101
|
|
102
|
Abstract
Although well-recognized for their sentinel role and, when activated, their immunostimulatory function, bone marrow-derived dendritic cells (DC) possess inherent tolerogenic (tol) ability. Under quiescent conditions, these cells maintain central and peripheral self tolerance. When appropriately conditioned, in vitro or in vivo, they inhibit innate and adaptive immunity to foreign antigens, including memory T-cell responses. This suppressive function is mediated by various mechanisms, including the expansion and induction of antigen-specific regulatory T cells. Extensive experience in rodent models and recent work in nonhuman primates, indicate the potential of pharmacologically-modified, tol DC (tolDC) to regulate alloimmunity in vivo and to promote lasting, alloantigen-specific T-cell unresponsiveness and transplant survival. While there are many questions yet to be addressed concerning the functional biology of tolDC in humans, these cells offer considerable potential as natural, safe and antigen-specific regulators for long-term control of the outcome of organ and hematopoietic cell transplantation. This minireview surveys recent findings that enhance understanding of the functional biology and therapeutic application of tolDC, with special reference to transplantation.
Collapse
Affiliation(s)
- A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
103
|
Tanriver Y, Ratnasothy K, Bucy RP, Lombardi G, Lechler R. Targeting MHC class I monomers to dendritic cells inhibits the indirect pathway of allorecognition and the production of IgG alloantibodies leading to long-term allograft survival. THE JOURNAL OF IMMUNOLOGY 2010; 184:1757-64. [PMID: 20083658 DOI: 10.4049/jimmunol.0902987] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell depletion strategies are an efficient therapy for the treatment of acute rejections and are an essential part of tolerance induction protocols in various animal models; however, they are usually nonselective and cause wholesale T cell depletion leaving the individual in a severely immunocompromised state. So far it has been difficult to selectively delete alloreactive T cells because the majority of protocols either delete all T cells, subsets of T cells, or subpopulations of T cells expressing certain activation markers, ignoring the Ag specificity of the TCR. We have developed a model in which we were able to selectively deplete alloreactive T cells with an indirect specificity by targeting intact MHC molecules to quiescent dendritic cells using 33D1 as the targeting Ab. This strategy enabled us to inhibit the indirect alloresponse against MHC-mismatched skin grafts and hence the generation of IgG alloantibodies, which depends on indirectly activated T cells. In combination with the temporary abrogation of the direct alloresponse, we were able to induce indefinite skin graft survival. Importantly, the targeting strategy had no detrimental effect on CD4(+)CD25(+)FoxP3(+) T cells, which could potentially be used as an adjunctive cellular therapy. Transplantation tolerance depends on the right balance between depletion and regulation. For the former this approach may be a useful tool in the development of future tolerance induction protocols in non-sensitized patients.
Collapse
Affiliation(s)
- Yakup Tanriver
- Medical Research Council Center for Transplantation, King's College London, School of Medicine, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
104
|
Serreze DV, Niens M, Kulik J, Dilorenzo TP. Bridging mice to men: using HLA transgenic mice to enhance the future prediction and prevention of autoimmune type 1 diabetes in humans. Methods Mol Biol 2010; 602:119-134. [PMID: 20012396 DOI: 10.1007/978-1-60761-058-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin-producing pancreatic beta cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of beta-cell autoreactive CD4 T cells. However, studies in NOD mice have revealed that through interactions with other background susceptibility genes, the quite common class I variants (K(d), D(b)) characterizing this strain's H2 ( g7 ) MHC haplotype aberrantly acquire an ability to support the development of beta cell autoreactive CD8 T-cell responses also essential to T1D development. Similarly, recent studies indicate that in the proper genetic context some quite common HLA class I variants also aberrantly contribute to T1D development in humans. This chapter will focus on how "humanized" HLA transgenic NOD mice can be created and used to identify class I-dependent beta cell autoreactive CD8 T-cell populations of clinical relevance to T1D development. There is also discussion on how HLA transgenic NOD mice can be used to develop protocols that may ultimately be useful for the prevention of T1D in humans by attenuating autoreactive CD8 T-cell responses against pancreatic beta cells.
Collapse
|
105
|
Lutz MB, Kurts C. Induction of peripheral CD4+ T-cell tolerance and CD8+ T-cell cross-tolerance by dendritic cells. Eur J Immunol 2009; 39:2325-30. [PMID: 19701895 DOI: 10.1002/eji.200939548] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DC can present and cross-present self-antigens to autoreactive CD4(+) and CD8(+) T cells, respectively, and incapacitate them by inducing anergy, deletion or converting them into Treg. In this review, we summarize the recent progress in immune tolerance research, which has been achieved by employing antigen- and TCR-transgenic mice. We cover the numerous discoveries that have furthered our knowledge of the DC subsets and maturation pathways involved in tolerance; the signals, such as CD70, TGF-beta, B7-H1/PD-L1, which dictate the decision between immunity and tolerance; and the in vivo role of DC in the maintenance of CD4(+) T-cell tolerance and CD8(+) T-cell cross-tolerance.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
106
|
Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J 2009; 28:2812-24. [PMID: 19680229 DOI: 10.1038/emboj.2009.212] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/01/2009] [Indexed: 12/20/2022] Open
Abstract
Insulin expression in the thymus has been implicated in regulating the negative selection of autoreactive T cells and in mediating the central immune tolerance towards pancreatic beta-cells. To further explore the function of this ectopic insulin expression, we knocked out the mouse Ins2 gene specifically in the Aire-expressing medullary thymic epithelial cells (mTECs), without affecting its expression in the beta-cells. When further crossed to the Ins1 knockout background, both male and female pups (designated as ID-TEC mice for insulin-deleted mTEC) developed diabetes spontaneously around 3 weeks after birth. beta-cell-specific autoimmune destruction was observed, as well as islet-specific T cell infiltration. The presence of insulin-specific effector T cells was shown using ELISPOT assays and adoptive T cell transfer experiments. Results from thymus transplantation experiments proved further that depletion of Ins2 expression in mTECs was sufficient to break central tolerance and induce anti-insulin autoimmunity. Our observations may explain the rare cases of type 1 diabetes onset in very young children carrying diabetes-resistant HLA class II alleles. ID-TEC mice could serve as a new model for studying this pathology.
Collapse
Affiliation(s)
- Yong Fan
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Rangos Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | | | | | | | | |
Collapse
|
107
|
Bibliography. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:328-37. [PMID: 19564733 DOI: 10.1097/med.0b013e32832eb365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
108
|
Abstract
Crosstalk between pattern recognition receptors (PRRs) expressed by dendritic cells orchestrates T helper (TH) cell differentiation through the induction of specific cytokine expression profiles, tailored to invading pathogens. C-type lectin receptors (CLRs) have an important role in orchestrating the induction of signalling pathways that regulate adaptive immune responses. CLRs can control adaptive immunity at various levels by inducing signalling on their own, through crosstalk with other PRRs or by inducing carbohydrate-specific signalling pathways. DC-specific ICAM3-grabbing non-integrin (DC-SIGN) interacts with mannose-carrying pathogens including Mycobacterium tuberculosis, HIV-1, measles virus and Candida albicans to activate the serine/threonine protein kinase RAF1. RAF1 signalling leads to the acetylation of Toll-like receptor (TLR)-activated nuclear factor-κB (NF-κB) subunit p65 and affects cytokine expression, such as inducing the upregulation of interleukin-10 (IL-10). DC-associated C-type lectin 1 (dectin 1) triggering by a broad range of fungal pathogens, such as C. albicans, Aspergillus fumigatus and Pneumocystis carinii, results in protective antifungal immunity through the crosstalk of two independent signalling pathways — one through spleen tyrosine kinase (SYK) and one through RAF1 — that are essential for the expression of TH1 and TH17 cell polarizing cytokines. Crosstalk between the SYK and RAF1 pathways is both synergistic and antagonizing to fine-tune NF-κB activity: although Ser276 phosphorylation of p65 leads to enhanced transcriptional activity of p65 itself through acetylation, it also inhibits the transcriptional activity of the NF-κB subunit RELB by sequestering it in p65–RELB dimers, which are transcriptionally inactive. The diversity in CLR-mediated signalling provides some major challenges for the researches to elucidate and manipulate the signalling properties of this exciting family of receptors. However, the recent advances strongly support the use of CLR targeting vaccination strategies using dendritic cells to induce or redirect adaptive immune responses as well as improve antigen delivery.
Here, Teunis Geijtenbeek and Sonja Gringhuis discuss the role of the signalling pathways induced by C-type lectin receptors in determining T helper cell lineage commitment and describe how these pathways can be exploited for the development of new vaccination strategies. C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce signalling pathways that directly activate nuclear factor-κB, whereas other CLRs affect signalling by Toll-like receptors. Dissecting these signalling pathways and their effects on host immune cells is essential to understand the molecular mechanisms involved in the induction of adaptive immune responses. In this Review we describe the role of CLR signalling in regulating adaptive immunity and immunopathogenesis and discuss how this knowledge can be harnessed for the development of innovative vaccination approaches.
Collapse
|
109
|
Nikolic T, Welzen-Coppens JMC, Leenen PJM, Drexhage HA, Versnel MA. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy. Immunobiology 2009; 214:791-9. [PMID: 19628297 DOI: 10.1016/j.imbio.2009.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
110
|
Ahlers JD, Belyakov IM. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol Med 2009; 15:263-74. [DOI: 10.1016/j.molmed.2009.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
|
111
|
Caminschi I, Lahoud MH, Shortman K. Enhancing immune responses by targeting antigen to DC. Eur J Immunol 2009; 39:931-8. [PMID: 19197943 DOI: 10.1002/eji.200839035] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
mAb that recognise various cell surface receptors have been used to deliver antigen to DC and thereby elicit immune responses. The encouraging data obtained in mouse models suggests that this immunisation strategy is efficient and could lead to clinical trials. We discuss a number of issues pertinent to this vaccination approach. These include which molecules are the best targets for delivering antigen to DC, which DC subtypes should be targeted, the types of immune responses to be generated and whether additional adjuvants are required. Finally, we discuss some progress towards targeting antigen to human DC.
Collapse
Affiliation(s)
- Irina Caminschi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | | | |
Collapse
|
112
|
Shortman K, Lahoud MH, Caminschi I. Improving vaccines by targeting antigens to dendritic cells. Exp Mol Med 2009; 41:61-6. [PMID: 19287186 DOI: 10.3858/emm.2009.41.2.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A new approach to enhancing the effectiveness of vaccines is to deliver antigens selectively to dendritic cells (DC) in situ, via monoclonal antibodies specific for particular DC surface molecules. This can markedly enhance CTL responses and, via helper T cells, also enhance antibody responses. DC activation agents or adjuvants must also be administered for effective CTL responses, but in some cases good antibody responses can be obtained without adjuvants. Here we review the role of different DC subsets and different DC target molecules in obtaining enhanced immune responses.
Collapse
Affiliation(s)
- Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville Victoria 3050, Australia.
| | | | | |
Collapse
|
113
|
Jarchum I, Takaki T, DiLorenzo TP. Efficient culture of CD8(+) T cells from the islets of NOD mice and their use for the study of autoreactive specificities. J Immunol Methods 2008; 339:66-73. [PMID: 18782577 PMCID: PMC2596588 DOI: 10.1016/j.jim.2008.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/23/2008] [Accepted: 08/07/2008] [Indexed: 01/30/2023]
Abstract
During progression to type 1 diabetes (T1D), the pancreatic islets of humans and of the widely studied mouse model of T1D, the nonobese diabetic (NOD) mouse, are infiltrated by cells of the immune system. Here we report that infiltrated mouse islets ("translucent islets") can be identified visually. We demonstrate the use of an efficient method for the isolation and culture of the islet-infiltrating cells of NOD mice, which results in a high percentage of CD8(+) T cells after seven days, with minimal manipulation. We show that islet-infiltrating cells exit the islets soon after they are placed in culture and can be used in flow cytometric experiments several hours later. Importantly, we demonstrate that the cultured cells are antigen-responsive and that specificities present at the beginning of the culture are generally still present on day seven. In addition, some reactivities are undetected without culture, supporting the validity of the seven-day expansion period. This technique greatly facilitates investigations of the CD8(+) T cell reactivities that play a pivotal role in the demise of pancreatic beta cells leading to the development of T1D.
Collapse
Affiliation(s)
- Irene Jarchum
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Toshiyuki Takaki
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Department of Medicine (Division of Endocrinology), Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
114
|
Tang CK, Sheng KC, Apostolopoulos V, Pietersz GA. Protein/peptide and DNA vaccine delivery by targeting C-type lectin receptors. Expert Rev Vaccines 2008; 7:1005-18. [PMID: 18767950 DOI: 10.1586/14760584.7.7.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
C-type lectin receptors (CLRs) are a class of pathogen-recognition receptors that are actively investigated in the field of vaccine delivery. Many of their properties have functions linked to the immune system. These receptors are expressed abundantly on antigen-presenting cells and are considered to be the sentinels of immune surveillance owing to their endocytic nature and the ability to recognize a diverse range of pathogens through recognition of pathogen-associated molecular patterns. CLRs are also involved in the processes of antigen presentation mediated through the induction of dendritic cell maturation and cytokine production. These properties engender CLRs to be ideal for vaccine targeting. Conversely, CLRs also function to recognize glycosylated self-antigens to induce homeostatic control and tolerance. In this review, we will describe the various preclinical/clinical vaccination strategies to target antigens and plasmid DNA to this diverse class of receptors.
Collapse
Affiliation(s)
- Choon-Kit Tang
- Burnet Institute, Austin Campus, BioOrganic and Medicinal Chemistry Laboratory, Studley Road, Heidelberg, VIC 3084, Australia.
| | | | | | | |
Collapse
|
115
|
Abstract
Cancerous lesions promote tumor growth, motility, invasion, and angiogenesis via oncogene-driven immunosuppressive leukocyte infiltrates, mainly myeloid-derived suppressor cells, tumor-associated macrophages, and immature dendritic cells (DCs). In addition, many tumors express or induce immunosuppressive cytokines such as TGF-beta and IL-10. As a result, tumor-antigen crosspresentation by DCs induces T cell anergy or deletion and regulatory T cells instead of antitumor immunity. Tumoricidal effector cells can be generated after vigorous DC activation by Toll-like receptor ligands or CD40 agonists. However, no single immunotherapeutic modality is effective in established cancer. Rather, chemotherapies, causing DC activation, enhanced crosspresentation, lymphodepletion, and reduction of immunosuppressive leukocytes, act synergistically with vaccines or adoptive T cell transfer. Here, I discuss the considerations for generating promising therapeutic antitumor vaccines that use DCs.
Collapse
Affiliation(s)
- Cornelis J M Melief
- Department of Immunohematology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; ISA Pharmaceuticals, 3723 MB Bilthoven, the Netherlands
| |
Collapse
|
116
|
The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 2008; 112:3264-73. [PMID: 18669894 DOI: 10.1182/blood-2008-05-155176] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel dendritic cell (DC)-restricted molecule, Clec9A, was identified by gene expression profiling of mouse DC subtypes. Based on sequence similarity, a human ortholog was identified. Clec9A encodes a type II membrane protein with a single extracellular C-type lectin domain. Both the mouse Clec9A and human CLEC9A were cloned and expressed, and monoclonal antibodies (mAbs) against each were generated. Surface staining revealed that Clec9A was selective for mouse DCs and was restricted to the CD8(+) conventional DC and plasmacytoid DC subtypes. A subset of human blood DCs also expressed CLEC9A. A single injection of mice with a mAb against Clec9A, which targets antigens (Ags) to the DCs, produced a striking enhancement of antibody responses in the absence of added adjuvants or danger signals, even in mice lacking Toll-like receptor signaling pathways. Such targeting also enhanced CD4 and CD8 T-cell responses. Thus, Clec9A serves as a new marker to distinguish subtypes of both mouse and human DCs. Furthermore, targeting Ags to DCs with antibodies to Clec9A is a promising strategy to enhance the efficiency of vaccines, even in the absence of adjuvants.
Collapse
|
117
|
|