowing a fast exchange of samples during the measurement process. For the fast exchange of samples, liquid jet systems are used. Both applications, utilizing soft x-ray FEL pulses as pump and optical laser pulses as probe and vice versa are documented. Experiments with solid samples as well as the liquid jet samples are presented. When working with liquid jets, a system of automatically refilled liquid traps for capturing liquids has been developed in order to ensure stable vacuum conditions. Differential pumping stages are placed in between the FEL beamline and the experimental chamber so that working pressure in the chamber can be up to four orders of magnitude higher than the pressure in the FEL beamline.
Collapse
Affiliation(s)
- I Rajkovic
- Department of Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The complete three-dimensional sensory module structures of the Pr ground state of Synechocystis 6803 Cph1 and the unusual Pfr ground state of the bacteriophytochrome PaBphP (PDB codes 2VEA and 3C2W respectively) have now been solved, revealing an asymmetrical dumbbell form made up of a PAS (Period/ARNT/Singleminded)–GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) bidomain carrying the chromophore and the smaller PHY (phytochrome-specific) domain. The PHY domain is structurally related to the GAF family, but carries an unusual tongue-like structure which contacts the larger lobe to seal the chromophore pocket. In 2VEA, the tongue makes intimate contact with the helical N-terminus; both the N-terminus and the tongue structures are quite different in 3C2W. As expected, the structures reveal ZZZssa and ZZEssa chromophore conformations in 2VEA and 3C2W respectively, associated with tautomeric differences in several nearby tyrosine residues. Two salt bridges on opposite sides of the chromophore, as well as the associations of the C-ring propionates also differ. It is still unclear, however, which of these structural differences are associated with bacteriophytochromes compared with Cph1 and plant-type phytochromes, the unusual 3C2W Pfr ground state functionality compared with the Pr ground state or the Pr compared with Pfr photoisomerism. To access the latter unambiguously, both Pr and Pfr structures of the same molecule are required. New solid-phase NMR data for Cph1 in the Pr, Pfr and freeze-trapped intermediate states reveal unexpected changes in the chromophore during Pfr→Pr photoconversion. These, together with our efforts to solve the three-dimensional structure of a complete phytochrome molecule are also described.
Collapse
|
120
|
Cheung J, Hendrickson WA. Sensor domains of two-component regulatory systems. Curr Opin Microbiol 2010; 13:116-23. [PMID: 20223701 DOI: 10.1016/j.mib.2010.01.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 11/26/2022]
Abstract
Two-component systems regulate crucial cellular processes in microorganisms, and each comprises a homodimeric histidine kinase receptor and a cytoplasmic response regulator. Histidine kinases, often membrane associated, detect environmental input at sensor domains and propagate resulting signals to catalytic cytoplasmic transmitter domains. Recent studies on the great diversity of sensor domains reveal patterns of domain organization and biochemical properties that provide insight into mechanisms of signaling. Despite the enormous sequence variability found within sensor input domains, they fall into a relatively small number of discrete structural classes. Subtle rearrangements along a structurally labile dimer interface, in the form of possible sliding or rotational motions, are propagated from the sensor domain to the transmitter domain to modulate activity of the receptor.
Collapse
Affiliation(s)
- Jonah Cheung
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
121
|
Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 2010; 463:250-4. [PMID: 20075921 PMCID: PMC2807988 DOI: 10.1038/nature08671] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/11/2009] [Indexed: 01/28/2023]
Abstract
Phytochromes are a collection of bilin-containing photoreceptors that regulate numerous photoresponses in plants and microorganisms through their ability to photointerconvert between a red light-absorbing, ground state Pr and a far-red light-absorbing, photoactivated state Pfr1,2. While the structures of several phytochromes as Pr have been determined3-7, little is known about the structure of Pfr and how it initiates signaling. Here, we describe the three-dimensional solution structure of the bilin-binding domain as Pfr using the cyanobacterial phytochrome from Synechococcus OSB’. Contrary to predictions, light-induced rotation of the A but not the D pyrrole ring is the primary motion of the chromophore during photoconversion. Subsequent rearrangements within the protein then affect intra- and interdomain contact sites within the phytochrome dimer. From our models, we propose that phytochromes act by propagating reversible light-driven conformational changes in the bilin to altered contacts between the adjacent output domains, which in most phytochromes direct differential phosphotransfer.
Collapse
|
122
|
Kyndt JA, Fitch JC, Seibeck S, Borucki B, Heyn MP, Meyer TE, Cusanovich MA. Regulation of the Ppr Histidine Kinase by Light-Induced Interactions between Its Photoactive Yellow Protein and Bacteriophytochrome Domains. Biochemistry 2010; 49:1744-54. [DOI: 10.1021/bi901591m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John A. Kyndt
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - John C. Fitch
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Sven Seibeck
- Biophysics group, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Berthold Borucki
- Biophysics group, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Maarten P. Heyn
- Biophysics group, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Terry E. Meyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Michael A. Cusanovich
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
123
|
Möglich A, Yang X, Ayers RA, Moffat K. Structure and function of plant photoreceptors. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:21-47. [PMID: 20192744 DOI: 10.1146/annurev-arplant-042809-112259] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).
Collapse
Affiliation(s)
- Andreas Möglich
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
124
|
Mathews S. Evolutionary studies illuminate the structural-functional model of plant phytochromes. THE PLANT CELL 2010; 22:4-16. [PMID: 20118225 PMCID: PMC2828699 DOI: 10.1105/tpc.109.072280] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 05/18/2023]
Abstract
A synthesis of insights from functional and evolutionary studies reveals how the phytochrome photoreceptor system has evolved to impart both stability and flexibility. Phytochromes in seed plants diverged into three major forms, phyA, phyB, and phyC, very early in the history of seed plants. Two additional forms, phyE and phyD, are restricted to flowering plants and Brassicaceae, respectively. While phyC, D, and E are absent from at least some taxa, phyA and phyB are present in all sampled seed plants and are the principal mediators of red/far-red-induced responses. Conversely, phyC-E apparently function in concert with phyB and, where present, expand the repertoire of phyB activities. Despite major advances, aspects of the structural-functional models for these photoreceptors remain elusive. Comparative sequence analyses expand the array of locus-specific mutant alleles for analysis by revealing historic mutations that occurred during gene lineage splitting and divergence. With insights from crystallographic data, a subset of these mutants can be chosen for functional studies to test their importance and determine the molecular mechanism by which they might impact light perception and signaling. In the case of gene families, where redundancy hinders isolation of some proportion of the relevant mutants, the approach may be particularly useful.
Collapse
Affiliation(s)
- Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
125
|
Neugebauer J. Subsystem-Based Theoretical Spectroscopy of Biomolecules and Biomolecular Assemblies. Chemphyschem 2009; 10:3148-73. [DOI: 10.1002/cphc.200900538] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
126
|
Wang J, Yan B, Chen G, Su Y, Wang T. Adaptive evolution in the GAF domain of phytochromes in gymnosperms. Biochem Genet 2009; 48:236-47. [PMID: 19967442 DOI: 10.1007/s10528-009-9313-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 07/16/2009] [Indexed: 12/18/2022]
Abstract
The GAF domain of phytochrome is essential for photoconversion and signal transduction. In gymnosperms, it exists in all members of the phytochrome family that experience gene duplication. Maximum-likelihood models of codon substitution can provide a framework for constructing likelihood ratio tests of changes in selective pressure and make clear predictions about patterns of genetic change following gene duplication. In this study, 68 gymnosperm GAF sequences were analyzed to identify lineages and sites under positive selection. Our results indicate that (1) positive selection at a few sites (3.6%), rather than relaxation of selective constraints, has played a major role in the evolution of the gymnosperm GAF domain; (2) strong positive selective pressure tends to occur in the recent PHYP lineages of cogeneric species, but is absent in old lineages consisting of distantly related species; and (3) the selective pressure indicated by the omega ratio varies greatly among lineages and sites in the GAF domain.
Collapse
Affiliation(s)
- Jing Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | | | | | | | | |
Collapse
|
127
|
Yang X, Kuk J, Moffat K. Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome. Proc Natl Acad Sci U S A 2009; 106:15639-44. [PMID: 19720999 PMCID: PMC2747172 DOI: 10.1073/pnas.0902178106] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria by means of reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here, we report the crystal structure of the Q188L mutant of Pseudomonas aeruginosa bacteriophytochrome (PaBphP) photosensory core module, which exhibits altered photoconversion behavior and different crystal packing from wild type. We observe two distinct chromophore conformations in the Q188L crystal structure that we identify with the Pfr and Pr states. The Pr/Pfr compositions, varying from crystal to crystal, seem to correlate with light conditions under which the Q188L crystals are cryoprotected. We also compare all known Pr and Pfr structures. Using site-directed mutagenesis, we identify residues that are involved in stabilizing the 15Ea (Pfr) and 15Za (Pr) configurations of the biliverdin chromophore. Specifically, Ser-261 appears to be essential to form a stable Pr state in PaBphP, possibly by means of its interaction with the propionate group of ring C. We propose a "flip-and-rotate" model that summarizes the major conformational differences between the Pr and Pfr states of the chromophore and its binding pocket.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Biochemistry and Molecular Biology and
| | - Jane Kuk
- Department of Biochemistry and Molecular Biology and
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology and
- Institute for Biophysical Dynamics, University of Chicago, 929 East 57th Street, Chicago, IL 60637
| |
Collapse
|
128
|
Ulijasz AT, Cornilescu G, von Stetten D, Cornilescu C, Velazquez Escobar F, Zhang J, Stankey RJ, Rivera M, Hildebrandt P, Vierstra RD. Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore. J Biol Chem 2009; 284:29757-72. [PMID: 19671704 DOI: 10.1074/jbc.m109.038513] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C3(1) carbon of the ethylidene side chain and the C4 or C5 carbons in the A-B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb --> Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals.
Collapse
Affiliation(s)
- Andrew T Ulijasz
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Mroginski MA, von Stetten D, Escobar FV, Strauss HM, Kaminski S, Scheerer P, Günther M, Murgida DH, Schmieder P, Bongards C, Gärtner W, Mailliet J, Hughes J, Essen LO, Hildebrandt P. Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: reconciling structural and spectroscopic data by QM/MM calculations. Biophys J 2009; 96:4153-63. [PMID: 19450486 DOI: 10.1016/j.bpj.2009.02.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/21/2009] [Accepted: 02/05/2009] [Indexed: 10/20/2022] Open
Abstract
A quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His(260) in the chromophore-binding pocket such that either the delta-nitrogen (M-HSD) or the epsilon-nitrogen (M-HSE) carried a hydrogen. The optimized structures of the two models display small differences specifically in the orientation of His(260) with respect to the PCB cofactor and the hydrogen bond network at the cofactor-binding site. For both models, the calculated Raman spectra of the cofactor reveal a good overall agreement with the experimental resonance Raman (RR) spectra obtained from Cph1 in the crystalline state and in solution, including Cph1 adducts with isotopically labeled PCB. However, a distinctly better reproduction of important details in the experimental spectra is provided by the M-HSD model, which therefore may represent an improved structure of the cofactor site. Thus, QM/MM calculations of chromoproteins may allow for refining crystal structure models in the chromophore-binding pocket guided by the comparison with experimental RR spectra. Analysis of the calculated and experimental spectra also allowed us to identify and assign the modes that sensitively respond to chromophore-protein interactions. The most pronounced effect was noted for the stretching mode of the methine bridge A-B adjacent to the covalent attachment site of PCB. Due a distinct narrowing of the A-B methine bridge bond angle, this mode undergoes a large frequency upshift as compared with the spectrum obtained by QM calculations for the chromophore in vacuo. This protein-induced distortion of the PCB geometry is the main origin of a previous erroneous interpretation of the RR spectra based on QM calculations of the isolated cofactor.
Collapse
|
130
|
Borucki B, Seibeck S, Heyn MP, Lamparter T. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis. Biochemistry 2009; 48:6305-17. [PMID: 19496558 DOI: 10.1021/bi900436v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functional role of the covalent attachment of the bilin chromophores biliverdin (BV) and phycocyanobilin (PCB) was investigated for phytochrome Agp1 from Agrobacterium tumefaciens using circular dichroism (CD) and transient absorption spectroscopy. Covalent and noncovalent adducts with these chromophores were prepared by using wild-type (WT) Agp1 (covalent BV and noncovalent PCB binding), mutant C20A in which the covalent BV binding site is eliminated, and mutant V249C in which the covalent PCB binding site is introduced. While the CD spectra of the P(r) forms of all these photochromic adducts are qualitatively the same, the CD spectrum of the P(fr) form of the covalent PCB adduct is unique in having a positive rotational strength in the Q-band which we assign to the Z-E isomerization of the C-D methine bridge. In the three other adducts, the Q-band CD in the P(fr) state is almost zero, suggesting that upon photoconversion a negative contribution from an out-of-plane rotation of the A ring of the chromophore compensates for the positive contribution from ring D. The contribution from ring A is absent or strongly reduced in the shorter pi-conjugation system of the covalent PCB adduct. The results from CD spectroscopy are consistent with a uniform geometry of the bilin chromophore in the covalent and noncovalent adducts. Transient absorption spectroscopy showed that the spectral changes and the kinetics of the P(r) to P(fr) photoconversion are not substantially affected by the covalent attachment of BV and PCB. The kinetics in the BV and PCB adducts mainly differ in the formation of P(fr) that is accelerated by 2 orders of magnitude in the PCB adducts, whereas the sequence of spectral transitions and the associated proton transfer processes are quite similar. We conclude that the P(r) to P(fr) photoconversion in the BV and PCB adducts of Agp1 involves the same relaxation processes and is thus governed by specific protein-cofactor interactions rather than by the chemical structure of the chromophore or the mode of attachment. The strongly reduced photostability of the noncovalent BV adduct suggests that covalent attachment in native Agp1 phytochrome prevents irreversible photobleaching and stabilizes the chromophore. The N-terminal peptide segment including amino acids 2-19 is essential for covalent attachment of the chromophore but dispensable for the spectral and kinetic properties of Agp1.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
131
|
Borucki B, Lamparter T. A polarity probe for monitoring light-induced structural changes at the entrance of the chromophore pocket in a bacterial phytochrome. J Biol Chem 2009; 284:26005-16. [PMID: 19640848 DOI: 10.1074/jbc.m109.049056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-induced structural changes at the entrance of the chromophore pocket of Agp1 phytochrome were investigated by using a thiol-reactive fluorescein derivative that is covalently attached to the genuine chromophore binding site (Cys-20) and serves as a polarity probe. In the apoprotein, the absorption spectrum of bound fluorescein is red-shifted with respect to that of the free label suggesting that the probe enters the hydrophobic chromophore pocket. Assembly of this construct with the chromophores phycocyanobilin or biliverdin is associated with a blue-shift of the fluorescein absorption band indicating the displacement of the probe out of the pocket. The probe does not affect the photochromic and kinetic properties of the noncovalent bilin adducts. Upon photoconversion to Pfr, the probe spectrum undergoes again a bathochromic shift and a strong rise in CD indicating a more hydrophobic and asymmetric environment. We propose that the environmental changes of the probe reflect conformational changes at the entrance of the chromophore pocket and are indicative for rearrangements of the chromophore ring A. Flash photolysis measurements showed that the absorption changes of the probe are kinetically coupled to the formation of Meta-R(C) and Pfr. In the biliverdin adduct, an additional component occurs that probably reflects a transition between two Meta-RC substates. Analogous results to that of the noncovalent phycocyanobilin adduct were obtained with the mutant V249C in which probe and chromophore are covalently attached. The conformational changes of the chromophore are correlated to proton transfer to the protein surface.
Collapse
Affiliation(s)
- Berthold Borucki
- Department of Physics, Biophysics Group, Freie Universität Berlin, Arnimallee 14, Berlin D-14195, Germany
| | | |
Collapse
|
132
|
Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Proc Natl Acad Sci U S A 2009; 106:6123-7. [PMID: 19339496 DOI: 10.1073/pnas.0902370106] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytochromes are a widespread family of photosensory proteins first discovered in plants, which measure the ratio of red to far-red light to control many aspects of growth and development. Phytochromes interconvert between red-absorbing P(r) and far-red-absorbing P(fr) states via photoisomerization of a covalently-bound linear tetrapyrrole (bilin) chromophore located in a conserved photosensory core. From recent crystal structures of this core region, it has been inferred that the chromophore structures of P(r) and P(fr) are conserved in most phytochromes. Using circular dichroism spectroscopy and ab initio calculations, we establish that the P(fr) states of the biliverdin-containing bacteriophytochromes DrBphP and PaBphP are structurally dissimilar from those of the phytobilin-containing cyanobacterial phytochrome Cph1. This conclusion is further supported by chromophore substitution experiments using semisynthetic bilin monoamides, which indicate that the propionate side chains perform different functional roles in the 2 classes of phytochromes. We propose that different directions of bilin D-ring rotation account for these distinct classes of red/far-red photochemistry.
Collapse
|
133
|
Kaminski S, Daminelli G, Mroginski MA. Molecular dynamics simulations of the chromophore binding site of Deinococcus radiodurans bacteriophytochrome using new force field parameters for the phytochromobilin chromophore. J Phys Chem B 2009; 113:945-58. [PMID: 19123828 DOI: 10.1021/jp8047532] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational flexibility of the tetrapyrrolic phytochromobilin (PPhiB) chromophore of the bacteriophytochrome Deinococcus radiodurans (DrCBD) in the Pr state has been investigated by molecular dynamics simulations. Because these simulations require accurate force field parameters for the prosthetic group, in the present work we developed new empirical force field parameters for the PPhiB molecule that are compatible with the CHARMM22 force field for proteins. For this reason, the new force field parameters for the nonbonded (partial atomic charges) and bonded (bonds, angles, dihedrals, improper) energy terms were derived by reproducing ab initio target data following the methodology used in the development of the CHARMM22 force field. This new set of parameters was employed to analyze structural and dynamical features of PPhiB inside DrCBD. The 45 ns all-atom molecular dynamics (MD) simulation reveals the existence of two stable conformational states of the chromophore characterized by distinct torsional angles around the C-C bond at the methine bridge connecting rings A and B of the tetrapyrrole. This result supports experimental observations derived from NMR and resonance Raman spectroscopy. Furthermore, statistical analysis of H-bonding events allowed us to identify (a) important H-bonds between the propionic side chains of the chromophore and the apoprotein which may be relevant for the signal transduction step during the photoinduced cycle and (b) a network of eight water molecules which remain in the vicinity of the chromophore during the entire 45 ns production run.
Collapse
Affiliation(s)
- Steve Kaminski
- Technische Universitat Berlin, Institut fur Chemie, Max-Volmer-Laboratorium, D-10623 Berlin, Germany
| | | | | |
Collapse
|
134
|
Nieder JB, Brecht M, Bittl R. Dynamic intracomplex heterogeneity of phytochrome. J Am Chem Soc 2009; 131:69-71. [PMID: 19128172 DOI: 10.1021/ja8058292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low temperature single-molecule fluorescence emission spectroscopy on individual phytochromes from Agrobacterium tumefaciens corroborates findings from ensemble spectroscopy concerning intercomplex heterogeneity. Furthermore, time-dependent intracomplex heterogeneity has been observed.
Collapse
Affiliation(s)
- Jana B Nieder
- Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | |
Collapse
|
135
|
Clack T, Shokry A, Moffet M, Liu P, Faul M, Sharrock RA. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. THE PLANT CELL 2009; 21:786-99. [PMID: 19286967 PMCID: PMC2671712 DOI: 10.1105/tpc.108.065227] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/17/2009] [Accepted: 03/02/2009] [Indexed: 05/18/2023]
Abstract
Phytochromes are dimeric chromoproteins that regulate plant responses to red (R) and far-red (FR) light. The Arabidopsis thaliana genome encodes five phytochrome apoproteins: type I phyA mediates responses to FR, and type II phyB-phyE mediate shade avoidance and classical R/FR-reversible responses. In this study, we describe the complete in vivo complement of homodimeric and heterodimeric type II phytochromes. Unexpectedly, phyC and phyE do not homodimerize and are present in seedlings only as heterodimers with phyB and phyD. Roles in light regulation of hypocotyl length, leaf area, and flowering time are demonstrated for heterodimeric phytochromes containing phyC or phyE. Heterodimers of phyC and chromophoreless phyB are inactive, indicating that phyC subunits require spectrally intact dimer partners to be active themselves. Consistent with the obligate heterodimerization of phyC and phyE, phyC is made unstable by removal of its phyB binding partner, and overexpression of phyE results in accumulation of phyE monomers. Following a pulse of red light, phyA, phyB, phyC, and phyD interact in vivo with the PHYTOCHROME INTERACTING FACTOR3 basic helix-loop-helix transcription factor, and this interaction is FR reversible. Therefore, most or all of the type I and type II phytochromes, including heterodimeric forms, appear to function through PIF-mediated pathways. These findings link an unanticipated diversity of plant R/FR photoreceptor structures to established phytochrome signaling mechanisms.
Collapse
Affiliation(s)
- Ted Clack
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | |
Collapse
|
136
|
Narikawa R, Muraki N, Shiba T, Ikeuchi M, Kurisu G. Crystallization and preliminary X-ray studies of the chromophore-binding domain of cyanobacteriochrome AnPixJ from Anabaena sp. PCC 7120. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:159-62. [PMID: 19194010 PMCID: PMC2635879 DOI: 10.1107/s1744309108044151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/29/2008] [Indexed: 05/27/2023]
Abstract
Cyanobacteriochromes form a recently defined superfamily of tetrapyrrole-based photoreceptors that are distantly related to conventional red/far-red photoreceptor phytochromes. Among these molecules, AnPixJ from Anabaena sp. PCC 7120 is a novel photoreceptor that shows reversible photoconversion between green-absorbing and red-absorbing forms, which is in contrast to the properties of conventional phytochromes. In order to better understand the structural basis of this unique photoconversion mechanism, the chromophore-binding domain of AnPixJ (AnPixJ-GAF2) was heterologously overproduced and purified, and crystallization of both forms was attempted. Blue crystals of the red-absorbing form of AnPixJ-GAF2 were successfully obtained; they belonged to space group P4(3)2(1)2 and contained one monomer per asymmetric unit. Diffraction data were collected to a resolution of 1.8 A using synchrotron-radiation beamline BL-5A at the Photon Factory.
Collapse
Affiliation(s)
- Rei Narikawa
- Department of Life Sciences, Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
137
|
Inomata K, Khawn H, Chen LY, Kinoshita H, Zienicke B, Molina I, Lamparter T. Assembly of Agrobacterium Phytochromes Agp1 and Agp2 with Doubly Locked Bilin Chromophores. Biochemistry 2009; 48:2817-27. [DOI: 10.1021/bi802334u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Katsuhiko Inomata
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Htoi Khawn
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Li-Yi Chen
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Hideki Kinoshita
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Benjamin Zienicke
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Isabel Molina
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Tilman Lamparter
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, and Universität Karlsruhe, Botanik I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
138
|
Durbeej B. On the primary event of phytochrome: quantum chemical comparison of photoreactions at C4, C10 and C15. Phys Chem Chem Phys 2009; 11:1354-61. [PMID: 19224036 DOI: 10.1039/b811813b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochromes are widespread photoreceptors responsive to red and far-red light that exist in two photochromic forms Pr (inactive) and Pfr (active). The Pr --> Pfr conversion proceeds through a series of events initiated by Z-->E photoisomerization of the tetrapyrrole chromophore, believed to occur at C15 of the methine bridge between rings C and D. Recent crystal structures show that ring D in Pr is less tightly packed by the protein than rings A, B and C, which should favor the C15 reaction over reactions at C4 (AB methine bridge) and C10 (BC). In the present work, quantum chemical methods are used to establish the intrinsic reactivity of the chromophore towards all three possible Z-->E isomerization events in the absence of steric effects and specific interactions with the protein. Using a level of theory that reproduces spectroscopic data with an accuracy of approximately 0.2 eV, it is demonstrated that isolated conditions allow the C10 photoreaction to substantially dominate. This finding suggests that the different degrees of ring-packing observed in the protein are crucial not only to facilitate a reaction at C15, but also to prevent an intrinsically more favorable reaction at C10 from taking place.
Collapse
Affiliation(s)
- Bo Durbeej
- Department of Chemistry, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy.
| |
Collapse
|
139
|
Schwinté P, Gärtner W, Sharda S, Mroginski MA, Hildebrandt P, Siebert F. The Photoreactions of Recombinant Phytochrome CphA from the CyanobacteriumCalothrixPCC7601: A Low-Temperature UV-Vis and FTIR Study. Photochem Photobiol 2009; 85:239-49. [DOI: 10.1111/j.1751-1097.2008.00426.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
140
|
Matute RA, Contreras R, Pérez-Hernández G, González L. The Chromophore Structure of the Cyanobacterial Phytochrome Cph1 As Predicted by Time-Dependent Density Functional Theory. J Phys Chem B 2008; 112:16253-6. [DOI: 10.1021/jp807471e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
141
|
Light-induced chromophore activity and signal transduction in phytochromes observed by 13C and 15N magic-angle spinning NMR. Proc Natl Acad Sci U S A 2008; 105:15229-34. [PMID: 18832155 DOI: 10.1073/pnas.0805696105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Both thermally stable states of phytochrome, Pr and Pfr, have been studied by (13)C and (15)N cross-polarization (CP) magic-angle spinning (MAS) NMR using cyanobacterial (Cph1) and plant (phyA) phytochrome sensory modules containing uniformly (13)C- and (15)N-labeled bilin chromophores. Two-dimensional homo- and heteronuclear experiments allowed most of the (13)C chemical shifts to be assigned in both states. Chemical shift differences reflect changes of the electronic structure of the cofactor at the atomic level as well as its interactions with the chromophore-binding pocket. The chromophore in cyanobacterial and plant phytochromes shows very similar features in the respective Pr and Pfr states. The data are interpreted in terms of a strengthened hydrogen bond at the ring D carbonyl. The red shift in the Pfr state is explained by the increasing length of the conjugation network beyond ring C including the entire ring D. Enhanced conjugation within the pi-system stabilizes the more tensed chromophore in the Pfr state. Concomitant changes at the ring C propionate carboxylate and the ring D carbonyl are explained by a loss of hydrogen bonding to Cph1-His-290 and transmittance of conformational changes to the ring C propionate via a water network. These and other conformational changes may lead to modified surface interactions, e.g., along the tongue region contacting the bilin chromophore.
Collapse
|
142
|
Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Proc Natl Acad Sci U S A 2008; 105:14715-20. [PMID: 18799746 DOI: 10.1073/pnas.0806718105] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 A resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an "arm" structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.
Collapse
|
143
|
The structure of a complete phytochrome sensory module in the Pr ground state. Proc Natl Acad Sci U S A 2008; 105:14709-14. [PMID: 18799745 DOI: 10.1073/pnas.0806477105] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytochromes are red/far-red photochromic biliprotein photoreceptors, which in plants regulate seed germination, stem extension, flowering time, and many other light effects. However, the structure/functional basis of the phytochrome photoswitch is still unclear. Here, we report the ground state structure of the complete sensory module of Cph1 phytochrome from the cyanobacterium Synechocystis 6803. Although the phycocyanobilin (PCB) chromophore is attached to Cys-259 as expected, paralleling the situation in plant phytochromes but contrasting to that in bacteriophytochromes, the ZZZssa conformation does not correspond to that expected from Raman spectroscopy. We show that the PHY domain, previously considered unique to phytochromes, is structurally a member of the GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) family. Indeed, the tandem-GAF dumbbell revealed for phytochrome sensory modules is remarkably similar to the regulatory domains of cyclic nucleotide (cNMP) phosphodiesterases and adenylyl cyclases. A unique feature of the phytochrome structure is a long, tongue-like protrusion from the PHY domain that seals the chromophore pocket and stabilizes the photoactivated far-red-absorbing state (Pfr). The tongue carries a conserved PRxSF motif, from which an arginine finger points into the chromophore pocket close to ring D forming a salt bridge with a conserved aspartate residue. The structure that we present provides a framework for light-driven signal transmission in phytochromes.
Collapse
|
144
|
Abstract
The phytochrome protein superfamily reveals a diversity of mechanisms of action. Proteins of the phytochrome superfamily of red/far-red light receptors have a variety of biological roles in plants, algae, bacteria and fungi and demonstrate a diversity of spectral sensitivities and output signaling mechanisms. Over the past few years the first three-dimensional structures of phytochrome light-sensing domains from bacteria have been determined.
Collapse
|
145
|
Cornilescu G, Ulijasz AT, Cornilescu CC, Markley JL, Vierstra RD. Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state. J Mol Biol 2008; 383:403-13. [PMID: 18762196 DOI: 10.1016/j.jmb.2008.08.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 01/31/2023]
Abstract
The unique photochromic absorption behavior of phytochromes (Phys) depends on numerous reversible interactions between the bilin chromophore and the associated polypeptide. To help define these dynamic interactions, we determined by NMR spectroscopy the first solution structure of the chromophore-binding cGMP phosphodiesterase/adenylcyclase/FhlA (GAF) domain from a cyanobacterial Phy assembled with phycocyanobilin (PCB). The three-dimensional NMR structure of Synechococcus OS-B' cyanobacterial Phy 1 in the red-light-absorbing state of Phy (Pr) revealed that PCB is bound to Cys138 of the GAF domain via the A-ring ethylidene side chain and is buried within the GAF domain in a ZZZsyn,syn,anti configuration. The D ring of the chromophore sits within a hydrophobic pocket and is tilted by approximately 80 degrees relative to the B/C rings by contacts with Lys52 and His169. The solution structure revealed remarkable flexibility for PCB and several adjacent amino acids, indicating that the Pr chromophore has more freedom in the binding pocket than anticipated. The propionic acid side chains of rings B and C and Arg101 and Arg133 nearby are especially mobile and can assume several distinct and energetically favorable conformations. Mutagenic studies on these arginines, which are conserved within the Phy superfamily, revealed that they have opposing roles, with Arg101 and Arg133 helping stabilize and destabilize the far-red-light-absorbing state of Phy (Pfr), respectively. Given the fact that the Synechococcus OS-B' GAF domain can, by itself, complete the Pr --> Pfr photocycle, it should now be possible to determine the solution structure of the Pfr chromophore and surrounding pocket using this Pr structure as a framework.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
146
|
Ikeuchi M, Ishizuka T. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 2008; 7:1159-67. [PMID: 18846279 DOI: 10.1039/b802660m] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new group of photoreceptors has been experimentally revealed in cyanobacteria. They are phototaxis regulator SyPixJ1, TePixJ and AnPixJ, chromatic acclimation regulator SyCcaS, circadian input kinase homolog SyCikA and many other candidates, which have been found only in cyanobacteria to date. These new photoreceptors are now proposed to be "cyanobacteriochromes". They are characterized by the presence of a chromophore-binding GAF domain that is homologous to the tetrapyrrole-binding GAF domain of the phytochrome. Here, we summarized unique features of those representatives: (1) only the GAF domain is sufficient for full photoconversion, (2) the GAF domain is homologous to but distinct from the phytochrome GAF, (3) the GAF domain binds a linear tetrapyrrole pigment such as phycoviolobilin or phycocyanobilin, (4) spectral properties are very diverse from near ultra-violet to red region. We also discussed the functionality of the other candidate GAFs, structure and evolution.
Collapse
Affiliation(s)
- Masahiko Ikeuchi
- Department of Life Sciences, Biology, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
147
|
O2- and NO-sensing mechanism through the DevSR two-component system in Mycobacterium smegmatis. J Bacteriol 2008; 190:6795-804. [PMID: 18708494 DOI: 10.1128/jb.00401-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The DevS histidine kinase of Mycobacterium smegmatis contains tandem GAF domains (GAF-A and GAF-B) in its N-terminal sensory domain. The heme iron of DevS is in the ferrous state when purified and is resistant to autooxidation from a ferrous to a ferric state in the presence of O(2). The redox property of the heme and the results of sequence comparison analysis indicate that DevS of M. smegmatis is more closely related to DosT of Mycobacterium tuberculosis than DevS of M. tuberculosis. The binding of O(2) to the deoxyferrous heme led to a decrease in the autokinase activity of DevS, whereas NO binding did not. The regulation of DevS autokinase activity in response to O(2) and NO was not observed in the DevS derivatives lacking its heme, indicating that the ligand-binding state of the heme plays an important role in the regulation of DevS kinase activity. The redox state of the quinone/quinol pool of the respiratory electron transport chain appears not to be implicated in the regulation of DevS activity. Neither cyclic GMP (cGMP) nor cAMP affected DevS autokinase activity, excluding the possibility that the cyclic nucleotides serve as the effector molecules to modulate DevS kinase activity. The three-dimensional structure of the putative GAF-B domain revealed that it has a GAF folding structure without cyclic nucleotide binding capacity.
Collapse
|
148
|
von Stetten D, Günther M, Scheerer P, Murgida DH, Mroginski MA, Krauss N, Lamparter T, Zhang J, Anstrom DM, Vierstra RD, Forest KT, Hildebrandt P. Chromophore heterogeneity and photoconversion in phytochrome crystals and solution studied by resonance Raman spectroscopy. Angew Chem Int Ed Engl 2008; 47:4753-5. [PMID: 18484576 DOI: 10.1002/anie.200705716] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David von Stetten
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Giraud E, Verméglio A. Bacteriophytochromes in anoxygenic photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2008; 97:141-153. [PMID: 18612842 DOI: 10.1007/s11120-008-9323-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Since the first discovery of a bacteriophytochrome in Rhodospirillum centenum, numerous bacteriophytochromes have been identified and characterized in other anoxygenic photosynthetic bacteria. This review is focused on the biochemical and biophysical properties of bacteriophytochromes with a special emphasis on their roles in the synthesis of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | |
Collapse
|
150
|
Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD. Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion. J Biol Chem 2008; 283:21251-66. [PMID: 18480055 PMCID: PMC3258942 DOI: 10.1074/jbc.m801592200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/30/2008] [Indexed: 11/06/2022] Open
Abstract
Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B', that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. (1)H-(15)N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters.
Collapse
Affiliation(s)
- Andrew T. Ulijasz
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Gabriel Cornilescu
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - David von Stetten
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Steve Kaminski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Maria Andrea Mroginski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Junrui Zhang
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Devaki Bhaya
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Peter Hildebrandt
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Richard D. Vierstra
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| |
Collapse
|