101
|
Jeon GS, Shim YM, Lee DY, Kim JS, Kang M, Ahn SH, Shin JY, Geum D, Hong YH, Sung JJ. Pathological Modification of TDP-43 in Amyotrophic Lateral Sclerosis with SOD1 Mutations. Mol Neurobiol 2018; 56:2007-2021. [PMID: 29982983 PMCID: PMC6394608 DOI: 10.1007/s12035-018-1218-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset, progressive neurodegenerative disorder with no known cure. Cu/Zn-superoxide dismutase (SOD1) was the first identified protein associated with familial ALS (fALS). Recently, TAR DNA-binding protein 43 (TDP-43) has been found to be a principal component of ubiquitinated cytoplasmic inclusions in neurons and glia in ALS. However, it remains unclear whether these ALS-linked proteins partly have a shared pathogenesis. Here, we determine the association between mutant SOD1 and the modification of TDP-43 and the relationship of pathologic TDP-43 to neuronal cytotoxicity in SOD1 ALS. In this work, using animal model, human tissue, and cell models, we provide the evidence that the association between the TDP-43 modification and the pathogenesis of SOD1 fALS. We demonstrated an age-dependent increase in TDP-43 C-terminal fragments and phosphorylation in motor neurons and glia of SOD1 mice and SOD1G85S ALS patient. Cytoplasmic TDP-43 was also observed in iPSC-derived motor neurons from SOD1G17S ALS patient. Moreover, we observed that mutant SOD1 interacts with TDP-43 in co-immunoprecipitation assays with G93A hSOD1-transfected cell lines. Mutant SOD1 overexpression led to an increase in TDP-43 modification in the detergent-insoluble fraction in the spinal cord of SOD1 mice and fALS patient. Additionally, we showed cellular apoptosis in response to the interaction of mutant SOD1 and fragment forms of TDP-43. These findings suggest that mutant SOD1 could affect the solubility/insolubility of TDP-43 through physical interactions and the resulting pathological modifications of TDP-43 may be involved in motor neuron death in SOD1 fALS.
Collapse
Affiliation(s)
- Gye Sun Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yu-Mi Shim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Do-Yeon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Soon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - MinJin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - So Hyun Ahn
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Dongho Geum
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Yoon Ho Hong
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, South Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
102
|
Hayden E, Chen S, Chumley A, Zhong Q, Ju S. Mating-based Overexpression Library Screening in Yeast. J Vis Exp 2018. [PMID: 30035772 DOI: 10.3791/57978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Budding yeast has been widely used as a model in studying proteins associated with human diseases. Genome-wide genetic screening is a powerful tool commonly used in yeast studies. The expression of a number of neurodegenerative disease-associated proteins in yeast causes cytotoxicity and aggregate formation, recapitulating findings seen in patients with these disorders. Here, we describe a method for screening a yeast model of the Amyotrophic Lateral Sclerosis-associated protein FUS for modifiers of its toxicity. Instead of using transformation, this new screening platform relies on the mating of yeast to introduce an arrayed library of plasmids into the yeast model. The mating method has two clear advantages: first, it is highly efficient; second, the pre-transformed arrayed library of plasmids can be stored for long-term as a glycerol stock, and quickly applied to other screens without the labor-intensive step of transformation into the yeast model each time. We demonstrate how this method can successfully be used to screen for genes that modify the toxicity of FUS.
Collapse
Affiliation(s)
- Elliott Hayden
- Department of Biological Sciences, Wright State University
| | - Shuzhen Chen
- Department of Biological Sciences, Wright State University
| | | | - Quan Zhong
- Department of Biological Sciences, Wright State University
| | - Shulin Ju
- Department of Biological Sciences, Wright State University;
| |
Collapse
|
103
|
Lindström M, Liu B. Yeast as a Model to Unravel Mechanisms Behind FUS Toxicity in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2018; 11:218. [PMID: 30002616 PMCID: PMC6031741 DOI: 10.3389/fnmol.2018.00218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma (FUS) is a multifunctional DNA/RNA-binding protein predominantly localized in the cell nucleus. However, FUS has been shown to accumulate and form aggregates in the cytoplasm when mislocalized there due to mutations. These FUS protein aggregates are known as pathological hallmarks in a subset of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) cases. In this review, we discussed recent research developments on elucidating the molecular mechanisms behind FUS protein aggregation and toxicity. We mainly focus on studies using the budding yeast (Saccharomyces cerevisiae) as a model system, especially on results acquired from yeast genome-wide screens addressing FUS aggregation and toxicity. Human homologs of the FUS toxicity suppressors, identified from these studies, indicate a strong relevance and correlation to a human disease model. By using yeast as a FUS cytotoxicity model these studies provided valuable clues on potential novel targets for therapeutic intervention in ALS.
Collapse
Affiliation(s)
- Michelle Lindström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Center for Large-scale cell-based screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
104
|
Abstract
Aging-related neurodegenerative diseases are progressive and fatal neurological diseases that are characterized by irreversible neuron loss and gliosis. With a growing population of aging individuals, there is a pressing need to better understand the basic biology underlying these diseases. Although diverse disease mechanisms have been implicated in neurodegeneration, a common theme of altered RNA processing has emerged as a unifying contributing factor to neurodegenerative disease. RNA processing includes a series of distinct processes, including RNA splicing, transport and stability, as well as the biogenesis of non-coding RNAs. Here, we highlight how some of these mechanisms are altered in neurodegenerative disease, including the mislocalization of RNA-binding proteins and their sequestration induced by microsatellite repeats, microRNA biogenesis alterations and defective tRNA biogenesis, as well as changes to long-intergenic non-coding RNAs. We also highlight potential therapeutic interventions for each of these mechanisms. Summary: In this At a Glance review, Edward Lee and co-authors provide an overview of RNA metabolism defects, including mislocalization of RNA-binding proteins and microRNA biogenesis alterations, that contribute to neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Elaine Y Liu
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Christopher P Cali
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| |
Collapse
|
105
|
Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol 2018; 122:514-525. [DOI: 10.1016/j.funbio.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
106
|
Leibiger C, Deisel J, Aufschnaiter A, Ambros S, Tereshchenko M, Verheijen BM, Büttner S, Braun RJ. TDP-43 controls lysosomal pathways thereby determining its own clearance and cytotoxicity. Hum Mol Genet 2018; 27:1593-1607. [PMID: 29474575 DOI: 10.1093/hmg/ddy066] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/17/2018] [Indexed: 11/14/2022] Open
Abstract
TDP-43 is a nuclear RNA-binding protein whose cytoplasmic accumulation is the pathological hallmark of amyotrophic lateral sclerosis (ALS). For a better understanding of this devastating disorder at the molecular level, it is important to identify cellular pathways involved in the clearance of detrimental TDP-43. Using a yeast model system, we systematically analyzed to which extent TDP-43-triggered cytotoxicity is modulated by conserved lysosomal clearance pathways. We observed that the lysosomal fusion machinery and the endolysosomal pathway, which are crucial for proper lysosomal function, were pivotal for survival of cells exposed to TDP-43. Interestingly, TDP-43 itself interfered with these critical TDP-43 clearance pathways. In contrast, autophagy played a complex role in this process. It contributed to the degradation of TDP-43 in the absence of endolysosomal pathway activity, but its induction also enhanced cell death. Thus, TDP-43 interfered with lysosomal function and its own degradation via lysosomal pathways, and triggered lethal autophagy. We propose that these effects critically contribute to cellular dysfunction in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Christine Leibiger
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Jana Deisel
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | | | - Stefanie Ambros
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Maria Tereshchenko
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands and
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Ralf J Braun
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
107
|
Chen K, Bennett SA, Rana N, Yousuf H, Said M, Taaseen S, Mendo N, Meltser SM, Torrente MP. Neurodegenerative Disease Proteinopathies Are Connected to Distinct Histone Post-translational Modification Landscapes. ACS Chem Neurosci 2018; 9:838-848. [PMID: 29243911 DOI: 10.1021/acschemneuro.7b00297] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) are devastating neurodegenerative diseases involving the progressive degeneration of neurons. No cure is available for patients diagnosed with these diseases. A prominent feature of both ALS and PD is the accumulation of protein inclusions in the cytoplasm of degenerating neurons; however, the particular proteins constituting these inclusions vary: the RNA-binding proteins TDP-43 and FUS are most notable in ALS, while α-synuclein aggregates into Lewy bodies in PD. In both diseases, genetic causes fail to explain the occurrence of a large proportion of cases, and thus, both are considered mostly sporadic. Despite mounting evidence for a possible role of epigenetics in the occurrence and progression of ALS and PD, epigenetic mechanisms in the context of these diseases remain mostly unexplored. Here we comprehensively delineate histone post-translational modification (PTM) profiles in ALS and PD yeast proteinopathy models. Remarkably, we find distinct changes in histone modification profiles for each. We detect the most striking changes in the context of FUS aggregation: changes in several histone marks support a global decrease in gene transcription. We also detect more modest changes in histone modifications in cells overexpressing TDP-43 or α-synuclein. Our results highlight a great need for the inclusion of epigenetic mechanisms in the study of neurodegeneration. We hope our work will pave the way for the discovery of more effective therapies to treat patients suffering from ALS, PD, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Karen Chen
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Seth A. Bennett
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
- Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Navin Rana
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Huda Yousuf
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Mohamed Said
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Sadiqa Taaseen
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Natalie Mendo
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Steven M. Meltser
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Mariana P. Torrente
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
108
|
TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia. Sci Rep 2018; 8:4606. [PMID: 29545601 PMCID: PMC5854632 DOI: 10.1038/s41598-018-22858-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurodegenerative disorders marked in most cases by the nuclear exclusion and cytoplasmic deposition of the RNA binding protein TDP43. We previously demonstrated that ALS-associated mutant TDP43 accumulates within the cytoplasm, and that TDP43 mislocalization predicts neurodegeneration. Here, we sought to prevent neurodegeneration in ALS/FTD models using selective inhibitor of nuclear export (SINE) compounds that target exportin-1 (XPO1). SINE compounds modestly extend cellular survival in neuronal ALS/FTD models and mitigate motor symptoms in an in vivo rat ALS model. At high doses, SINE compounds block nuclear egress of an XPO1 cargo reporter, but not at lower concentrations that were associated with neuroprotection. Neither SINE compounds nor leptomycin B, a separate XPO1 inhibitor, enhanced nuclear TDP43 levels, while depletion of XPO1 or other exportins had little effect on TDP43 localization, suggesting that no single exporter is necessary for TDP43 export. Supporting this hypothesis, we find overexpression of XPO1, XPO7 and NXF1 are each sufficient to promote nuclear TDP43 egress. Taken together, our results indicate that redundant pathways regulate TDP43 nuclear export, and that therapeutic prevention of cytoplasmic TDP43 accumulation in ALS/FTD may be enhanced by targeting several overlapping mechanisms.
Collapse
|
109
|
Abstract
The most common neurodegenerative diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, are all protein-misfolding diseases and are characterized by the presence of disease-specific protein aggregates in affected neuronal cells. Recent studies have shown that, like tau and α-synuclein, TAR-DNA binding protein of 43 kDa (TDP-43) can form aggregates in vitro in a seed-dependent, self-templating, prion-like manner. Insoluble TDP-43 prepared from the brains of patients has been classified into several strains, which can be transferred from cell to cell in vitro, suggesting the involvement of mechanisms reminiscent of those by which prions spread through the nervous system. The idea that aberrant TDP-43 aggregates propagate in a prion-like manner between cells presents the possibility of novel therapeutic strategies to block spreading of these aggregates throughout the brain.
Collapse
Affiliation(s)
- Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan 156-8506
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan 156-8506
| |
Collapse
|
110
|
Orrù S, Coni P, Floris A, Littera R, Carcassi C, Sogos V, Brancia C. Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP-43 nuclear function. Hum Mol Genet 2018; 25:4473-4483. [PMID: 28172957 DOI: 10.1093/hmg/ddw276] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 12/12/2022] Open
Abstract
TAR deoxyribonucleic acid-binding protein 43 (TDP-43) is a key protein in the pathogenesis of amyoptrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Recent studies suggest that mutations in the TDP-43 coding gene, TARDBP, as well as variations in TDP-43 protein expression levels may disrupt the dynamics of stress granules (SGs). However, it remains unclear whether the pathogenetic effect of the TDP-43 protein is exerted at the cytoplasmic level, through direct participation to SG composition, or at nuclear level, through control of proteins essential to SG assembly. To clarify this point, we investigated the dynamics of SG formation in primary skin fibroblast cultures from the patients with ALS together with the A382T mutation and the patients with ALS and healthy controls with wild-type TDP-43. Under stress conditions induced by sodium arsenite, we found that in human fibroblasts TDP-43 did not translocate to the SGs but instead contributed to the SG formation through a regulatory effect on the G3BP1 core protein. We found that the A382T mutation caused a significant reduction in the number of SGs per cell (P < 0.01) as well as the percentage of cells that form SGs (P < 0.00001). Following stress stimuli, a significant decrease of viability was observed for cells with the TDP-43 A382T mutation (P < 0.0005).
We can therefore conclude that the A382T mutation caused a reduction in the ability of cells to respond to stress through loss of TDP-43 function in SG nucleation. The pathogenetic action revealed in our study model does not seem to be mediated by changes in the localization of the TDP-43 protein.
Collapse
Affiliation(s)
- Sandro Orrù
- Medical Genetics, Department of Medical Sciences, University of Cagliari, R. Binaghi Hospital, Cagliari, Italy
| | - Paola Coni
- Paola Coni, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Andrea Floris
- Medical Genetics, Department of Medical Sciences, University of Cagliari, R. Binaghi Hospital, Cagliari, Italy
| | - Roberto Littera
- Regional Transplant Center, R. Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| | - Carlo Carcassi
- Medical Genetics, Department of Medical Sciences, University of Cagliari, R. Binaghi Hospital, Cagliari, Italy
| | - Valeria Sogos
- Paola Coni, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Carla Brancia
- Paola Coni, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
111
|
Oil Palm Phenolics Inhibit the In Vitro Aggregation of β-Amyloid Peptide into Oligomeric Complexes. Int J Alzheimers Dis 2018; 2018:7608038. [PMID: 29666700 PMCID: PMC5831689 DOI: 10.1155/2018/7608038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disease characterized by the aggregation of amyloid-β peptide (Aβ) into toxic oligomers which activate microglia and astrocytes causing acute neuroinflammation. Multiple studies show that the soluble oligomers of Aβ42 are neurotoxic and proinflammatory, whereas the monomers and insoluble fibrils are relatively nontoxic. We show that Aβ42 aggregation is inhibited in vitro by oil palm phenolics (OPP), an aqueous extract from the oil palm tree (Elaeis guineensis). The data shows that OPP inhibits stacking of β-pleated sheets, which is essential for oligomerization. We demonstrate the inhibition of Aβ42 aggregation by (1) mass spectrometry; (2) Congo Red dye binding; (3) 2D-IR spectroscopy; (4) dynamic light scattering; (5) transmission electron microscopy; and (6) transgenic yeast rescue assay. In the yeast rescue assay, OPP significantly reduces the cytotoxicity of aggregating neuropeptides in yeast genetically engineered to overexpress these peptides. The data shows that OPP inhibits (1) the aggregation of Aβ into oligomers; (2) stacking of β-pleated sheets; and (3) fibrillar growth and coalescence. These inhibitory effects prevent the formation of neurotoxic oligomers and hold potential as a means to reduce neuroinflammation and neuronal death and thereby may play some role in the prevention or treatment of Alzheimer's disease.
Collapse
|
112
|
Park SK, Arslan F, Kanneganti V, Barmada SJ, Purushothaman P, Verma SC, Liebman SW. Overexpression of a conserved HSP40 chaperone reduces toxicity of several neurodegenerative disease proteins. Prion 2018; 12:16-22. [PMID: 29308690 DOI: 10.1080/19336896.2017.1423185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
TDP-43 and FUS are DNA/RNA binding proteins associated with neuronal inclusions in amyotrophic lateral sclerosis (ALS) patients. Other neurodegenerative diseases are also characterized by neuronal protein aggregates, e.g. Huntington's disease, associated with polyglutamine (polyQ) expansions in the protein huntingtin. Here we discuss our recent paper establishing similarities between aggregates of TDP-43 that have short glutamine and asparagine (Q/N)-rich modules and are soluble in detergents, with those of polyQ and PIN4C that have large Q/N-rich domains and are detergent-insoluble. We also present new, similar data for FUS. Together, we show that like overexpression of polyQ or PIN4C, overexpression of FUS or TDP-43 causes inhibition of the ubiquitin proteasome system (UPS) and toxicity, both of which are mitigated by overexpression of the Hsp40 chaperone Sis1. Also, in all cases toxicity is enhanced by the [PIN+] prion. In addition, we show that the Sis1 mammalian homolog DNAJBI reduces toxicity arising from overexpressed FUS and TDP-43 respectively in human embryonic kidney cells and primary rodent neurons. The common properties of these proteins suggest that heterologous aggregates may enhance the toxicity of a variety of disease-related aggregating proteins, and further that chaperones and the UPS may be key therapeutic targets for diseases characterized by protein inclusions.
Collapse
Affiliation(s)
- Sei-Kyoung Park
- a Department of Pharmacology , University of Nevada , Reno , NV , USA
| | - Fatih Arslan
- a Department of Pharmacology , University of Nevada , Reno , NV , USA
| | - Vydehi Kanneganti
- a Department of Pharmacology , University of Nevada , Reno , NV , USA
| | - Sami J Barmada
- b Department of Neurology , University of Michigan , Ann Arbor , Michigan , USA
| | | | - Subhash Chandra Verma
- c Department of Molecular Microbiology and Immunology , University of Nevada , Reno , NV , USA
| | - Susan W Liebman
- a Department of Pharmacology , University of Nevada , Reno , NV , USA
| |
Collapse
|
113
|
Prakash A, Kumar V, Meena NK, Hassan MI, Lynn AM. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). J Biomol Struct Dyn 2018; 37:178-194. [DOI: 10.1080/07391102.2017.1422026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amresh Prakash
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naveen Kumar Meena
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
114
|
Longhena F, Spano P, Bellucci A. Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Handb Exp Pharmacol 2018; 245:85-110. [PMID: 28965171 DOI: 10.1007/164_2017_60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of protein aggregates and inclusions in the brain and spinal cord is a common neuropathological feature of a number of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and many others. These are commonly referred as neurodegenerative proteinopathies or protein-misfolding diseases. The main characteristic of protein aggregates in these disorders is the fact that they are enriched in amyloid fibrils. Since protein aggregation is considered to play a central role for the onset of neurodegenerative proteinopathies, research is ongoing to develop strategies aimed at preventing or removing protein aggregation in the brain of affected patients. Numerous studies have shown that small molecule-based approaches may be potentially the most promising for halting protein aggregation in neurodegenerative diseases. Indeed, several of these compounds have been found to interact with intrinsically disordered proteins and promote their clearing in experimental models. This notwithstanding, at present small molecule inhibitors still awaits achievements for clinical translation. Hopefully, if we determine whether the formation of insoluble inclusions is effectively neurotoxic and find a valid biomarker to assess their protein aggregation-inhibitory activity in the human central nervous system, the use of small molecule inhibitors will be considered as a cure for neurodegenerative protein-misfolding diseases.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - PierFranco Spano
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy.
- Laboratory of Personalized and Preventive Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
115
|
Shenouda M, Zhang AB, Weichert A, Robertson J. Mechanisms Associated with TDP-43 Neurotoxicity in ALS/FTLD. ADVANCES IN NEUROBIOLOGY 2018; 20:239-263. [PMID: 29916022 DOI: 10.1007/978-3-319-89689-2_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of TDP-43 as a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) was first made in 2006. Prior to 2006 there were only 11 publications related to TDP-43, now there are over 2000, indicating the importance of TDP-43 to unraveling the complex molecular mechanisms that underpin the pathogenesis of ALS/FTLD. Subsequent to this discovery, TDP-43 pathology was also found in other neurodegenerative diseases, including Alzheimer's disease, the significance of which is still in the early stages of exploration. TDP-43 is a predominantly nuclear DNA/RNA-binding protein, one of a number of RNA-binding proteins that are now known to be linked with ALS/FTLD, including Fused in Sarcoma (FUS), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1). However, what sets TDP-43 apart is the vast number of cases in which TDP-43 pathology is present, providing a point of convergence, the understanding of which could lead to broadly applicable therapeutics. Here we will focus on TDP-43 in ALS/FTLD, its nuclear and cytoplasmic functions, and consequences should these functions go awry.
Collapse
Affiliation(s)
- Marc Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Ashley B Zhang
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Anna Weichert
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
116
|
Gregory JM, Whiten DR, Brown RA, Barros TP, Kumita JR, Yerbury JJ, Satapathy S, McDade K, Smith C, Luheshi LM, Dobson CM, Wilson MR. Clusterin protects neurons against intracellular proteotoxicity. Acta Neuropathol Commun 2017; 5:81. [PMID: 29115989 PMCID: PMC5678579 DOI: 10.1186/s40478-017-0481-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation and cytotoxicity, characteristics that are strongly implicated in a range of neurodegenerative diseases. We used the amyotrophic lateral sclerosis-associated protein TDP-43 as a primary model to investigate the effects of clusterin on protein aggregation and neurotoxicity in complementary in vitro, neuronal cell and Drosophila systems. We have shown that clusterin directly interacts with TDP-43 in vitro and potently inhibits its aggregation, and observed that in ER stressed neuronal cells, clusterin co-localized with TDP-43 and specifically reduced the numbers of cytoplasmic inclusions. We further showed that the expression of TDP-43 in transgenic Drosophila neurons induced ER stress and that co-expression of clusterin resulted in a dramatic clearance of mislocalized TDP-43 from motor neuron axons, partially rescued locomotor activity and significantly extended lifespan. We also showed that in Drosophila photoreceptor cells, clusterin co-expression gave ER stress-dependent protection against proteotoxicity arising from both Huntingtin-Q128 and mutant (R406W) human tau. We therefore conclude that increased expression of clusterin can provide an important defense against intracellular proteotoxicity under conditions that mimic specific features of neurodegenerative disease.
Collapse
Affiliation(s)
- Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, 49 Little France Crescent-Chancellor, Edinburgh, EH16 4SB, UK
| | - Daniel R Whiten
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rebecca A Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Teresa P Barros
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sandeep Satapathy
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Karina McDade
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Leila M Luheshi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
117
|
Polymenidou M, Cleveland DW. Biological Spectrum of Amyotrophic Lateral Sclerosis Prions. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024133. [PMID: 28062558 DOI: 10.1101/cshperspect.a024133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) are two neurodegenerative diseases with distinct clinical features but common genetic causes and neuropathological signatures. Ten years after the RNA-binding protein TDP-43 was discovered as the main protein in the cytoplasmic inclusions that characterize ALS and FTLD, their pathogenic mechanisms have never seemed more complex. Indeed, discoveries of the past decade have revolutionized our understanding of these diseases, highlighting their genetic heterogeneity and the involvement of protein-RNA assemblies in their pathogenesis. Importantly, these assemblies serve as the foci of protein misfolding and mature into insoluble structures, which further recruit native proteins, turning them into misfolded forms. This self-perpetuating mechanism is a twisted version of classical prion replication that leads to amplification of pathological protein complexes that spread throughout the neuraxis, offering a pathogenic principle that underlies the rapid disease progression that characterizes ALS and FTLD.
Collapse
Affiliation(s)
- Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0670
| |
Collapse
|
118
|
Yamanaka K, Komine O. The multi-dimensional roles of astrocytes in ALS. Neurosci Res 2017; 126:31-38. [PMID: 29054467 DOI: 10.1016/j.neures.2017.09.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Despite significant progress in understanding the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, the precise and comprehensive pathomechanisms remain largely unknown. In addition to motor neuron involvement, recent studies using cellular and animal models of ALS indicate that there is a complex interplay between motor neurons and neighboring non-neuronal cells, such as astrocytes, in non-cell autonomous neurodegeneration. Astrocytes are key homeostatic cells that play numerous supportive roles in maintaining the brain environment. In neurodegenerative diseases such as ALS, astrocytes change their shape and molecular expression patterns and are referred to as reactive or activated astrocytes. Reactive astrocytes in ALS lose their beneficial functions and gain detrimental roles. In addition, interactions between motor neurons and astrocytes are impaired in ALS. In this review, we summarize growing evidence that astrocytes are critically involved in the survival and demise of motor neurons through several key molecules and cascades in astrocytes in both sporadic and inherited ALS. These observations strongly suggest that astrocytes have multi-dimensional roles in disease and are a viable therapeutic target for ALS.
Collapse
Affiliation(s)
- Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
119
|
Tardiff DF, Brown LE, Yan X, Trilles R, Jui NT, Barrasa MI, Caldwell KA, Caldwell GA, Schaus SE, Lindquist S. Dihydropyrimidine-Thiones and Clioquinol Synergize To Target β-Amyloid Cellular Pathologies through a Metal-Dependent Mechanism. ACS Chem Neurosci 2017; 8:2039-2055. [PMID: 28628299 PMCID: PMC5705239 DOI: 10.1021/acschemneuro.7b00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by β-amyloid (Aβ), the peptide implicated in Alzheimer's disease. Rescue of Aβ toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aβ toxicity by reducing Aβ levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aβ in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aβ peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aβ toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.
Collapse
Affiliation(s)
- Daniel F. Tardiff
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Richard Trilles
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Nathan T. Jui
- Department of Chemistry, MIT, Cambridge, Massachusetts 02139, United States
| | - M. Inmaculada Barrasa
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Scott E. Schaus
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department of Biology, MIT, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
120
|
Biology and Pathobiology of TDP-43 and Emergent Therapeutic Strategies. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024554. [PMID: 27920024 DOI: 10.1101/cshperspect.a024554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytoplasmic TDP-43 mislocalization and aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is an RNA-binding protein (RBP) with a prion-like domain (PrLD) that promotes TDP-43 misfolding. PrLDs possess compositional similarity to canonical prion domains of various yeast proteins, including Sup35. Strikingly, disease-causing TDP-43 mutations reside almost exclusively in the PrLD and can enhance TDP-43 misfolding and toxicity. Another ∼70 human RBPs harbor PrLDs, including FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2, which have surfaced in the etiology of neurodegenerative diseases. Importantly, PrLDs enable RBP function and mediate phase transitions that partition functional ribonucleoprotein compartments. This PrLD activity, however, renders RBPs prone to populating deleterious oligomers or self-templating fibrils that might spread disease, and disease-linked PrLD mutations can exacerbate this risk. Several strategies have emerged to counter TDP-43 proteinopathies, including engineering enhanced protein disaggregases based on Hsp104.
Collapse
|
121
|
Morgan BR, Zitzewitz JA, Massi F. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43. Biophys J 2017; 113:540-549. [PMID: 28793209 DOI: 10.1016/j.bpj.2017.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult degenerative motor neuron disease. Experimental evidence indicates a direct role of transactive-response DNA-binding protein 43 (TDP-43) in the pathology of ALS and other neurodegenerative diseases. TDP-43 has been identified as a major component of cytoplasmic inclusions in patients with sporadic ALS; however, the molecular basis of the disease mechanism is not yet fully understood. Fragmentation within the second RNA recognition motif (RRM2) of TDP-43 has been observed in patient tissues and may play a role in the formation of aggregates in disease. To determine the structural and dynamical changes resulting from the truncation that could lead to aggregation and toxicity, we performed molecular dynamics simulations of the full-length RRM2 domain (the stability core of TDP-43) and of a truncated variant (where residues 189-207 are deleted to mimic a site of cleavage within RRM2 found in ALS patients). Our simulations show heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain compared to the full-length domain, consistent with previous experimental results. The decreased stability and structural reorganization in the truncated RRM2 result in a higher probability of protein-protein interactions through altered electrostatic surface charges and increased accessibility of hydrophobic residues (including the nuclear export sequence), providing a rationale for the increased cytoplasmic aggregation of RRM2 fragments seen in sporadic ALS patients.
Collapse
Affiliation(s)
- Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts.
| |
Collapse
|
122
|
Shorter J. Engineering therapeutic protein disaggregases. Mol Biol Cell 2017; 27:1556-60. [PMID: 27255695 PMCID: PMC4865313 DOI: 10.1091/mbc.e15-10-0693] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 11/11/2022] Open
Abstract
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
123
|
Song GJ, Jeon H, Seo M, Jo M, Suk K. Interaction between optineurin and Rab1a regulates autophagosome formation in neuroblastoma cells. J Neurosci Res 2017; 96:407-415. [DOI: 10.1002/jnr.24143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Gyun Jee Song
- Department of Pharmacology; Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Hyejin Jeon
- Department of Pharmacology; Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Minchul Seo
- Department of Pharmacology; Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Myungjin Jo
- Department of Pharmacology; Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology; Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine; Daegu Republic of Korea
| |
Collapse
|
124
|
Wang P, Wander CM, Yuan CX, Bereman MS, Cohen TJ. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat Commun 2017; 8:82. [PMID: 28724966 PMCID: PMC5517419 DOI: 10.1038/s41467-017-00088-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
TDP-43 pathology marks a spectrum of multisystem proteinopathies including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and sporadic inclusion body myositis. Surprisingly, it has been challenging to recapitulate this pathology, highlighting an incomplete understanding of TDP-43 regulatory mechanisms. Here we provide evidence supporting TDP-43 acetylation as a trigger for disease pathology. Using cultured cells and mouse skeletal muscle, we show that TDP-43 acetylation-mimics promote TDP-43 phosphorylation and ubiquitination, perturb mitochondria, and initiate degenerative inflammatory responses that resemble sporadic inclusion body myositis pathology. Analysis of functionally linked amyotrophic lateral sclerosis proteins revealed recruitment of p62, ubiquilin-2, and optineurin to TDP-43 aggregates. We demonstrate that TDP-43 acetylation-mimic pathology is potently suppressed by an HSF1-dependent mechanism that disaggregates TDP-43. Our study illustrates bidirectional TDP-43 processing in which TDP-43 aggregation is targeted by a coordinated chaperone response. Thus, activation or restoration of refolding mechanisms may alleviate TDP-43 aggregation in tissues that are uniquely susceptible to TDP-43 proteinopathies.TDP-43 aggregation is linked to various diseases including amyotrophic lateral sclerosis. Here the authors show that acetylation of the protein triggers TDP-43 pathology in cultured cells and mouse skeletal muscle, which can be cleared through an HSF1-dependent chaperone mechanism that disaggregates the protein.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Connor M Wander
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Michael S Bereman
- Department of Biological Sciences and Department of Chemistry, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
125
|
Heyburn L, Moussa CEH. TDP-43 in the spectrum of MND-FTLD pathologies. Mol Cell Neurosci 2017; 83:46-54. [PMID: 28687523 DOI: 10.1016/j.mcn.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
The relationship between RNA-binding proteins, particularly TAR DNA binding protein 43 (TDP-43), and neurodegeneration is an important area of research. TDP-43 is involved in so many cellular processes that perturbation of protein homeostasis can lead to countless downstream effects. Understanding what leads to this disease-related protein imbalance and the resulting cellular and molecular effects will help to develop targets for disease intervention, whether it be prevention of protein accumulation, or addressing a secondary effect of protein accumulation. Here we review the current literature of TDP-43 and TDP-43 pathologies, the effects of TDP-43 overexpression and disruption of synaptic proteins through its binding of messenger RNA, leading to synaptic dysfunction. This review highlights some of the still-limited knowledge of the protein TDP-43 and how it can contribute to disease.
Collapse
Affiliation(s)
- Lanier Heyburn
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C. 20007, USA; Department of Pathology, Georgetown University Medical Center, Washington D.C., USA 20007.
| | - Charbel E-H Moussa
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C. 20007, USA
| |
Collapse
|
126
|
Jo M, Chung AY, Yachie N, Seo M, Jeon H, Nam Y, Seo Y, Kim E, Zhong Q, Vidal M, Park HC, Roth FP, Suk K. Yeast genetic interaction screen of human genes associated with amyotrophic lateral sclerosis: identification of MAP2K5 kinase as a potential drug target. Genome Res 2017; 27:1487-1500. [PMID: 28596290 PMCID: PMC5580709 DOI: 10.1101/gr.211649.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
To understand disease mechanisms, a large-scale analysis of human–yeast genetic interactions was performed. Of 1305 human disease genes assayed, 20 genes exhibited strong toxicity in yeast. Human–yeast genetic interactions were identified by en masse transformation of the human disease genes into a pool of 4653 homozygous diploid yeast deletion mutants with unique barcode sequences, followed by multiplexed barcode sequencing to identify yeast toxicity modifiers. Subsequent network analyses focusing on amyotrophic lateral sclerosis (ALS)-associated genes, such as optineurin (OPTN) and angiogenin (ANG), showed that the human orthologs of the yeast toxicity modifiers of these ALS genes are enriched for several biological processes, such as cell death, lipid metabolism, and molecular transport. When yeast genetic interaction partners held in common between human OPTN and ANG were validated in mammalian cells and zebrafish, MAP2K5 kinase emerged as a potential drug target for ALS therapy. The toxicity modifiers identified in this study may deepen our understanding of the pathogenic mechanisms of ALS and other devastating diseases.
Collapse
Affiliation(s)
- Myungjin Jo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - Ah Young Chung
- Department of Biomedical Sciences, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, 425-707, Korea
| | - Nozomu Yachie
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Minchul Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - Hyejin Jeon
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - Youngpyo Nam
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - Yeojin Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, 425-707, Korea
| | - Quan Zhong
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435, USA
| | - Marc Vidal
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435, USA
| | - Hae Chul Park
- Department of Biomedical Sciences, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, 425-707, Korea
| | - Frederick P Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada.,Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| |
Collapse
|
127
|
Budini M, Buratti E, Morselli E, Criollo A. Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72. Front Mol Neurosci 2017; 10:170. [PMID: 28611593 PMCID: PMC5447761 DOI: 10.3389/fnmol.2017.00170] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic mechanism where intracellular material is degraded by vesicular structures called autophagolysosomes. Autophagy is necessary to maintain the normal function of the central nervous system (CNS), avoiding the accumulation of misfolded and aggregated proteins. Consistently, impaired autophagy has been associated with the pathogenesis of various neurodegenerative diseases. The proteins TAR DNA-binding protein-43 (TDP-43), which regulates RNA processing at different levels, and chromosome 9 open reading frame 72 (C9orf72), probably involved in membrane trafficking, are crucial in the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Additionally, recent studies have identified a role for these proteins in the control of autophagy. In this manuscript, we review what is known regarding the autophagic mechanism and discuss the involvement of TDP-43 and C9orf72 in autophagy and their impact on neurodegenerative diseases.
Collapse
Affiliation(s)
- Mauricio Budini
- Dentistry Faculty, Institute in Dentistry Sciences, University of ChileSantiago, Chile
| | - Emanuele Buratti
- International Centre for Genetic Engineering and BiotechnologyTrieste, Italy
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Alfredo Criollo
- Dentistry Faculty, Institute in Dentistry Sciences, University of ChileSantiago, Chile.,Advanced Center for Chronic DiseasesSantiago, Chile
| |
Collapse
|
128
|
Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 2017; 13:e1006805. [PMID: 28531192 PMCID: PMC5460882 DOI: 10.1371/journal.pgen.1006805] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/06/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. Many neurodegenerative diseases are associated with aggregation of specific proteins. Thus we are interested in factors that influence the aggregation and how the aggregated proteins are associated with pathology. Here, we study a protein called TDP-43 that is frequently aggregated in the neurons of patients with amyotrophic lateral sclerosis (ALS). TDP-43 aggregates and is toxic when expressed in yeast, providing a useful model for ALS. Remarkably, a protein that modified TDP-43 toxicity in yeast successfully predicted a new ALS susceptibility gene in humans. We now report a new modifier of TDP-43 toxicity, Sis1. We show that expression of TDP-43 in yeast inhibits degradation of damaged protein, while overexpression of Sis1 restores degradation. Thus suggests a link between protein degradation and TDP-43 toxicity. Furthermore we show that a mammalian protein similar to Sis1 reduces TDP-43 toxicity in primary rodent neurons. This identifies the mammalian Sis1-like gene as a new ALS therapeutic target and possible susceptibility gene.
Collapse
|
129
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|
130
|
Liu G, Lanham C, Buchan JR, Kaplan ME. High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots. PLoS One 2017; 12:e0174128. [PMID: 28319150 PMCID: PMC5358765 DOI: 10.1371/journal.pone.0174128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Abstract
Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e.g., gene mutation, deletion, epitope tagging) is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Molecular and Cellular Biology; University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (GL); (JRB); (MEK)
| | - Clayton Lanham
- Department of Molecular and Cellular Biology; University of Arizona, Tucson, Arizona, United States of America
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology; University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (GL); (JRB); (MEK)
| | - Matthew E. Kaplan
- Functional Genomics Core facility, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (GL); (JRB); (MEK)
| |
Collapse
|
131
|
Jackrel ME, Shorter J. Protein-Remodeling Factors As Potential Therapeutics for Neurodegenerative Disease. Front Neurosci 2017; 11:99. [PMID: 28293166 PMCID: PMC5328956 DOI: 10.3389/fnins.2017.00099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding is implicated in numerous neurodegenerative disorders including amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington's disease. A unifying feature of patients with these disorders is the accumulation of deposits comprised of misfolded protein. Aberrant protein folding can cause toxicity through a loss or gain of protein function, or both. An intriguing therapeutic approach to counter these disorders is the application of protein-remodeling factors to resolve these misfolded conformers and return the proteins to their native fold and function. Here, we describe the application of protein-remodeling factors to alleviate protein misfolding in neurodegenerative disease. We focus on Hsp104, Hsp110/Hsp70/Hsp40, NMNAT, and HtrA1, which can prevent and reverse protein aggregation. While many of these protein-remodeling systems are highly promising, their activity can be limited. Thus, engineering protein-remodeling factors to enhance their activity could be therapeutically valuable. Indeed, engineered Hsp104 variants suppress neurodegeneration in animal models, which opens the way to novel therapeutics and mechanistic probes to help understand neurodegenerative disease.
Collapse
Affiliation(s)
- Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
132
|
Wei Y, Lim L, Wang L, Song J. ALS-causing cleavages of TDP-43 abolish its RRM2 structure and unlock CTD for enhanced aggregation and toxicity. Biochem Biophys Res Commun 2017; 485:826-831. [PMID: 28257838 DOI: 10.1016/j.bbrc.2017.02.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Pathological TDP-43 is cleaved into various fragments. Two major groups of ∼35 and ∼25 kDa have enhanced aggregation and cytotoxicity but the underlying mechanisms remain elusive. While the ∼35-kDa fragments contain entire RRM1, RRM2 and C-terminal domain (CTD) with a middle hydrophobic segment flanked by two prion-like regions; the ∼25-kDa one cleaved at Arg208 only consists of the truncated RRM2 and CTD. Remarkably, the 25-kDa fragment was characterized to induce cell death by gain of cytotoxicity and recapitulate pathological features of TDP-43 proteinopathies. Here by NMR spectroscopy we successfully characterized residue-specific conformations and inter-domain interactions of several fragments and the results show that: 1) ALS-causing truncation at Arg208 completely eliminates the intrinsic ability of RRM2 to fold, and consequently the truncated RRM2 becomes highly disordered and prone to aggregation. 2) By disrupting inter-domain interactions upon deleting the N-terminal ubiquitin-like fold in TDP-43 (102-414), the extreme C-terminal prion-like region of CTD is released, while in TDP-43 (208-414), almost the whole CTD is unlocked. As CTD itself is prone to aggregation and highly toxic, our study suggests that at least two mechanisms, namely to abolish RRM2 structure and to release CTD, may account for enhanced aggregation and toxicity of pathologically cleaved TDP-43.
Collapse
Affiliation(s)
- Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Lu Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jianxing Song
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
133
|
Wobst HJ, Wesolowski SS, Chadchankar J, Delsing L, Jacobsen S, Mukherjee J, Deeb TZ, Dunlop J, Brandon NJ, Moss SJ. Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro. Front Mol Neurosci 2017; 10:46. [PMID: 28286471 PMCID: PMC5323424 DOI: 10.3389/fnmol.2017.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the gene TARDBP, which encodes TAR DNA-binding protein 43 (TDP-43), are a rare cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While the majority of mutations are found in the C-terminal glycine-rich domain, an alanine to valine amino acid change at position 90 (A90V) in the bipartite nuclear localization signal (NLS) of TDP-43 has been described. This sequence variant has previously been shown to cause cytoplasmic mislocalization of TDP-43 and decrease protein solubility, leading to the formation of insoluble aggregates. Since the A90V mutation has been described both in patients as well as healthy controls, its pathogenic potential in ALS and FTD remains unclear. Here we compare properties of overexpressed A90V to the highly pathogenic M337V mutation. Though both mutations drive mislocalization of the protein to the cytoplasm to the same extent, M337V produces more significant damage in terms of protein solubility, levels of pathogenic phosphorylation, and formation of C-terminal truncated protein species. Furthermore, the M337V, but not the A90V mutant, leads to a downregulation of histone deacetylase 6 and Ras GTPase-activating protein-binding protein. We conclude that in the absence of another genetic or environmental ‘hit’ the A90V variant is not sufficient to cause the deleterious phenotypes associated with ALS and FTD, despite prominent cytoplasmic protein relocalization of TDP-43.
Collapse
Affiliation(s)
- Heike J Wobst
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Steven S Wesolowski
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Jayashree Chadchankar
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Louise Delsing
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA; IMED Biotech Unit, AstraZeneca Discovery ScienceMölndal, Sweden
| | - Steven Jacobsen
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Jayanta Mukherjee
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Tarek Z Deeb
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - John Dunlop
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Nicholas J Brandon
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA; Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA
| |
Collapse
|
134
|
Prasad A, Raju G, Sivalingam V, Girdhar A, Verma M, Vats A, Taneja V, Prabusankar G, Patel BK. An acridine derivative, [4,5-bis{(N-carboxy methyl imidazolium)methyl}acridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models. Sci Rep 2016; 6:39490. [PMID: 28000730 PMCID: PMC5175139 DOI: 10.1038/srep39490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with aggregation of TAR DNA-binding protein-43 (TDP-43) in neuronal cells and manifests as motor neuron dysfunction & muscle atrophy. The carboxyl-terminal prion-like domain of TDP-43 can aggregate in vitro into toxic β-sheet rich amyloid-like structures. So far, treatment options for ALS are very limited and Riluzole, which targets glutamate receptors, is the only but highly ineffective drug. Therefore, great interest exists in developing molecules for ALS treatment. Here, we have examined certain derivatives of acridine containing same side chains at position 4 & 5, for inhibitory potential against TDP-43 aggregation. Among several acridine derivatives examined, AIM4, which contains polar carboxyl groups in the side arms, significantly reduces TDP-43-YFP aggregation in the powerful yeast model cell and also abolishes in vitro amyloid-like aggregation of carboxyl terminal domain of TDP-43, as observed by AFM imaging. Thus, AIM4 can be a lead molecule potentiating further therapeutic research for ALS.
Collapse
Affiliation(s)
- Archana Prasad
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak Dist, Telangana, 502285, India
| | - Gembali Raju
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak Dist, Telangana, 502285, India
| | - Vishwanath Sivalingam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak Dist, Telangana, 502285, India
| | - Amandeep Girdhar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak Dist, Telangana, 502285, India
| | - Meenakshi Verma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics &Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Abhishek Vats
- Department of Research, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110060, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110060, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak Dist, Telangana, 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak Dist, Telangana, 502285, India
| |
Collapse
|
135
|
Mompeán M, Baralle M, Buratti E, Laurents DV. An Amyloid-Like Pathological Conformation of TDP-43 Is Stabilized by Hypercooperative Hydrogen Bonds. Front Mol Neurosci 2016; 9:125. [PMID: 27909398 PMCID: PMC5112254 DOI: 10.3389/fnmol.2016.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
TDP-43 is an essential RNA-binding protein forming aggregates in almost all cases of sporadic amyotrophic lateral sclerosis (ALS) and many cases of frontotemporal lobar dementia (FTLD) and other neurodegenerative diseases. TDP-43 consists of a folded N-terminal domain with a singular structure, two RRM RNA-binding domains, and a long disordered C-terminal region which plays roles in functional RNA regulatory assemblies as well as pernicious aggregation. Evidence from pathological mutations and seeding experiments strongly suggest that TDP-43 aggregates are pathologically relevant through toxic gain-of-harmful-function and/or harmful loss-of-native-function mechanisms. Recent, but not early, microscopy studies and the ability of TDP-43 aggregates to resist harsh treatment and to seed new pathological aggregates in vitro and in cells strongly suggest that TDP-43 aggregates have a self-templating, amyloid-like structure. Based on the importance of the Gln/Asn-rich 341–367 residue segment for efficient aggregation of endogenous TDP-43 when presented as a 12X-repeat and extensive spectroscopic and computational experiments, we recently proposed that this segment adopts a beta-hairpin structure that assembles in a parallel with a beta-turn configuration to form an amyloid-like structure. Here, we propose that this conformer is stabilized by an especially strong class of hypercooperative hydrogen bonding unique to Gln and Asn sidechains. The clinical existence of this conformer is supported by very recent LC-MS/MS characterization of TDP-43 from ex vivo aggregates, which show that residues 341–367 were protected in vivo from Ser phosphorylation, Gln/Asn deamidation and Met oxidation. Its distinct pattern of SDS-PAGE bands allows us to link this conformer to the exceptionally stable seed of the Type A TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Trieste, Italy
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| |
Collapse
|
136
|
Jiang Y, Di Gregorio SE, Duennwald ML, Lajoie P. Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions. Traffic 2016; 18:58-70. [PMID: 27734565 DOI: 10.1111/tra.12453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022]
Abstract
The palette of fluorescent proteins (FPs) available for live-cell imaging contains proteins that strongly differ in their biophysical properties. FPs cannot be assumed to be equivalent and in certain cases could significantly perturb the behavior of fluorescent reporters. We employed Saccharomyces cerevisiae to comprehensively study the impact of FPs on the toxicity of polyglutamine (polyQ) expansion proteins associated with Huntington's disease. The toxicity of polyQ fusion constructs is highly dependent on the sequences flanking the polyQ repeats. Thus, they represent a powerful tool to study the impact of fluorescent fusion partners. We observed significant differences on polyQ aggregation and toxicity between commonly used FPs. We generated a novel series of vectors with latest yeast-optimized FPs for investigation of Htt toxicity, including a newly optimized blue FP for expression in yeast. Our study highlights the importance of carefully choosing the optimal FPs when designing tagging strategies.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Sonja E Di Gregorio
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada.,Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
137
|
Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 2016; 18:3-34. [PMID: 27804052 DOI: 10.1007/s10522-016-9666-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.
Collapse
|
138
|
MacLea KS. What Makes a Prion: Infectious Proteins From Animals to Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:227-276. [PMID: 28109329 DOI: 10.1016/bs.ircmb.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While philosophers in ancient times had many ideas for the cause of contagion, the modern study of infective agents began with Fracastoro's 1546 proposal that invisible "spores" spread infectious disease. However, firm categorization of the pathogens of the natural world would need to await a mature germ theory that would not arise for 300 years. In the 19th century, the earliest pathogens described were bacteria and other cellular microbes. By the close of that century, the work of Ivanovsky and Beijerinck introduced the concept of a virus, an infective particle smaller than any known cell. Extending into the early-mid-20th century there was an explosive growth in pathogenic microbiology, with a cellular or viral cause identified for nearly every transmissible disease. A few occult pathogens remained to be discovered, including the infectious proteins (prions) proposed by Prusiner in 1982. This review discusses the prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-based prions. I discuss the essential biochemical properties of these agents and the application of this knowledge to diseases of protein misfolding and aggregation, as well as the utility of yeast as a model organism to study prion and amyloid proteins that affect human and animal health. Further, I summarize the ideas emerging out of these studies that the prion concept may go beyond proteinaceous infectious particles and that prions may be a subset of proteins having general nucleating or seeding functions involved in noninfectious as well as infectious pathogenic protein aggregation.
Collapse
Affiliation(s)
- K S MacLea
- University of New Hampshire, Manchester, NH, United States.
| |
Collapse
|
139
|
Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y, Kawai K, Takagi S, Yoshida M, Katsuno M, Sobue G, Julien JP. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 2016; 139:3187-3201. [PMID: 27679482 DOI: 10.1093/brain/aww237] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/23/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic TDP-43 aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Here we investigated the role of exosomes in the secretion and propagation of TDP-43 aggregates. TDP-43 was detected in secreted exosomes from Neuro2a cells and primary neurons but not from astrocytes or microglia. Evidence is presented that protein aggregation and autophagy inhibition are factors that promote exosomal secretion of TDP-43. We also report that levels of exosomal TDP-43 full length and C-terminal fragment species are upregulated in human amyotrophic lateral sclerosis brains. Exposure of Neuro2a cells to exosomes from amyotrophic lateral sclerosis brain, but not from control brain, caused cytoplasmic redistribution of TDP-43, suggesting that secreted exosomes might contribute to propagation of TDP-43 proteinopathy. Yet, inhibition of exosome secretion by inactivation of neutral sphingomyelinase 2 with GW4869 or by silencing RAB27A provoked formation of TDP-43 aggregates in Neuro2a cells. Moreover, administration of GW4869 exacerbated the disease phenotypes of transgenic mice expressing human TDP-43A315T mutant. Thus, even though results suggest that exosomes containing pathological TDP-43 may play a key role in the propagation of TDP-43 proteinopathy, a therapeutic strategy for amyotrophic lateral sclerosis based on inhibition of exosome production would seem inappropriate, as in vivo data suggest that exosome secretion plays an overall beneficial role in neuronal clearance of pathological TDP-43.
Collapse
Affiliation(s)
- Yohei Iguchi
- 1 Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Qc, Canada
- 2 Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Qc, Canada
| | - Lara Eid
- 1 Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Qc, Canada
- 2 Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Qc, Canada
| | - Martin Parent
- 1 Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Qc, Canada
- 2 Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Qc, Canada
| | - Geneviève Soucy
- 1 Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Qc, Canada
- 2 Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Qc, Canada
| | - Christine Bareil
- 1 Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Qc, Canada
- 2 Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Qc, Canada
| | - Yuichi Riku
- 3 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kaori Kawai
- 3 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinnosuke Takagi
- 3 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mari Yoshida
- 4 Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Masahisa Katsuno
- 3 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- 3 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jean-Pierre Julien
- 1 Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Qc, Canada
- 2 Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Qc, Canada
| |
Collapse
|
140
|
Abstract
Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.
Collapse
Affiliation(s)
- Celine K Vuong
- Molecular Biology Interdepartmental Graduate Program, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California at Riverside, Riverside, California 92521, USA
| |
Collapse
|
141
|
Verbandt S, Henriques ST, Spincemaille P, Harvey PJ, Chandhok G, Sauer V, De Coninck B, Cassiman D, Craik DJ, Cammue BPA, De Cremer K, Thevissen K. Identification of survival-promoting OSIP108 peptide variants and their internalization in human cells. Mech Ageing Dev 2016; 161:247-254. [PMID: 27491841 DOI: 10.1016/j.mad.2016.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/30/2016] [Indexed: 11/19/2022]
Abstract
The plant-derived decapeptide OSIP108 increases tolerance of yeast and human cells to apoptosis-inducing agents, such as copper and cisplatin. We performed a whole amino acid scan of OSIP108 and conducted structure-activity relationship studies on the induction of cisplatin tolerance (CT) in yeast. The use of cisplatin as apoptosis-inducing trigger in this study should be considered as a tool to better understand the survival-promoting nature of OSIP108 and not for purposes related to anti-cancer treatment. We found that charged residues (Arg, His, Lys, Glu or Asp) or a Pro on positions 4-7 improved OSIP108 activity by 10% or more. The variant OSIP108[G7P] induced the most pronounced tolerance to toxic concentrations of copper and cisplatin in yeast and/or HepG2 cells. Both OSIP108 and OSIP108[G7P] were shown to internalize equally into HeLa cells, but at a higher rate than the inactive OSIP108[E10A], suggesting that the peptides can internalize into cells and that OSIP108 activity is dependent on subsequent intracellular interactions. In conclusion, our studies demonstrated that tolerance/survival-promoting properties of OSIP108 can be significantly improved by single amino acid substitutions, and that these properties are dependent on (an) intracellular target(s), yet to be determined.
Collapse
Affiliation(s)
- Sara Verbandt
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | | | - Pieter Spincemaille
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Laboratory Medicine, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Peta J Harvey
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Vanessa Sauer
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
142
|
Crippa V, Cicardi ME, Ramesh N, Seguin SJ, Ganassi M, Bigi I, Diacci C, Zelotti E, Baratashvili M, Gregory JM, Dobson CM, Cereda C, Pandey UB, Poletti A, Carra S. The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity. Hum Mol Genet 2016; 25:3908-3924. [PMID: 27466192 PMCID: PMC5291228 DOI: 10.1093/hmg/ddw232] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
Aggregation of TAR-DNA-binding protein 43 (TDP-43) and of its fragments TDP-25 and TDP-35 occurs in amyotrophic lateral sclerosis (ALS). TDP-25 and TDP-35 act as seeds for TDP-43 aggregation, altering its function and exerting toxicity. Thus, inhibition of TDP-25 and TDP-35 aggregation and promotion of their degradation may protect against cellular damage. Upregulation of HSPB8 is one possible approach for this purpose, since this chaperone promotes the clearance of an ALS associated fragments of TDP-43 and is upregulated in the surviving motor neurones of transgenic ALS mice and human patients. We report that overexpression of HSPB8 in immortalized motor neurones decreased the accumulation of TDP-25 and TDP-35 and that protection against mislocalized/truncated TDP-43 was observed for HSPB8 in Drosophila melanogaster. Overexpression of HSP67Bc, the functional ortholog of human HSPB8, suppressed the eye degeneration caused by the cytoplasmic accumulation of a TDP-43 variant with a mutation in the nuclear localization signal (TDP-43-NLS). TDP-43-NLS accumulation in retinal cells was counteracted by HSP67Bc overexpression. According with this finding, downregulation of HSP67Bc increased eye degeneration, an effect that is consistent with the accumulation of high molecular weight TDP-43 species and ubiquitinated proteins. Moreover, we report a novel Drosophila model expressing TDP-35, and show that while TDP-43 and TDP-25 expression in the fly eyes causes a mild degeneration, TDP-35 expression leads to severe neurodegeneration as revealed by pupae lethality; the latter effect could be rescued by HSP67Bc overexpression. Collectively, our data demonstrate that HSPB8 upregulation mitigates TDP-43 fragment mediated toxicity, in mammalian neuronal cells and flies.
Collapse
Affiliation(s)
- Valeria Crippa
- Genomic and post-Genomic Center, C. Mondino National Institute of Neurology Foundation, 27100 Pavia, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milano, Italy
| | - Nandini Ramesh
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Samuel J Seguin
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Ganassi
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Bigi
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Chiara Diacci
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Zelotti
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Madina Baratashvili
- Department of Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jenna M Gregory
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Cristina Cereda
- Genomic and post-Genomic Center, C. Mondino National Institute of Neurology Foundation, 27100 Pavia, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milano, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
143
|
Abstract
Neurodegenerative disorders such as Alzheimer disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) affect different neuronal cells, and have a variable age of onset, clinical symptoms, and pathological features. Despite the great progress in understanding the etiology of these disorders, the underlying mechanisms remain largely unclear. Among the processes affected in neurodegenerative diseases, alteration in RNA metabolism is emerging as a crucial player. RNA-binding proteins (RBPs) are involved at all stages of RNA metabolism and display a broad range of functions, including modulation of mRNA transcription, splicing, editing, export, stability, translation and localization and miRNA biogenesis, thus enormously impacting regulation of gene expression. On the other hand, aberrant regulation of RBP expression or activity can contribute to disease onset and progression. Recent reports identified mutations causative of neurological disorders in the genes encoding a family of RBPs named FET (FUS/TLS, EWS and TAF15). This review summarizes recent works documenting the involvement of FET proteins in the pathology of ALS, FTLD, essential tremor (ET) and other neurodegenerative diseases. Moreover, clinical implications of recent advances in FET research are critically discussed.
Collapse
Affiliation(s)
- Francesca Svetoni
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Paola Frisone
- b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Maria Paola Paronetto
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
144
|
Abstract
Amyotrophic lateral sclerosis (ALS) is proving intractable. Difficulties in pre-clinical studies contribute in small measure to this futility, but the chief reason for failure is an inadequate understanding of disease pathogenesis. Many acquired and inherited processes have been advanced as potential causes of ALS but, while they may predispose to disease, it seems increasingly likely that none leads directly to ALS. Rather, two recent overlapping considerations, both involving aberrant protein homeostasis, may provide a better explanation for a common disease phenotype and a common terminal pathogenesis. If so, therapeutic approaches will need to be altered and carefully nuanced, since protein homeostasis is essential and highly conserved. Nonetheless, these considerations provide new optimism in a difficult disease which has hitherto defied treatment.
Collapse
|
145
|
Monahan Z, Shewmaker F, Pandey UB. Stress granules at the intersection of autophagy and ALS. Brain Res 2016; 1649:189-200. [PMID: 27181519 DOI: 10.1016/j.brainres.2016.05.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease caused by loss of upper and lower motor neurons. The majority of ALS cases are classified as sporadic (80-90%), with the remaining considered familial based on patient history. The last decade has seen a surge in the identification of ALS-causing genes - including TARDBP (TDP-43), FUS, MATR3 (Matrin-3), C9ORF72 and several others - providing important insights into the molecular pathways involved in pathogenesis. Most of the protein products of ALS-linked genes fall into two functional categories: RNA-binding/homeostasis and protein-quality control (i.e. autophagy and proteasome). The RNA-binding proteins tend to be aggregation-prone with low-complexity domains similar to the prion-forming domains of yeast. Many also incorporate into stress granules (SGs), which are cytoplasmic ribonucleoprotein complexes that form in response to cellular stress. Mutant forms of TDP-43 and FUS perturb SG dynamics, lengthening their cytoplasmic persistence. Recent evidence suggests that SGs are regulated by the autophagy pathway, suggesting a unifying connection between many of the ALS-linked genes. Persistent SGs may give rise to intractable aggregates that disrupt neuronal homeostasis, thus failure to clear SGs by autophagic processes may promote ALS pathogenesis. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Zachary Monahan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Frank Shewmaker
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Udai Bhan Pandey
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
146
|
Protein folding alterations in amyotrophic lateral sclerosis. Brain Res 2016; 1648:633-649. [PMID: 27064076 DOI: 10.1016/j.brainres.2016.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Protein misfolding leads to the formation of aggregated proteins and protein inclusions, which are associated with synaptic loss and neuronal death in neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that targets motor neurons in the brain, brainstem and spinal cord. Several proteins misfold and are associated either genetically or pathologically in ALS, including superoxide dismutase 1 (SOD1), Tar DNA binding protein-43 (TDP-43), Ubiquilin-2, p62, VCP, and dipeptide repeat proteins produced by unconventional repeat associated non-ATG translation of the repeat expansion in C9ORF72. Chaperone proteins, including heat shock proteins (Hsp׳s) and the protein disulphide isomerase (PDI) family, assist in protein folding and therefore can prevent protein misfolding, and have been implicated as being protective in ALS. In this review we provide an overview of the current literature regarding the molecular mechanisms of protein misfolding and aggregation in ALS, and the role of chaperones as potential targets for therapeutic intervention. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
147
|
Yasuda K, Mili S. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:589-603. [PMID: 27038103 PMCID: PMC5071740 DOI: 10.1002/wrna.1352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult‐onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA‐binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589–603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kyota Yasuda
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Stavroula Mili
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
148
|
Edens BM, Miller N, Ma YC. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration. Front Cell Neurosci 2016; 10:44. [PMID: 26973461 PMCID: PMC4776126 DOI: 10.3389/fncel.2016.00044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration.
Collapse
Affiliation(s)
- Brittany M. Edens
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Nimrod Miller
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Yong-Chao Ma
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| |
Collapse
|
149
|
Abstract
Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.
Collapse
Affiliation(s)
- Meredith E Jackrel
- a Department of Biochemistry and Biophysics ; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia , PA USA
| | | |
Collapse
|
150
|
Clerc P, Lipnick S, Willett C. A look into the future of ALS research. Drug Discov Today 2016; 21:939-49. [PMID: 26861067 DOI: 10.1016/j.drudis.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
Abstract
Although amyotrophic lateral sclerosis (ALS), also referred as 'Lou Gehrig's Disease,' was first described in 1869 and the first disease-associated gene was discovered almost 20 years ago, the disease etiology is still not fully understood and treatment options are limited to one drug approved by the US Food and Drug Administration (FDA). The slow translational progress suggests that current research models are not ideal to study such a complicated disease and need to be re-examined. Progress will require greater insight into human genes and biology involved in ALS susceptibility, as well as a deeper understanding of disease phenotype at the histological and molecular levels. Improving human disease outcome will require directing focus toward improved assessment technologies and innovative approaches.
Collapse
Affiliation(s)
- Pascaline Clerc
- The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA.
| | - Scott Lipnick
- Massachusetts General Hospital, Harvard Medical School, Department of Medicine, 55 Fruit Street, Boston, MA 02114, USA
| | - Catherine Willett
- The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA
| |
Collapse
|