101
|
Miltner AM, Torre AL. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev Dyn 2019; 248:118-128. [PMID: 30242792 PMCID: PMC7141838 DOI: 10.1002/dvdy.24672] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The neurons of the retina can be affected by a wide variety of inherited or environmental degenerations that can lead to vision loss and even blindness. Retinal ganglion cell (RGC) degeneration is the hallmark of glaucoma and other optic neuropathies that affect millions of people worldwide. Numerous strategies are being trialed to replace lost neurons in different degeneration models, and in recent years, stem cell technologies have opened promising avenues to obtain donor cells for retinal repair. Stem cell-based transplantation has been most frequently used for the replacement of rod photoreceptors, but the same tools could potentially be used for other retinal cell types, including RGCs. However, RGCs are not abundant in stem cell-derived cultures, and in contrast to the short-distance wiring of photoreceptors, RGC axons take a long and intricate journey to connect with numerous brain nuclei. Hence, a number of challenges still remain, such as the ability to scale up the production of RGCs and a reliable and functional integration into the adult diseased retina upon transplantation. In this review, we discuss the recent advancements in the development of replacement therapies for RGC degenerations and the challenges that we need to overcome before these technologies can be applied to the clinic. Developmental Dynamics 248:118-128, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| |
Collapse
|
102
|
Ranaei Pirmardan E, Soheili ZS, Samiei S, Ahmadieh H, Mowla SJ, Naseri M, Daftarian N. In Vivo Evaluation of PAX6 Overexpression and NMDA Cytotoxicity to Stimulate Proliferation in the Mouse Retina. Sci Rep 2018; 8:17700. [PMID: 30531887 PMCID: PMC6286369 DOI: 10.1038/s41598-018-35884-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023] Open
Abstract
Retinal degenerative diseases, due to the lack of regeneration systems and self-renewable cells, often lead to visual impairment. Pax6 is a pleiotropic transcription factor and its expression level determines self-renewal status or differentiation of retinal cells. Here, we investigated the fate of simultaneous induction of retinal ganglion cell death and Pax6 overexpression in retro-differentiation of retinal cells and their commitment to re-enter into the cell cycle. Induction of acute retinal ganglion cell death and generation of mouse experimental model was performed by N-methyl D-aspartic acid (NMDA) injection. Recombinant AAV2 virus harboring PAX6 cDNA and reporter gene was injected into untreated and model mouse eyes. Histological analyses, including IHC and retinal flatmounts immunostaining were performed. The number of Ki67+ cells was clearly increased in model mice, presumably due to NMDA treatment and regardless of Pax6 over-expression. Unlike previous studies, Ki67+ cells were found in GCL layer and interestingly ONL cells expressed Sox2 stemness marker after NMDA cytotoxicity. The potential of retinal cells for robust Ki67 expression, after injury, and expression of Sox2, confirmed their intrinsic plasticity and made a vivid prospect for retinal regenerative medicine.
Collapse
Affiliation(s)
- Ehsan Ranaei Pirmardan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Narsis Daftarian
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
103
|
SOX2 haploinsufficiency promotes impaired vision at advanced age. Oncotarget 2018; 9:36684-36692. [PMID: 30613351 PMCID: PMC6291181 DOI: 10.18632/oncotarget.26393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
Age-related vision loss has been associated with degeneration of the retina and decline in Müller glia cell activity. Sox2 is a critical transcription factor for the development and maintenance of the mammalian retina. Here we determined the role of Sox2 in retinal aging. We observed a decline in the number of Sox2-positive Müller, amacrine and ganglion cells with age. We also explored the impact of Sox2 haploinsufficiency (Sox2GFP) on the activity of Müller glia cells and vision loss with age. Reduction of Sox2-positive cells promoted impaired Müller glia cell function at advanced age of Sox2GFP. These findings correlated with a significant decline in electroretinographic response in Sox2 haploinsufficient mice. Together, these results indicate that Sox2 is required for the maintenance of the transmission of visual information from cones and rods, and suggest that decline in Sox2 expression is responsible for retinal cell aging and age-related vision loss.
Collapse
|
104
|
Guimarães RPDM, Landeira BS, Coelho DM, Golbert DCF, Silveira MS, Linden R, de Melo Reis RA, Costa MR. Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2. Front Cell Neurosci 2018; 12:410. [PMID: 30483060 PMCID: PMC6240664 DOI: 10.3389/fncel.2018.00410] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023] Open
Abstract
Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo.
Collapse
Affiliation(s)
- Roberta Pereira de Melo Guimarães
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Diego Marques Coelho
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte, Rio de Janeiro, Brazil
| | | | - Mariana S Silveira
- Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo A de Melo Reis
- Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
105
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
106
|
Harun-Or-Rashid M, Hallböök F. Alpha 2-Adrenergic Receptor Agonist Brimonidine Stimulates ERK1/2 and AKT Signaling via Transactivation of EGF Receptors in the Human MIO-M1 Müller Cell Line. Curr Eye Res 2018; 44:34-45. [DOI: 10.1080/02713683.2018.1516783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Harun-Or-Rashid
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
107
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
108
|
Pesaresi M, Sebastian-Perez R, Cosma MP. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine. FEBS J 2018; 286:1074-1093. [PMID: 30103260 DOI: 10.1111/febs.14633] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/01/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
Regenerative capacities vary enormously across the animal kingdom. In contrast to most cold-blooded vertebrates, mammals, including humans, have very limited regenerative capacity when it comes to repairing damaged or degenerating tissues. Here, we review the main mechanisms of tissue regeneration, underlying the importance of cell dedifferentiation and reprogramming. We discuss the significance of cell fate and identity changes in the context of regenerative medicine, with a particular focus on strategies aiming at the promotion of the body's self-repairing mechanisms. We also introduce some of the most recent advances that have resulted in complete reprogramming of cell identity in vivo. Lastly, we discuss the main challenges that need to be addressed in the near future to develop in vivo reprogramming approaches with therapeutic potential.
Collapse
Affiliation(s)
- Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
109
|
Léger H, Santana E, Leu NA, Smith ET, Beltran WA, Aguirre GD, Luca FC. Ndr kinases regulate retinal interneuron proliferation and homeostasis. Sci Rep 2018; 8:12544. [PMID: 30135513 PMCID: PMC6105603 DOI: 10.1038/s41598-018-30492-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Ndr2/Stk38l encodes a protein kinase associated with the Hippo tumor suppressor pathway and is mutated in a naturally-occurring canine early retinal degeneration (erd). To elucidate the retinal functions of Ndr2 and its paralog Ndr1/Stk38, we generated Ndr1 and Ndr2 single knockout mice. Although retinal lamination appeared normal in these mice, Ndr deletion caused a subset of Pax6-positive amacrine cells to proliferate in differentiated retinas, while concurrently decreasing the number of GABAergic, HuD and Pax6-positive amacrine cells. Retinal transcriptome analyses revealed that Ndr2 deletion increased expression of neuronal stress genes and decreased expression of synaptic organization genes. Consistent with the latter, Ndr deletion dramatically reduced levels of Aak1, an Ndr substrate that regulates vesicle trafficking. Our findings indicate that Ndr kinases are important regulators of amacrine and photoreceptor cells and suggest that Ndr kinases inhibit the proliferation of a subset of terminally differentiated cells and modulate interneuron synapse function via Aak1.
Collapse
Affiliation(s)
- Hélène Léger
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Evelyn Santana
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - N Adrian Leu
- Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Eliot T Smith
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Francis C Luca
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States.
| |
Collapse
|
110
|
Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018; 560:484-488. [PMID: 30111842 PMCID: PMC6107416 DOI: 10.1038/s41586-018-0425-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
In zebrafish, Müller glial cells (MGs) are a source of retinal stem cells that can replenish damaged retinal neurons and restore vision1. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle to generate a population of stem/progenitor cells that differentiate into retinal neurons. The regenerative machinery may exist in the mammalian retina, however, as retinal injury can stimulate MG proliferation followed by limited neurogenesis2–7. The fundamental question remains whether MG-derived regeneration can be exploited to restore vision in mammalian retinas. Previously, we showed that gene transfer of β-catenin stimulates MG proliferation in the absence of injury in mouse retinas8. Here, we report that following gene transfer of β-catenin, cell-cycle-reactivated MGs can be reprogrammed into rod photoreceptors via a subsequent gene transfer of transcription factors that are essential for rod cell fate specification and determination. MG-derived rods restored visual responses in Gnat1rd17:Gnat2cpfl3 double mutant mice, a model of congenital blindness9,10, throughout the visual pathway from the retina to the primary visual cortex. Together, our results provide evidence of vision restoration after de novo MG-derived genesis of rod photoreceptors in mammalian retinas.
Collapse
|
111
|
Nogo-A inactivation improves visual plasticity and recovery after retinal injury. Cell Death Dis 2018; 9:727. [PMID: 29950598 PMCID: PMC6021388 DOI: 10.1038/s41419-018-0780-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022]
Abstract
Myelin-associated proteins such as Nogo-A are major inhibitors of neuronal plasticity that contribute to permanent neurological impairments in the injured CNS. In the present study, we investigated the influence of Nogo-A on visual recovery after retinal injuries in mice. Different doses of N-methyl-d-aspartate (NMDA) were injected in the vitreous of the left eye to induce retinal neuron death. The visual function was monitored using the optokinetic response (OKR) as a behavior test, and electroretinogram (ERG) and local field potential (LFP) recordings allowed to assess changes in retinal and cortical neuron activity, respectively. Longitudinal OKR follow-ups revealed reversible visual deficits after injection of NMDA ≤ 1 nmole in the left eye and concomitant functional improvement in the contralateral visual pathway of the right eye that was let intact. Irreversible OKR loss observed with NMDA ≥ 2 nmol was correlated with massive retinal cell death and important ERG response decline. Strikingly, the OKR mediated by injured and intact eye stimulation was markedly improved in Nogo-A KO mice compared with WT animals, suggesting that the inactivation of Nogo-A promotes visual recovery and plasticity. Moreover, OKR improvement was associated with shorter latency of the N2 wave of Nogo-A KO LFPs relative to WT animals. Strikingly, intravitreal injection of anti-Nogo-A antibody (11C7) in the injured eye exerted positive effects on cortical LFPs. This study presents the intrinsic ability of the visual system to recover from NMDA-induced retinal injury and its limitations. Nogo-A neutralization may promote visual recovery in retinal diseases such as glaucoma.
Collapse
|
112
|
Yoo S, Blackshaw S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol 2018; 170:53-66. [PMID: 29631023 DOI: 10.1016/j.pneurobio.2018.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades, evidence has accumulated that neurogenesis can occur in both the juvenile and adult mammalian hypothalamus. Levels of hypothalamic neurogenesis can be regulated by dietary, environmental and hormonal signals. Since the hypothalamus has a central role in controlling a broad range of homeostatic physiological processes, these findings may have far ranging behavioral and medical implications. However, many questions in the field remain unresolved, including the cells of origin of newborn hypothalamic neurons and the extent to which these cells actually regulate hypothalamic-controlled behaviors. In this manuscript, we conduct a critical review of the literature on postnatal hypothalamic neurogenesis in mammals, lay out the main outstanding controversies in the field, and discuss how best to advance our knowledge of this fascinating but still poorly understood process.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
113
|
Peng Y, Baulier E, Ke Y, Young A, Ahmedli NB, Schwartz SD, Farber DB. Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Müller cells. PLoS One 2018; 13:e0194004. [PMID: 29538408 PMCID: PMC5851617 DOI: 10.1371/journal.pone.0194004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) released by virtually every cell of all organisms are involved in processes of intercellular communication through the delivery of their functional mRNAs, proteins and bioactive lipids. We previously demonstrated that mouse embryonic stem cell-released EVs (mESEVs) are able to transfer their content to different target retinal cells, inducing morphological and biochemical changes in them. The main objective of this paper is to characterize EVs derived from human embryonic stem cells (hESEVs) and investigate the effects that they have on cultured retinal glial, progenitor Müller cells, which are known to give rise to retinal neurons under specific conditions. This would allow us to establish if hESEVs have a pro-regenerative potential not yet described that could be used in the future for treatment of human retinal degenerative diseases. Initially, we showed that hESEVs are heterogeneous in size, contain mRNAs and proteins involved in the induction and maintenance of stem cell pluripotency and can be internalized by cultured Müller cells. After a single exposure to hESEVs these cells display changes in their gene expression profile, and with multiple exposures they de-differentiate and trans-differentiate into retinal neuronal precursors. hESEVs were then fractionated into microvesicles (MVs) and exosomes (EXOs), which were characterized by size, specific surface proteins and biochemical/molecular components. We demonstrate that despite the similar internalization of non-fractionated hESEVs, MVs and EXOs by Müller progenitor cells, in vitro, only the release of MVs' cargo into the cells' cytoplasm induces specific changes in their levels of pluripotency mRNAs and early retinal proteins. EXOs do not produce any detectable effect. Thus, we conclude that MVs and MVs-containing hESEVs are promising agents that possibly could promote the regeneration of diseased or damaged retinas in vivo through inducing glial Müller cells to become replacement neurons.
Collapse
Affiliation(s)
- Yingqian Peng
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Edouard Baulier
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Yifeng Ke
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Alejandra Young
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Novruz B. Ahmedli
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Steven D. Schwartz
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Debora B. Farber
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
- Brain Research Institute, UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
114
|
Pesaresi M, Bonilla-Pons SA, Simonte G, Sanges D, Di Vicino U, Cosma MP. Endogenous Mobilization of Bone-Marrow Cells Into the Murine Retina Induces Fusion-Mediated Reprogramming of Müller Glia Cells. EBioMedicine 2018. [PMID: 29525572 PMCID: PMC5952225 DOI: 10.1016/j.ebiom.2018.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities. Endogenous bone marrow cells migrate into NMDA-damaged murine retinae and fuse with retinal Müller glial cells (MGCs). MGCs can be reprogrammed to retinal progenitors to then differentiate into ganglion and amacrine neurons. Modulation of the SDF1/CXCR4 pathway regulates BMC migration, BMC-MGC fusion, and MGC reprogramming.
Retinal degeneration is present in a large and heterogeneous group of debilitating diseases, often not curable. Cell therapy represents an interesting approach to regenerate injured retinal tissue. However, it comes with some hurdles in terms of engraftment and differentiation of the transplanted cells. Here, we reported that murine Müller glia cells can be converted into retinal neurons after fusion with endogenous bone marrow cells. The efficiency of this mechanism can be enhanced by perturbation of the SDF1/CXCR4 signaling pathway. Our study provides an important proof-of-principle that the limited endogenous regeneration capability of mammals can be enhanced by modulation of specific signaling pathways.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; Universitat de Barcelona (UB), Barcelona, Spain
| | - Giacoma Simonte
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Sanges
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; ICREA, Barcelona, Spain..
| |
Collapse
|
115
|
Lust K, Wittbrodt J. Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. eLife 2018; 7:32319. [PMID: 29376827 PMCID: PMC5815849 DOI: 10.7554/elife.32319] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/22/2022] Open
Abstract
Regeneration responses in animals are widespread across phyla. To identify molecular players that confer regenerative capacities to non-regenerative species is of key relevance for basic research and translational approaches. Here, we report a differential response in retinal regeneration between medaka (Oryzias latipes) and zebrafish (Danio rerio). In contrast to zebrafish, medaka Müller glia (olMG) cells behave like progenitors and exhibit a restricted capacity to regenerate the retina. After injury, olMG cells proliferate but fail to self-renew and ultimately only restore photoreceptors. In our injury paradigm, we observed that in contrast to zebrafish, proliferating olMG cells do not maintain sox2 expression. Sustained sox2 expression in olMG cells confers regenerative responses similar to those of zebrafish MG (drMG) cells. We show that a single, cell-autonomous factor reprograms olMG cells and establishes a regeneration-like mode. Our results position medaka as an attractive model to delineate key regeneration factors with translational potential. All animals have at least some ability to repair their bodies after injury. But certain species can regenerate entire body parts and even internal organs. Salamanders, for example, can regrow their tail and limbs, as well as their eyes and heart. Many species of fish can also regenerate organs and tissues. In comparison, mammals have only limited regenerative capacity. Why does regeneration vary between species, and is it possible to convert a non-regenerating system into a regenerating one? Laboratory studies of regeneration often use the model organism, zebrafish. Zebrafish can restore their sight after an eye injury by regenerating the retina, the light-sensitive tissue at the back of the eye. They are able to do this thanks to cells in the retina called Müller glial cells. These behave like stem cells. They divide to produce identical copies of themselves, which then transform into all of the different cell types necessary to produce a new retina. Lust and Wittbrodt now show that a distant relative of the zebrafish, the Japanese ricefish ‘medaka’, lacks these regenerative skills. Although Müller glial cells in medaka also divide after injury, they give rise to only a single type of retinal cell. This means that these fish cannot regenerate an entire retina. Lust and Wittbrodt demonstrate that in medaka, but not zebrafish, levels of a protein called Sox2 fall after eye injury. As Sox2 has been shown to be important for regeneration in zebrafish Müller glial cells, the loss of Sox2 may be preventing regeneration in medaka. Consistent with this, restoring Sox2 levels in medaka Müller glial cells enabled them to turn into several different types of retinal cell. Sox2 is also present in the Müller glial cells of other species with backbones, including chickens, mice, and humans. Future experiments should test whether loss of Sox2 after injury contributes to the lack of regeneration in these species. If it does, the next question will be whether restoring Sox2 can drive a regenerative response.
Collapse
Affiliation(s)
- Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Hartmut Hoffmann-Berling International Graduate School, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
116
|
Linn CL, Webster SE, Webster MK. Eye Drops for Delivery of Bioactive Compounds and BrdU to Stimulate Proliferation and Label Mitotically Active Cells in the Adult Rodent Retina. Bio Protoc 2018; 8:e3076. [PMID: 30687771 DOI: 10.21769/bioprotoc.3076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eye drop treatments are typically used to apply drugs to the anterior structures of the eye. Recently, however, studies have demonstrated that eye drops can reach the retina in the back of the eye if pharmacological agents are carried in appropriate vehicles. Here, we introduce an eye drop procedure to deliver a drug (PNU-282987), in combination with BrdU, to stimulate cell cycle re-entry and label dividing cells in the retinas of adult rodents. This procedure avoids potential systemic complications of repeated intraperitoneal injections, as well as the retinal damage that is induced by repeated intravitreal injections. Although the delivery of PNU-282987 and BrdU is the focus of this article, many different proliferating compounds could be delivered to the retina using this procedure.
Collapse
Affiliation(s)
- Cindy L Linn
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Sarah E Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Mark K Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
117
|
Todd L, Suarez L, Quinn C, Fischer AJ. Retinoic Acid-Signaling Regulates the Proliferative and Neurogenic Capacity of Müller Glia-Derived Progenitor Cells in the Avian Retina. Stem Cells 2017; 36:392-405. [PMID: 29193451 DOI: 10.1002/stem.2742] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Abstract
In the retina, Müller glia have the potential to become progenitor cells with the ability to proliferate and regenerate neurons. However, the ability of Müller glia-derived progenitor cells (MGPCs) to proliferate and produce neurons is limited in higher vertebrates. Using the chick model system, we investigate how retinoic acid (RA)-signaling influences the proliferation and the formation of MGPCs. We observed an upregulation of cellular RA binding proteins (CRABP) in the Müller glia of damaged retinas where the formation of MGPCs is known to occur. Activation of RA-signaling was stimulated, whereas inhibition suppressed the proliferation of MGPCs in damaged retinas and in fibroblast growth factor 2-treated undamaged retinas. Furthermore, inhibition of RA-degradation stimulated the proliferation of MGPCs. Levels of Pax6, Klf4, and cFos were upregulated in MGPCs by RA agonists and downregulated in MGPCs by RA antagonists. Activation of RA-signaling following MGPC proliferation increased the percentage of progeny that differentiated as neurons. Similarly, the combination of RA and insulin-like growth factor 1 (IGF1) significantly increased neurogenesis from retinal progenitors in the circumferential marginal zone (CMZ). In summary, RA-signaling stimulates the formation of proliferating MGPCs and enhances the neurogenic potential of MGPCs and stem cells in the CMZ. Stem Cells 2018;36:392-405.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Colin Quinn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
118
|
Lin B, Coleman JH, Peterson JN, Zunitch MJ, Jang W, Herrick DB, Schwob JE. Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency. Cell Stem Cell 2017; 21:761-774.e5. [PMID: 29174332 DOI: 10.1016/j.stem.2017.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/12/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Adult neurogenesis in the olfactory epithelium is often depicted as a unidirectional pathway during homeostasis and repair. We challenge the unidirectionality of this model by showing that epithelial injury unlocks the potential for Ascl1+ progenitors and Neurog1+ specified neuronal precursors to dedifferentiate into multipotent stem/progenitor cells that contribute significantly to tissue regeneration in the murine olfactory epithelium (OE). We characterize these dedifferentiating cells using several lineage-tracing strains and single-cell mRNA-seq, and we show that Sox2 is required for initiating dedifferentiation and that inhibition of Ezh2 promotes multipotent progenitor expansion. These results suggest that the apparent hierarchy of neuronal differentiation is not irreversible and that lineage commitment can be overridden following severe tissue injury. We elucidate a previously unappreciated pathway for endogenous tissue repair by a highly regenerative neuroepithelium and introduce a system to study the mechanisms underlying plasticity in the OE that can be adapted for other tissues.
Collapse
Affiliation(s)
- Brian Lin
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Julie H Coleman
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jesse N Peterson
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Matthew J Zunitch
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Woochan Jang
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Daniel B Herrick
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
119
|
Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV, Chen B. Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas. Cell Rep 2017; 17:165-178. [PMID: 27681429 DOI: 10.1016/j.celrep.2016.08.078] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022] Open
Abstract
In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes β-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina.
Collapse
Affiliation(s)
- Kai Yao
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suo Qiu
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, Bioengineering, Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
120
|
Restoration of Dendritic Complexity, Functional Connectivity, and Diversity of Regenerated Retinal Bipolar Neurons in Adult Zebrafish. J Neurosci 2017; 38:120-136. [PMID: 29133431 DOI: 10.1523/jneurosci.3444-16.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022] Open
Abstract
Adult zebrafish (Danio rerio) are capable of regenerating retinal neurons that have been lost due to mechanical, chemical, or light damage. In the case of chemical damage, there is evidence that visually mediated behaviors are restored after regeneration, consistent with recovery of retinal function. However, the extent to which regenerated retinal neurons attain appropriate morphologies and circuitry after such tissue-disrupting lesions has not been investigated. Adult zebrafish of both sexes were subjected to intravitreal injections of ouabain, which destroys the inner retina. After retinal regeneration, cell-selective markers, confocal microscopy, morphometrics, and electrophysiology were used to examine dendritic and axonal morphologies, connectivities, and the diversities of each, as well as retinal function, for a subpopulation of regenerated bipolar neurons (BPs). Although regenerated BPs were reduced in numbers, BP dendritic spreads, dendritic tree morphologies, and cone-bipolar connectivity patterns were restored in regenerated retinas, suggesting that regenerated BPs recover accurate input pathways from surviving cone photoreceptors. Morphological measurements of bipolar axons found that numbers and types of stratifications were also restored; however, the thickness of the inner plexiform layer and one measure of axon branching were slightly reduced after regeneration, suggesting some minor differences in the recovery of output pathways to downstream partners. Furthermore, ERG traces from regenerated retinas displayed waveforms matching those of controls, but with reduced b-wave amplitudes. These results support the hypothesis that regenerated neurons of the adult zebrafish retina are capable of restoring complex morphologies and circuitry, suggesting that complex visual functions may also be restored.SIGNIFICANCE STATEMENT Adult zebrafish generate new retinal neurons after a tissue-disrupting lesion. Existing research does not address whether regenerated neurons of adults successfully reconnect with surrounding neurons and establish complex morphologies and functions. We report that, after a chemical lesion that ablates inner retinal neurons, regenerated retinal bipolar neurons (BPs), although reduced in numbers, reconnected to undamaged cone photoreceptors with correct wiring patterns. Regenerated BPs had complex morphologies similar to those within undamaged retina and a physiological measure of photoreceptor-BP connectivity, the ERG, was restored to a normal waveform. This new understanding of neural connectivity, morphology, and physiology suggests that complex functional processing is possible within regenerated adult retina and offers a system for the future study of synaptogenesis during adult retinal regeneration.
Collapse
|
121
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
122
|
Quintero H, Lamas M. microRNA expression in the neural retina: Focus on Müller glia. J Neurosci Res 2017; 96:362-370. [DOI: 10.1002/jnr.24181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Heberto Quintero
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
- Department of Neuroscience; University of Montreal Hospital Research Centre (CRCHUM); Montreal Quebec Canada
| | - Mónica Lamas
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
| |
Collapse
|
123
|
Gu D, Wang S, Zhang S, Zhang P, Zhou G. Directed transdifferentiation of Müller glial cells to photoreceptors using the sonic hedgehog signaling pathway agonist purmorphamine. Mol Med Rep 2017; 16:7993-8002. [PMID: 28983586 PMCID: PMC5779882 DOI: 10.3892/mmr.2017.7652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Specification of distinct cell types from Müller glial cells is key to the potential application of endogenous repair in retinal regeneration. Sonic hedgehog (SHH) has been established as a potent mitogen for rat Müller glial cells, which also induces Müller glial cells to dedifferentiate and adopt the phenotype of rod photoreceptors. The present study investigated the effects of purmorphamine, a small molecule that activates the SHH‑pathway, in the proliferation, dedifferentiation and transdifferentiation of Müller glial cells, as determined by several methods including immunofluorescence, polymerase chain reaction and western blotting. It was demonstrated that it may be able to replace SHH for the regeneration of retinal neurons. Purmorphamine was revealed to stimulate the proliferation of Müller glial cells by increasing the expression of cyclin D1 and cyclin D3. In addition, purmorphamine‑treated Müller glial cells were induced to dedifferentiate by inducing the expression of progenitor‑specific markers; subsequently differentiating into rod‑like photoreceptors. Intraocular injection of purmorphamine promoted the activation of Müller glial cells, and in turn, the production of rod‑like photoreceptors in acute damaged retina. These results suggested that the endogenous neurogenic capacity of retinal Müller glial cells may be enhanced by this small molecular agonist of the SHH signaling pathway.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Anatomy, Histology and Embryology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Songtao Wang
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Shuai Zhang
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai 200032, P.R. China
| | - Peng Zhang
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
124
|
Retinal cell death dependent reactive proliferative gliosis in the mouse retina. Sci Rep 2017; 7:9517. [PMID: 28842607 PMCID: PMC5572737 DOI: 10.1038/s41598-017-09743-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration is a common starting point of reactive gliosis, which may have beneficial and detrimental consequences. It remains incompletely understood how distinctive pathologies and cell death processes differentially regulate glial responses. Müller glia (MG) in the retina are a prime model: Neurons are regenerated in some species, but in mammals there may be proliferative disorders and scarring. Here, we investigated the relationship between retinal damage and MG proliferation, which are both induced in a reproducible and temporal order in organotypic culture of EGF-treated mouse retina: Hypothermia pretreatment during eye dissection reduced neuronal cell death and MG proliferation; stab wounds increased both. Combined (but not separate) application of defined cell death signaling pathway inhibitors diminished neuronal cell death and maintained MG mitotically quiescent. The level of neuronal cell death determined MG activity, indicated by extracellular signal-regulated kinase (ERK) phosphorylation, and proliferation, both of which were abolished by EGFR inhibition. Our data suggest that retinal cell death, possibly either by programmed apoptosis or necrosis, primes MG to be able to transduce the EGFR–ERK activity required for cell proliferation. These results imply that cell death signaling pathways are potential targets for future therapies to prevent the proliferative gliosis frequently associated with certain neurodegenerative conditions.
Collapse
|
125
|
Todd L, Palazzo I, Squires N, Mendonca N, Fischer AJ. BMP- and TGFβ-signaling regulate the formation of Müller glia-derived progenitor cells in the avian retina. Glia 2017; 65:1640-1655. [PMID: 28703293 DOI: 10.1002/glia.23185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 01/20/2023]
Abstract
Müller glia-derived progenitor cells (MGPCs) have the capability to regenerate neurons in the retinas of different vertebrate orders. The formation of MGPCs is regulated by a network of cell-signaling pathways. The purpose of this study was to investigate how BMP/Smad1/5/8- and TGFβ/Smad2/3-signaling are coordinated to influence the formation of MGPCs in the chick model system. We find that pSmad1/5/8 is selectively up-regulated in the nuclei of Müller glia following treatment with BMP4, FGF2, or NMDA-induced damage, and this up-regulation is blocked by a dorsomorphin analogue DMH1. By comparison, Smad2/3 is found in the nuclei of Müller glia in untreated retinas, and becomes localized to the cytoplasm following NMDA- or FGF2-treatment. These findings suggest a decrease in TGFβ- and increase in BMP-signaling when MGPCs are known to form. In both NMDA-damaged and FGF2-treated retinas, inhibition of BMP-signaling suppressed the proliferation of MGPCs, whereas inhibition of TGFβ-signaling stimulated the proliferation of MGPCs. Consistent with these findings, TGFβ2 suppressed the formation of MGPCs in NMDA-damaged retinas. Our findings indicate that BMP/TGFβ/Smad-signaling is recruited into the network of signaling pathways that controls the formation of proliferating MGPCs. We conclude that signaling through BMP4/Smad1/5/8 promotes the formation of MGPCs, whereas signaling through TGFβ/Smad2/3 suppresses the formation of MGPCs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Natalie Squires
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Ninoshka Mendonca
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| |
Collapse
|
126
|
Boudreau-Pinsonneault C, Cayouette M. Cell lineage tracing in the retina: Could material transfer distort conclusions? Dev Dyn 2017. [PMID: 28643368 DOI: 10.1002/dvdy.24535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies reported the transfer of fluorescent labels between grafted and host cells after transplantation of photoreceptor precursor cells in the mouse retina. While clearly impacting the interpretation of transplantation studies in the retina, the potential impact of material transfer in other experimental paradigms using cell-specific labels remains uncertain. Here, we briefly review the evidence supporting material transfer in transplantation studies and discuss whether it might influence retinal cell lineage tracing experiments in developmental and regeneration studies. We also propose ways to control for the possible confounding occurrence of label exchange in such experiments. Developmental Dynamics 247:10-17, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, QC, Canada.,Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
127
|
Hamon A, Masson C, Bitard J, Gieser L, Roger JE, Perron M. Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Müller Cells. Invest Ophthalmol Vis Sci 2017; 58:1941-1953. [PMID: 28384715 PMCID: PMC6024660 DOI: 10.1167/iovs.16-21366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose During retinal degeneration, Müller glia cells respond to photoreceptor loss by undergoing reactive gliosis, with both detrimental and beneficial effects. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of new therapeutic strategies. The purpose of this work was to identify new factors involved in Müller cell response to photoreceptor cell death. Methods Whole transcriptome sequencing was performed from wild-type and degenerating rd10 mouse retinas at P30. The changes in mRNA abundance for several differentially expressed genes were assessed by quantitative RT-PCR (RT-qPCR). Protein expression level and retinal cellular localization were determined by western blot and immunohistochemistry, respectively. Results Pathway-level analysis from whole transcriptomic data revealed the Hippo/YAP pathway as one of the main signaling pathways altered in response to photoreceptor degeneration in rd10 retinas. We found that downstream effectors of this pathway, YAP and TEAD1, are specifically expressed in Müller cells and that their expression, at both the mRNA and protein levels, is increased in rd10 reactive Müller glia after the onset of photoreceptor degeneration. The expression of Ctgf and Cyr61, two target genes of the transcriptional YAP/TEAD complex, is also upregulated following photoreceptor loss. Conclusions This work reveals for the first time that YAP and TEAD1, key downstream effectors of the Hippo pathway, are specifically expressed in Müller cells. We also uncovered a deregulation of the expression and activity of Hippo/YAP pathway components in reactive Müller cells under pathologic conditions.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Christel Masson
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Juliette Bitard
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
128
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
129
|
VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vision Res 2017; 139:108-114. [PMID: 28601428 DOI: 10.1016/j.visres.2017.05.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
Müller glia (MG) are major retinal supporting cells that participate in retinal metabolism, function, maintenance, and protection. During the pathogenesis of diabetic retinopathy (DR), a neurovascular disease and a leading cause of blindness, MG modulate vascular function and neuronal integrity by regulating the production of angiogenic and trophic factors. In this article, I will (1) briefly summarize our work on delineating the role and mechanism of MG-modulated vascular function through the production of vascular endothelial growth factor (VEGF) and on investigating VEGF signaling-mediated MG viability and neural protection in diabetic animal models, (2) explore the relationship among VEGF and neurotrophins in protecting Müller cells in in vitro models of diabetes and hypoxia and its potential implication to neuroprotection in DR and hypoxic retinal diseases, and (3) discuss the relevance of our work to the effectiveness and safety of long-term anti-VEGF therapies, a widely used strategy to combat DR, diabetic macular edema, neovascular age-related macular degeneration, retinopathy of prematurity, and other hypoxic retinal vascular disorders.
Collapse
|
130
|
Langhe R, Chesneau A, Colozza G, Hidalgo M, Ail D, Locker M, Perron M. Müller glial cell reactivation in Xenopus models of retinal degeneration. Glia 2017; 65:1333-1349. [PMID: 28548249 DOI: 10.1002/glia.23165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 11/11/2022]
Abstract
A striking aspect of tissue regeneration is its uneven distribution among different animal classes, both in terms of modalities and efficiency. The retina does not escape the rule, exhibiting extraordinary self-repair properties in anamniote species but extremely limited ones in mammals. Among cellular sources prone to contribute to retinal regeneration are Müller glial cells, which in teleosts have been known for a decade to re-acquire a stem/progenitor state and regenerate retinal neurons following injury. As their regenerative potential was hitherto unexplored in amphibians, we tackled this issue using two Xenopus retinal injury paradigms we implemented: a mechanical needle poke injury and a transgenic model allowing for conditional photoreceptor cell ablation. These models revealed that Müller cells are indeed able to proliferate and replace lost cells following damage/degeneration in the retina. Interestingly, the extent of cell cycle re-entry appears dependent on the age of the animal, with a refractory period in early tadpole stages. Our findings pave the way for future studies aimed at identifying the molecular cues that either sustain or constrain the recruitment of Müller glia, an issue of utmost importance to set up therapeutic strategies for eye regenerative medicine.
Collapse
Affiliation(s)
- Rahul Langhe
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Gabriele Colozza
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Magdalena Hidalgo
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Divya Ail
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Morgane Locker
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, 91405, France
| |
Collapse
|
131
|
Farzanehfar P, Horne MK, Aumann TD. An investigation of gene expression in single cells derived from Nestin-expressing cells in the adult mouse midbrain in vivo. Neurosci Lett 2017; 648:34-40. [PMID: 28363755 DOI: 10.1016/j.neulet.2017.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022]
Abstract
Generation of new dopamine (DA) neurons in the adult midbrain is a controversial issue in development of better treatments for Parkinson's disease (PD). Previous research suggests Nestin-expressing neural precursor cells (NPCs) have a propensity to differentiate into neurons here, including DA neurons. In the present study we sought confirmation of this by studying gene expression in single Nestin-expressing cells and their progeny/ontogeny within the adult mouse midbrain. Cells were identified by administering a pulse of Tamoxifen to adult Nestin-CreERT2×R26eYFP transgenic mice. Samples of cytoplasm were harvested 4 days to 8 months later from individual eYFP+ cells in acutely prepared midbrain slices and analysed by RT-qPCR for gene expression. Remarkably, most eYFP+ cells co-expressed genes associated with mature (including DA) neurons (i.e. NeuN, Gad1, Gad2, vGlut2, TH and/or D2R) and neurogenesis (i.e. Ki67, Dcx, Ncam, Pax6, Ngn2 and/or Msx1), and this was true at all time-points following Tamoxifen. Indeed, cell proliferation genes (Nestin, Ki67) were exclusively expressed by eYFP+ cells with mature neuronal morphology and gene expression, and only at early time-points after Tamoxifen. Expression of proneuronal genes (Pax6, Msx1, Ngn2) was, however, higher in eYFP+ cells with immature morphology compared with mature morphology. Gene expression bore no relationship to cell location indicating that, in contrast to development, Nestin-expressing cells arise throughout the midbrain parenchyma and do not migrate long distances. On the other hand, gene expression did change with time after Tamoxifen, although not in a way consistent with neurogenesis. Overall, our results suggest that Nestin expression in the adult midbrain occurs in mature neurons, casting doubt on the premise of neurogenesis from Nestin+ NPCs here.
Collapse
Affiliation(s)
- Parisa Farzanehfar
- Florey Institute for Neuroscience & Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Malcolm K Horne
- Florey Institute for Neuroscience & Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tim D Aumann
- Florey Institute for Neuroscience & Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
132
|
Vetter ML, Hitchcock PF. Report on the National Eye Institute Audacious Goals Initiative: Replacement of Retinal Ganglion Cells from Endogenous Cell Sources. Transl Vis Sci Technol 2017; 6:5. [PMID: 28316878 PMCID: PMC5354473 DOI: 10.1167/tvst.6.2.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022] Open
Abstract
This report emerges from a workshop convened by the National Eye Institute (NEI) as part of the "Audacious Goals Initiative" (AGI). The workshop addressed the replacement of retinal ganglion cells (RGCs) from exogenous and endogenous sources, and sought to identify the gaps in our knowledge and barriers to progress in devising cellular replacement therapies for diseases where RGCs die. Here, we briefly review relevant literature regarding common diseases associated with RGC death, the genesis of RGCs in vivo, strategies for generating transplantable RGCs in vitro, and potential endogenous cellular sources to regenerate these cells. These topics provided the clinical and scientific context for the discussion among the workshop participants and are relevant to efforts that may lead to therapeutic approaches for replacing RGCs. This report also summarizes the content of the workshop discussion, which focused on: (1) cell sources for RGC replacement and regeneration, (2) optimizing integration, survival, and synaptogenesis of new RGCs, and (3) approaches for assessing the outcomes of RGC replacement therapies. We conclude this report with a summary of recommendations, based on the workshop discussions, which may guide vision scientists seeking to develop therapies for replacing RGCs in humans.
Collapse
Affiliation(s)
- Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Peter F Hitchcock
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA ; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
133
|
Rao MB, Didiano D, Patton JG. Neurotransmitter-Regulated Regeneration in the Zebrafish Retina. Stem Cell Reports 2017; 8:831-842. [PMID: 28285877 PMCID: PMC5390103 DOI: 10.1016/j.stemcr.2017.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/26/2023] Open
Abstract
Current efforts to repair damaged or diseased mammalian retinas are inefficient and largely incapable of fully restoring vision. Conversely, the zebrafish retina is capable of spontaneous regeneration upon damage using Müller glia (MG)-derived progenitors. Understanding how zebrafish MG initiate regeneration may help develop new treatments that prompt mammalian retinas to regenerate. We show that inhibition of γ-aminobutyric acid (GABA) signaling facilitates initiation of MG proliferation. GABA levels decrease following damage, and MG are positioned to detect decreased ambient levels and undergo dedifferentiation. Using pharmacological and genetic approaches, we demonstrate that GABAA receptor inhibition stimulates regeneration in undamaged retinas while activation inhibits regeneration in damaged retinas.
Collapse
Affiliation(s)
- Mahesh B Rao
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA
| | - Dominic Didiano
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA.
| |
Collapse
|
134
|
SMAD7 deficiency stimulates Müller progenitor cell proliferation during the development of the mammalian retina. Histochem Cell Biol 2017; 148:21-32. [PMID: 28258388 DOI: 10.1007/s00418-017-1549-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 12/24/2022]
Abstract
The transforming growth factor-β (TGF-β) pathway contributes to maintain the quiescence of adult neural stem and progenitor cells in the brain. In the retina, Müller cells are discussed to represent a glial cell population with progenitor-like characteristics. Here, we aimed to investigate if elevated TGF-β signaling modulates the proliferation of Müller cells during retinal development. We generated mutant mice with a systemic, heterozygous up-regulation of TGF-β signaling by deleting its inhibitor SMAD7. We investigated apoptosis, proliferation, and differentiation of Müller cells in the developing retina. We show that a heterozygous deletion of SMAD7 results in an increased proliferation of Müller cell progenitors in the central retina at postnatal day 4, the time window when Müller cells differentiate in the mouse retina. This in turn results in a thickened retina and inner nuclear layer and a higher number of differentiated Müller cells in the more developed retina. Müller cells in mutant mice contain higher amounts of nestin than those of control animals which indicates that the increase in TGF-β signaling activity during retinal development contribute to maintain some progenitor-like characteristics in Müller cells even after their differentiation period. We conclude that TGF-β signaling influences Müller cell proliferation and differentiation during retinal development.
Collapse
|
135
|
Schäfer P, Karl MO. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 2017; 65:828-847. [PMID: 28220544 DOI: 10.1002/glia.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
Collapse
Affiliation(s)
- Patrick Schäfer
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| | - Mike O Karl
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| |
Collapse
|
136
|
Ji HP, Xiong Y, Zhang ED, Song WT, Gao ZL, Yao F, Sun H, Zhou RR, Xia XB. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres? Am J Transl Res 2017; 9:611-619. [PMID: 28337288 PMCID: PMC5340695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Müller cells can be acquired from in vitro culture or a neurosphere culture system. Both culture methods yield cells with progenitor-cell characteristics that can differentiate into mature nervous cells. We compared the progenitor-cell traits of Müller cells acquired from each method. METHODS Primary murine Müller cells were isolated in serum culture media and used to generate Müller cells derived from neurospheres in serum-free culture conditions. Gene expression of neural progenitor cell markers was examined by Q-PCR in the two groups. Expression of rhodopsin and the cone-rod homeobox protein CRX were assessed after induction with 1 μM all-trans retinoic acid (RA) for 7 days. RESULTS After more than four passages, many cells were large, flattened, and difficult to passage. A spontaneously immortalized Müller cell line was not established. Three-passage neurospheres yielded few new spheres. Genes coding for Nestin, Sox2, Chx10, and Vimentin were downregulated in cells derived from neurospheres compared to the cells from standard culture, while Pax6 was upregulated. Müller cells from both culture methods were induced into rod photoreceptors, but expression of rhodopsin and CRX was greater in the Müller cells from the standard culture. CONCLUSION Both culture methods yielded cells with stem-cell characteristics that can be induced into rod photoreceptor neurons by RA. Serum had no influence on the "stemness" of the cells. Cells from standard culture had greater "stemness" than cells derived from neurospheres. The standard Müller cells would seem to be the best choice for transplantation in cell replacement therapy for photoreceptor degeneration.
Collapse
Affiliation(s)
- Hong-Pei Ji
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
- Department of Ophthalmology, The People’s Hospital of Guizhou ProvinceGuiyang 550002, China
| | - Yu Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - En-Dong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Zhao-Lin Gao
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Hong Sun
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Rong-Rong Zhou
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410008, China
| |
Collapse
|
137
|
Lin28b stimulates the reprogramming of rat Müller glia to retinal progenitors. Exp Cell Res 2017; 352:164-174. [PMID: 28189638 DOI: 10.1016/j.yexcr.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 02/08/2017] [Indexed: 11/22/2022]
Abstract
In lower-order vertebrates, Müller glia exhibit characteristics of retinal progenitor cells, while in higher vertebrates, such as mammals, the regenerative capacity of Müller glia is limited. Recently, we reported that Lin28b promoted the trans-differentiation of Müller cells to rod photoreceptor and bipolar cells in the retina of retinitis pigmentosa rat model, whereas it is unclear whether Lin28b can stimulate the reprogramming of Müller glia in vitro for transplantation into a damaged retina. In the present study, Long-Evens rat Müller glia were infected with Adeno-Lin28b or Adeno-GFP. Over-expression of Lin28b in isolated rat Müller glia resulted in the suppression of GFAP expression, enhancement of cell proliferation and a significant increase of the expression of retinal progenitor markers 5 days after infection. Moreover, Lin28b caused a significant reduction of the Let-7 family of microRNAs. Following sub-retinal space transplantation, Müller glia-derived retinal progenitors improved b-wave amplification of 30d Royal College of Surgeons retinitis pigmentosa model (RCS-P+) rats, as detected by electroretinography (ERG) recordings. Taken together, these data suggest that the up-regulation of Lin28b expression facilitated the reprogramming of Müller cells toward characteristics of retinal progenitors.
Collapse
|
138
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
139
|
Xiao J, Li X, Chen L, Han X, Zhao W, Li L, Chen JG. Apobec1 Promotes Neurotoxicity-Induced Dedifferentiation of Müller Glial Cells. Neurochem Res 2017; 42:1151-1164. [DOI: 10.1007/s11064-016-2151-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
|
140
|
Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina. Stem Cells Int 2017; 2017:1610691. [PMID: 28194183 PMCID: PMC5282447 DOI: 10.1155/2017/1610691] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper. In injured or degenerating retinas, Müller glia contribute to gliotic responses and scar formation but also show regenerative capabilities that vary across species. In the mammalian retina, regenerative responses achieved to date remain insufficient for potential clinical applications. Activation of JAK/STAT and MAPK signaling by CNTF, EGF, and FGFs can promote proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic factors that restrict or promote regenerative responses of Müller glia in the mammalian retina must be identified. This review focuses on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.
Collapse
|
141
|
Reyes-Aguirre LI, Lamas M. Oct4 Methylation-Mediated Silencing As an Epigenetic Barrier Preventing Müller Glia Dedifferentiation in a Murine Model of Retinal Injury. Front Neurosci 2016; 10:523. [PMID: 27895551 PMCID: PMC5108807 DOI: 10.3389/fnins.2016.00523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022] Open
Abstract
Müller glia (MG) is the most abundant glial type in the vertebrate retina. Among its many functions, it is capable of responding to injury by dedifferentiating, proliferating, and differentiating into every cell types lost to damage. This regenerative ability is notoriously absent in mammals. We have previously reported that cultured mammalian MG undergoes a partial dedifferentiation, but fails to fully acquire a progenitor phenotype and differentiate into neurons. This might be explained by a mnemonic mechanism comprised by epigenetic traits, such as DNA methylation. To achieve a better understanding of this epigenetic memory, we studied the expression of pluripotency-associated genes, such as Oct4, Nanog, and Lin28, which have been reported as necessary for regeneration in fish, at early times after NMDA-induced retinal injury in a mouse experimental model. We found that although Oct4 is expressed rapidly after damage (4 hpi), it is silenced at 24 hpi. This correlates with a significant decrease in the DNA methyltransferase Dnmt3b expression, which returns to basal levels at 24 hpi. By MS-PCR, we observed a decrease in Oct4 methylation levels at 4 and 12 hpi, before returning to a fully methylated state at 24 hpi. To demonstrate that these changes are restricted to MG, we separated these cells using a GLAST antibody coupled with magnetic beads. Finally, intravitreous administration of the DNA-methyltransferase inhibitor SGI-1027 induced Oct4 expression at 24 hpi in MG. Our results suggest that mammalian MG injury-induced dedifferentiation could be restricted by DNA methylation, which rapidly silences Oct4 expression, preventing multipotency acquisition.
Collapse
Affiliation(s)
- Luis I Reyes-Aguirre
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Sede Sur México, Mexico
| | - Monica Lamas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Sede Sur México, Mexico
| |
Collapse
|
142
|
Srivastava D, DeWitt N. In Vivo Cellular Reprogramming: The Next Generation. Cell 2016; 166:1386-1396. [PMID: 27610565 DOI: 10.1016/j.cell.2016.08.055] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
Cellular reprogramming technology has created new opportunities in understanding human disease, drug discovery, and regenerative medicine. While a combinatorial code was initially found to reprogram somatic cells to pluripotency, a "second generation" of cellular reprogramming involves lineage-restricted transcription factors and microRNAs that directly reprogram one somatic cell to another. This technology was enabled by gene networks active during development, which induce global shifts in the epigenetic landscape driving cell fate decisions. A major utility of direct reprogramming is the potential of harnessing resident support cells within damaged organs to regenerate lost tissue by converting them into the desired cell type in situ. Here, we review the progress in direct cellular reprogramming, with a focus on the paradigm of in vivo reprogramming for regenerative medicine, while pointing to hurdles that must be overcome to translate this technology into future therapeutics.
Collapse
Affiliation(s)
- Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA; Roddenberry Stem Cell Center at Gladstone, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Natalie DeWitt
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
143
|
Todd L, Squires N, Suarez L, Fischer AJ. Jak/Stat signaling regulates the proliferation and neurogenic potential of Müller glia-derived progenitor cells in the avian retina. Sci Rep 2016; 6:35703. [PMID: 27759082 PMCID: PMC5069623 DOI: 10.1038/srep35703] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022] Open
Abstract
Müller glia are capable of de-differentiating and proliferating to become Müller glia-derived progenitor cells (MGPCs) with the ability to regenerate retinal neurons. One of the cell-signaling pathways that drives the reprogramming of Müller glia into MGPCs in the zebrafish retina is the Jak/Stat-pathway. However, nothing is known about the influence of Jak/Stat-signaling during the formation of MGPCs in the retinas of warm-blooded vertebrates. Accordingly, we examined whether Jak/Stat-signaling influences the formation of MGPCs and differentiation of progeny in the avian retina. We found that Jak/Stat-signaling is activated in Müller glia in response to NMDA-induced retinal damage or by CNTF or FGF2 in the absence of retinal damage. Inhibition of gp130, Jak2, or Stat3 suppressed the formation of proliferating MGPCs in NMDA-damaged and FGF2-treated retinas. Additionally, CNTF combined with FGF2 enhanced the formation of proliferating MGPCs in the absence of retinal damage. In contrast to the zebrafish model, where activation of gp130/Jak/Stat is sufficient to drive neural regeneration from MGPCs, signaling through gp130 inhibits the neurogenic potential of MGPCs and promotes glial differentiation. We conclude that gp130/Jak/Stat-signaling plays an important role in the network of pathways that drives the formation of proliferating MGPCs; however, this pathway inhibits the neural differentiation of the progeny.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Natalie Squires
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
144
|
The microRNA expression profile of mouse Müller glia in vivo and in vitro. Sci Rep 2016; 6:35423. [PMID: 27739496 PMCID: PMC5064377 DOI: 10.1038/srep35423] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
The profile of miRNAs in mature glia is not well characterized, and most studies have been done in cultured glia. In order to identify the miRNAs in adult and young (postnatal day 11/12) Müller glia of the neural retina, we isolated the Müller glia from Rlbp-CreER: Stopf/f-tdTomato mice by means of fluorescent activated cell sorting and analyzed their miRNAs using NanoStrings Technologies®. In freshly isolated adult Müller glia, we identified 7 miRNAs with high expression levels in the glia, but very low levels in the retinal neurons. These include miR-204, miR-9, and miR-125-5p. We also found 15 miRNAs with high levels of expression in both neurons and glia, and many miRNAs that were enriched in neurons and expressed at lower levels in Müller glia, such as miR-124. We next compared miRNA expression of acutely isolated Müller glia with those that were maintained in dissociated culture for 8 and 14 days. We found that most miRNAs declined in vitro. Interestingly, some miRNAs that were not highly expressed in adult Müller glia increased in cultured cells. Our results thus show the miRNA profile of adult Müller glia and the effects of cell culture on their levels.
Collapse
|
145
|
de Melo J, Clark BS, Blackshaw S. Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Sci Rep 2016; 6:32757. [PMID: 27605455 PMCID: PMC5015061 DOI: 10.1038/srep32757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
Müller glia (MG) are the principal glial cell type in the vertebrate retina. Recent work has identified the LIM homeodomain factor encoding gene Lhx2 as necessary for both Notch signaling and MG differentiation in late-stage retinal progenitor cells (RPCs). However, the extent to which Lhx2 interacts with other intrinsic regulators of MG differentiation is unclear. We investigated this question by investigating the effects of overexpression of multiple transcriptional regulators that are either known or hypothesized to control MG formation, in both wildtype and Lhx2-deficient RPCs. We observe that constitutively elevated Notch signaling, induced by N1ICD electroporation, inhibited gliogenesis in wildtype animals, but rescued MG development in Lhx2-deficient retinas. Electroporation of Nfia promoted the formation of cells with MG-like radial morphology, but did not drive expression of MG molecular markers. Plagl1 and Sox9 did not induce gliogenesis in wildtype animals, but nonetheless activated expression of the Müller marker P27Kip1 in Lhx2-deficient cells. Finally, Sox2, Sox8, and Sox9 promoted amacrine cell formation in Lhx2-deficient cells, but not in wildtype retinas. These findings demonstrate that overexpression of individual gliogenic factors typically regulates only a subset of characteristic MG markers, and that these effects are differentially modulated by Lhx2.
Collapse
Affiliation(s)
- Jimmy de Melo
- Johns Hopkins University School of Medicine, Solomon H. Snyder Department of Neuroscience, Baltimore, 21205, USA
| | - Brian S Clark
- Johns Hopkins University School of Medicine, Solomon H. Snyder Department of Neuroscience, Baltimore, 21205, USA
| | - Seth Blackshaw
- Johns Hopkins University School of Medicine, Solomon H. Snyder Department of Neuroscience, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Department of Ophthalmology, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Center for Human Systems Biology, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Institute for Cell Engineering, Baltimore, 21205, USA
| |
Collapse
|
146
|
Bachleda AR, Pevny LH, Weiss ER. Sox2-Deficient Müller Glia Disrupt the Structural and Functional Maturation of the Mammalian Retina. Invest Ophthalmol Vis Sci 2016; 57:1488-99. [PMID: 27031842 PMCID: PMC4819558 DOI: 10.1167/iovs.15-17994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Müller glia (MG), the principal glial cells of the vertebrate retina, display quiescent progenitor cell characteristics. They express key progenitor markers, including the high mobility group box transcription factor SOX2 and maintain a progenitor-like morphology. In the embryonic and mature central nervous system, SOX2 maintains neural stem cell identity. However, its function in committed Müller glia has yet to be determined. METHODS We use inducible, MG-specific genetic ablation of Sox2 in vivo at the peak of MG genesis to analyze its function in the maturation of murine MG and effects on other cells in the retina. Histologic and functional analysis of the Sox2-deficient retinas is conducted at key points in postnatal development. RESULTS Ablation of Sox2 in the postnatal retina results in disorganization of MG processes in the inner plexiform layer and mislocalized cell bodies in the nuclear layers. This disorganization is concurrent with a thinning of the neural retina and disruption of neuronal processes in the inner and outer plexiform layers. Functional analysis by electroretinography reveals a decrease in the b-wave amplitude. Disruption of MG maturation due to Sox2 ablation therefore negatively affected the function of the retina. CONCLUSIONS These results demonstrate a novel role for SOX2 in glial process outgrowth and adhesion, and provide new insights into the essential role Müller glia play in the development of retinal cytoarchitecture. Prior to this work, SOX2 was known to have a primary role in determining cell fate. Our experiments bypass cell fate conversion to establish a new role for SOX2 in a committed cell lineage.
Collapse
Affiliation(s)
- Amelia R Bachleda
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 2Curriculum in Neurobiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Larysa H Pevny
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 3Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen R Weiss
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 4Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 5Lineberger Comprehe
| |
Collapse
|
147
|
Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolás M, Cosma MP. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest 2016; 126:3104-16. [PMID: 27427986 DOI: 10.1172/jci85193] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/24/2016] [Indexed: 12/17/2022] Open
Abstract
Vision impairments and blindness caused by retinitis pigmentosa result from severe neurodegeneration that leads to a loss of photoreceptors, the specialized light-sensitive neurons that enable vision. Although the mammalian nervous system is unable to replace neurons lost due to degeneration, therapeutic approaches to reprogram resident glial cells to replace retinal neurons have been proposed. Here, we demonstrate that retinal Müller glia can be reprogrammed in vivo into retinal precursors that then differentiate into photoreceptors. We transplanted hematopoietic stem and progenitor cells (HSPCs) into retinas affected by photoreceptor degeneration and observed spontaneous cell fusion events between Müller glia and the transplanted cells. Activation of Wnt signaling in the transplanted HSPCs enhanced survival and proliferation of Müller-HSPC hybrids as well as their reprogramming into intermediate photoreceptor precursors. This suggests that Wnt signaling drives the reprogrammed cells toward a photoreceptor progenitor fate. Finally, Müller-HSPC hybrids differentiated into photoreceptors. Transplantation of HSPCs with activated Wnt functionally rescued the retinal degeneration phenotype in rd10 mice, a model for inherited retinitis pigmentosa. Together, these results suggest that photoreceptors can be generated by reprogramming Müller glia and that this approach may have potential as a strategy for reversing retinal degeneration.
Collapse
|
148
|
Wilken MS, Reh TA. Retinal regeneration in birds and mice. Curr Opin Genet Dev 2016; 40:57-64. [PMID: 27379897 DOI: 10.1016/j.gde.2016.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/19/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
Retinal regeneration from resident Müller glia cells is robust in teleost fish, but is severely limited in birds and mammals. After neurotoxic injury, chick Müller glia can proliferate, and activate neurogenic genes, but they display limited capacity to differentiate into neurons. Developmental signaling molecules enhance this process. Regeneration of retinal neurons in rodents is even more limited. However, studies show evidence of proliferation and neurogenic gene expression after injury, with stronger effects in rats than mice, and differences between mouse strains. Mitogenic growth factors and Wnt signaling potentiate the proliferative response, while misexpression of the proneural transcription factor, Ascl1, reprograms to generate neurons from Müller glial in vitro, and stimulates neuronal regeneration in young mice, in vivo.
Collapse
Affiliation(s)
- Matthew S Wilken
- Department of Biological Structure, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Thomas A Reh
- Department of Biological Structure, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
149
|
Abstract
Müller glia (MG) are the only glial cell type produced by the neuroepithelial progenitor cells that generate the vertebrate retina. MG are required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, in certain vertebrate classes, MG function as adult stem cells, mediating retinal regeneration in response to injury. However, the mechanisms that regulate MG development are poorly understood because there is considerable overlap in gene expression between retinal progenitor cells and differentiated MG. We show that the LIM homeodomain transcription factor Lhx2 is required for the development of MG in the mouse retina. Temporally controlled knock-out studies reveal a requirement for Lhx2 during all stages of MG development, ranging from the proliferation of gliocompetent retinal progenitors, activation of Müller-specific gene expression, and terminal differentiation of MG morphological features. We show that Lhx2 regulates gliogenesis in part by regulating directly the expression of Notch pathway genes including Notch1, Dll1, and Dll3 and gliogenic transcription factors such as Hes1, Hes5, Sox8, and Rax. Conditional knock-out of Lhx2 resulted in a rapid downregulation of Notch pathway genes and loss of Notch signaling. We further demonstrate that Müller gliogenesis induced by misexpression of the potently gliogenic Notch pathway transcriptional effector Hes5 requires Lhx2 expression. These results indicate that Lhx2 not only directly regulates expression of Notch signaling pathway components, but also acts together with the gliogenic Notch pathway to drive MG specification and differentiation.
Collapse
|
150
|
Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, Fischer AJ. mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 2016; 143:1859-73. [PMID: 27068108 PMCID: PMC4920162 DOI: 10.1242/dev.133215] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
We investigate the roles of mTor signaling in the formation of Müller glia-derived progenitor cells (MGPCs) in the chick retina. During embryonic development, pS6 (a readout of active mTor signaling) is present in early-stage retinal progenitors, differentiating amacrine and ganglion cells, and late-stage progenitors or maturing Müller glia. By contrast, pS6 is present at low levels in a few scattered cell types in mature, healthy retina. Following retinal damage, in which MGPCs are known to form, mTor signaling is rapidly activated in Müller glia. Inhibition of mTor in damaged retinas prevented the accumulation of pS6 in Müller glia and reduced numbers of proliferating MGPCs. Inhibition of mTor had no effect on MAPK signaling or on upregulation of the stem cell factor Klf4, whereas Pax6 upregulation was significantly reduced. Inhibition of mTor potently blocked the MGPC-promoting effects of Hedgehog, Wnt and glucocorticoid signaling in damaged retinas. In the absence of retinal damage, insulin, IGF1 and FGF2 induced pS6 in Müller glia, and this was blocked by mTor inhibitor. In FGF2-treated retinas, in which MGPCs are known to form, inhibition of mTor blocked the accumulation of pS6, the upregulation of Pax6 and the formation of proliferating MGPCs. We conclude that mTor signaling is required, but not sufficient, to stimulate Müller glia to give rise to proliferating progenitors, and the network of signaling pathways that drive the formation of MGPCs requires activation of mTor.
Collapse
Affiliation(s)
- Christopher P Zelinka
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Leo Volkov
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Zachary A Goodman
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - William A Bishop
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| |
Collapse
|