101
|
Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 2014; 4:1-32. [PMID: 23599899 PMCID: PMC3627427 DOI: 10.3390/genes4010001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells must accurately and efficiently duplicate their genomes during each round of the cell cycle. Multiple linear chromosomes, an abundance of regulatory elements, and chromosome packaging are all challenges that the eukaryotic DNA replication machinery must successfully overcome. The replication machinery, the “replisome” complex, is composed of many specialized proteins with functions in supporting replication by DNA polymerases. Efficient replisome progression relies on tight coordination between the various factors of the replisome. Further, replisome progression must occur on less than ideal templates at various genomic loci. Here, we describe the functions of the major replisome components, as well as some of the obstacles to efficient DNA replication that the replisome confronts. Together, this review summarizes current understanding of the vastly complicated task of replicating eukaryotic DNA.
Collapse
Affiliation(s)
- Adam R. Leman
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| | - Eishi Noguchi
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| |
Collapse
|
102
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
103
|
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that are important for maintaining genomic integrity. In humans, there are five RECQ helicase genes, and mutations in three of them-BLM, WRN, and RECQL4-are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. Importantly all three diseases are cancer predisposition syndromes. Patients with RTS are highly and uniquely susceptible to developing osteosarcoma; thus, RTS provides a good model to study the pathogenesis of osteosarcoma. The "tumor suppressor" role of RECQL4 and the other RECQ helicases is an area of active investigation. This chapter reviews what is currently known about the cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways may provide insight into avenues for novel cancer therapies in the future.
Collapse
|
104
|
Bruck I, Kaplan DL. The replication initiation protein Sld2 regulates helicase assembly. J Biol Chem 2013; 289:1948-59. [PMID: 24307213 DOI: 10.1074/jbc.m113.532085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32312
| | | |
Collapse
|
105
|
Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:a010371. [PMID: 23881938 DOI: 10.1101/cshperspect.a010371] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2-7 in the pre-RC to an active DNA helicase, the Cdc45-Mcm-GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, and Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
106
|
Chouery E, Guissart C, Mégarbané H, Aral B, Nassif C, Thauvin-Robinet C, Faivre L, Mégarbané A. Craniosynostosis, anal anomalies, and porokeratosis (CDAGS syndrome): Case report and literature review. Eur J Med Genet 2013; 56:674-7. [DOI: 10.1016/j.ejmg.2013.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/23/2013] [Indexed: 11/25/2022]
|
107
|
Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase. Proc Natl Acad Sci U S A 2013; 110:19760-5. [PMID: 24255107 DOI: 10.1073/pnas.1320202110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome transmission fidelity 4 (Ctf4) is a conserved protein required for DNA replication. In this report, interactions between human Ctf4 (hCtf4) and the replicative helicase containing the cell division cycle 45 (Cdc45)/minichromosome maintenance 2-7 (Mcm2-7)/Go, Ichi, Nii, and San (GINS) (CMG) proteins [human CMG (hCMG) complex] were examined. The hCtf4-CMG complex was isolated following in vitro interaction of purified proteins (hCtf4 plus the hCMG complex), coinfection of Spodoptera frugiperda (Sf9) insect cells with viruses expressing the hCMG complex and hCtf4, and from HeLa cell chromatin after benzonase and immunoprecipitation steps. The stability of the hCtf4-CMG complex depends upon interactions between hCtf4 and multiple components of the hCMG complex. The hCtf4-CMG complex, like the hCMG complex, contains DNA helicase activity that is more salt-resistant than the helicase activity of the hCMG complex. We demonstrate that the hCtf4-CMG complex contains a homodimeric hCtf4 and a monomeric hCMG complex and suggest that the homodimeric hCtf4 acts as a platform linking polymerase α to the hCMG complex. The role of the hCMG complex as the core of the replisome is also discussed.
Collapse
|
108
|
Lin SHS, Wang X, Zhang S, Zhang Z, Lee EY, Lee MY. Dynamics of enzymatic interactions during short flap human Okazaki fragment processing by two forms of human DNA polymerase δ. DNA Repair (Amst) 2013; 12:922-35. [PMID: 24035200 PMCID: PMC3825817 DOI: 10.1016/j.dnarep.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/30/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022]
Abstract
Lagging strand DNA replication requires the concerted actions of DNA polymerase δ, Fen1 and DNA ligase I for the removal of the RNA/DNA primers before ligation of Okazaki fragments. To better understand this process in human cells, we have reconstituted Okazaki fragment processing by the short flap pathway in vitro with purified human proteins and oligonucleotide substrates. We systematically characterized the key events in Okazaki fragment processing: the strand displacement, Pol δ/Fen1 combined reactions for removal of the RNA/DNA primer, and the complete reaction with DNA ligase I. Two forms of human DNA polymerase δ were studied: Pol δ4 and Pol δ3, which represent the heterotetramer and the heterotrimer lacking the p12 subunit, respectively. Pol δ3 exhibits very limited strand displacement activity in contrast to Pol δ4, and stalls on encounter with a 5'-blocking oligonucleotide. Pol δ4 and Pol δ3 exhibit different characteristics in the Pol δ/Fen1 reactions. While Pol δ3 produces predominantly 1 and 2 nt cleavage products irrespective of Fen1 concentrations, Pol δ4 produces cleavage fragments of 1-10 nts at low Fen1 concentrations. Pol δ3 and Pol δ4 exhibit comparable formation of ligated products in the complete system. While both are capable of Okazaki fragment processing in vitro, Pol δ3 exhibits ideal characteristics for a role in Okazaki fragment processing. Pol δ3 readily idles and in combination with Fen1 produces primarily 1 nt cleavage products, so that nick translation predominates in the removal of the blocking strand, avoiding the production of longer flaps that require additional processing. These studies represent the first analysis of the two forms of human Pol δ in Okazaki fragment processing. The findings provide evidence for the novel concept that Pol δ3 has a role in lagging strand synthesis, and that both forms of Pol δ may participate in DNA replication in higher eukaryotic cells.
Collapse
Affiliation(s)
- Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Ernest Y.C. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Marietta Y.W.T. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| |
Collapse
|
109
|
Aze A, Zhou JC, Costa A, Costanzo V. DNA replication and homologous recombination factors: acting together to maintain genome stability. Chromosoma 2013; 122:401-13. [PMID: 23584157 DOI: 10.1007/s00412-013-0411-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
Genome duplication requires the coordinated action of multiple proteins to ensure a fast replication with high fidelity. These factors form a complex called the Replisome, which is assembled onto the DNA duplex to promote its unwinding and to catalyze the polymerization of two new strands. Key constituents of the Replisome are the Cdc45-Mcm2-7-GINS helicase and the And1-Claspin-Tipin-Tim1 complex, which coordinate DNA unwinding with polymerase alpha-, delta-, and epsilon- dependent DNA polymerization. These factors encounter numerous obstacles, such as endogenous DNA lesions leading to template breakage and complex structures arising from intrinsic features of specific DNA sequences. To overcome these roadblocks, homologous recombination DNA repair factors, such as Rad51 and the Mre11-Rad50-Nbs1 complex, are required to ensure complete and faithful replication. Consistent with this notion, many of the genes involved in this process result in lethal phenotypes when inactivated in organisms with complex and large genomes. Here, we summarize the architectural and functional properties of the Replisome and propose a unified view of DNA replication and repair processes.
Collapse
Affiliation(s)
- Antoine Aze
- Clare Hall Laboratories, London Research Institute, South Mimms, Herts, EN63LD, UK
| | | | | | | |
Collapse
|
110
|
Gupta S, De S, Srivastava V, Hussain M, Kumari J, Muniyappa K, Sengupta S. RECQL4 and p53 potentiate the activity of polymerase γ and maintain the integrity of the human mitochondrial genome. Carcinogenesis 2013; 35:34-45. [PMID: 24067899 DOI: 10.1093/carcin/bgt315] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (PolγA/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of PolγA. Kinetic constants for interactions between PolγA-RECQL4, PolγA-p53 and PolγB-p53 indicate that RECQL4 and p53 are accessory factors for PolγA-PolγB and PolγA-DNA interactions. RECQL4 enhances the binding of PolγA to DNA, thereby potentiating the exonuclease and polymerization activities of PolγA/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. SUMMARY The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.
Collapse
Affiliation(s)
- Shruti Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
112
|
Chitta KR, Landero-Figueroa JA, Kodali P, Caruso JA, Merino EJ. Identification of selenium-containing proteins in HEK 293 kidney cells using multiple chromatographies, LC–ICPMS and nano-LC–ESIMS. Talanta 2013; 114:25-31. [DOI: 10.1016/j.talanta.2013.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 02/07/2023]
|
113
|
Mcm10 self-association is mediated by an N-terminal coiled-coil domain. PLoS One 2013; 8:e70518. [PMID: 23894664 PMCID: PMC3720919 DOI: 10.1371/journal.pone.0070518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/11/2013] [Indexed: 01/13/2023] Open
Abstract
Minichromosome maintenance protein 10 (Mcm10) is an essential eukaryotic DNA-binding replication factor thought to serve as a scaffold to coordinate enzymatic activities within the replisome. Mcm10 appears to function as an oligomer rather than in its monomeric form (or rather than as a monomer). However, various orthologs have been found to contain 1, 2, 3, 4, or 6 subunits and thus, this issue has remained controversial. Here, we show that self-association of Xenopus laevis Mcm10 is mediated by a conserved coiled-coil (CC) motif within the N-terminal domain (NTD). Crystallographic analysis of the CC at 2.4 Å resolution revealed a three-helix bundle, consistent with the formation of both dimeric and trimeric Mcm10 CCs in solution. Mutation of the side chains at the subunit interface disrupted in vitro dimerization of both the CC and the NTD as monitored by analytical ultracentrifugation. In addition, the same mutations also impeded self-interaction of the full-length protein in vivo, as measured by yeast-two hybrid assays. We conclude that Mcm10 likely forms dimers or trimers to promote its diverse functions during DNA replication.
Collapse
|
114
|
Fang H, Nie L, Chi Z, Liu J, Guo D, Lu X, Hei TK, Balajee AS, Zhao Y. RecQL4 helicase amplification is involved in human breast tumorigenesis. PLoS One 2013; 8:e69600. [PMID: 23894508 PMCID: PMC3718744 DOI: 10.1371/journal.pone.0069600] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/10/2013] [Indexed: 12/20/2022] Open
Abstract
Breast cancer occur both in hereditary and sporadic forms, and the later one comprises an overwhelming majority of breast cancer cases among women. Numerical and structural alterations involving chromosome 8, with loss of short arm (8p) and gain of long arm (8q), are frequently observed in breast cancer cells and tissues. In this study, we show that most of the human breast tumor cell lines examined display an over representation of 8q24, a chromosomal locus RecQL4 is regionally mapped to, and consequently, a markedly elevated level of RecQL4 expression. An increased RecQL4 mRNA level was also observed in a majority of clinical breast tumor samples (38/43) examined. shRNA-mediated RecQL4 suppression in MDA-MB453 breast cancer cells not only significantly inhibit the in vitro clonogenic survival and in vivo tumorigenicity. Further studies demonstrate that RecQL4 physically interacts with a major survival factor-survivin and its protein level affects survivin expression. Although loss of RecQL4 function due to gene mutations causally linked to occurrence of human RTS with features of premature aging and cancer predisposition, our studies provide the evidence that overexpression of RecQL4 due to gene amplification play a critical role in human breast tumor progression.
Collapse
Affiliation(s)
- Hongbo Fang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Linghu Nie
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhenfen Chi
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Guo
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Lu
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tom K. Hei
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Adayabalam S. Balajee
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
- * E-mail: (ASB); (YZ)
| | - Yongliang Zhao
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ASB); (YZ)
| |
Collapse
|
115
|
Das M, Prasad SB, Yadav SS, Govardhan HB, Pandey LK, Singh S, Pradhan S, Narayan G. Over expression of minichromosome maintenance genes is clinically correlated to cervical carcinogenesis. PLoS One 2013; 8:e69607. [PMID: 23874974 PMCID: PMC3714251 DOI: 10.1371/journal.pone.0069607] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
Minichromosome Maintenance (MCM) proteins play important roles in cell cycle progression by mediating DNA replication initiation and elongation. Among 10 MCM homologues MCM 2–7 form a hexamer and assemble to the pre-replication complex acting as replication licensing factors. Binding and function of MCM2-7 to pre-replication complex is regulated by MCM10 mediated binding of RECQL4 with MCM2-7. The purpose of this study is to explore the role of MCMs in cervical cancer and their correlation with the clinical parameters of cervical cancer. We have investigated sixty primary cervical cancer tissue samples, eight cervical cancer cell lines and thirty hysterectomised normal cervical tissue. The expression profiling of MCMs was done using semi-quantitative RT-PCR, immunoblotting and immunohistochemistry. MCM2, 4, 5, 6, 7, 10 and RECQL4 are significantly over-expressed in cervical cancer. Among these, MCM4, 6 and 10 show increased frequency of over expression along with advancement of tumor stages. MCM4, 5 and 6 also show differential expression in different types of lesion, while MCM2 and MCM10 are over expressed in cervical cancer irrespective of clinico-pathological parameters. Our data indicates the role of MCM4, MCM5, MCM6, MCM10 and RECQL4 in the progression of cervical cancer.
Collapse
Affiliation(s)
- Mitali Das
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam Babu Prasad
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Suresh Singh Yadav
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - H. B. Govardhan
- Department of Radiotherapy and Radiation Medicine, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Lakshmi Kant Pandey
- Department of Obstetrics and Gynaecology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Satyajit Pradhan
- Department of Radiotherapy and Radiation Medicine, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
116
|
Jensen MB, Dunn CA, Keijzers G, Kulikowicz T, Rasmussen LJ, Croteau DL, Bohr VA. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. Aging (Albany NY) 2013; 4:790-802. [PMID: 23238538 PMCID: PMC3560432 DOI: 10.18632/aging.100506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RECQL4 is one of five members of the human RecQ helicase family, and is implicated in three syndromes displaying accelerating aging, developmental abnormalities and a predisposition to cancer. In this study, we purified three variants of RECQL4 carrying previously reported patient mutations. These three mutant proteins were analyzed for the known biochemical activities of RECQL4: DNA binding, unwinding of duplex DNA, ATP hydrolysis and annealing of simplex DNA. Further, the mutant proteins were evaluated for stability and recruitment to sites of laser-induced DNA damage. One mutant was helicase-dead, had marginal ATPase activity and may be structurally compromised, while the other two showed greatly reduced helicase and ATPase activities. The remaining biochemical activities and ability to recruit to damage sites were not significantly impaired for any of the mutants. Our findings demonstrate a consistent pattern of functional deficiency and provide further support for a helicase-dependent cellular function of RECQL4 in addition to its Nterminus-dependent role in initiation of replication, a function that may underlie the phenotype of RECQL4-linked disease.
Collapse
Affiliation(s)
- Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
117
|
Chen X, Liu G, Leffak M. Activation of a human chromosomal replication origin by protein tethering. Nucleic Acids Res 2013; 41:6460-74. [PMID: 23658226 PMCID: PMC3711443 DOI: 10.1093/nar/gkt368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences.
Collapse
Affiliation(s)
- Xiaomi Chen
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
118
|
Marino F, Vindigni A, Onesti S. Bioinformatic analysis of RecQ4 helicases reveals the presence of a RQC domain and a Zn knuckle. Biophys Chem 2013; 177-178:34-9. [PMID: 23624328 DOI: 10.1016/j.bpc.2013.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 01/10/2023]
Abstract
RecQ helicases play essential roles in the maintenance of genome stability and contain a highly conserved helicase region generally followed by a characteristic RecQ-C-terminal (RQC) domain, plus a number of variable associated domains. Notable exceptions are the RecQ4 helicases, where none of these additional regions have been described. Particularly striking was the fact that no RQC domain had been reported, considering that the RQC domain had been shown to play an essential role in the catalytic mechanism of most RecQ family members. Here we present the results of detailed bioinformatic analyses of RecQ4 proteins that identify, for the first time, the presence of a putative RQC domain, including some of the key residues involved in DNA binding and unwinding. We also describe the presence of a novel "Zn knuckle" domain, as well as an additional Sld2-homology region, providing new insights into the architecture, function and evolution of these enzymes.
Collapse
Affiliation(s)
- Francesca Marino
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste SCpA, Area Science Park, Basovizza, Trieste, Italy.
| | | | | |
Collapse
|
119
|
Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3-GENES GENOMES GENETICS 2013; 3:273-82. [PMID: 23390603 PMCID: PMC3564987 DOI: 10.1534/g3.112.004754] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/09/2012] [Indexed: 12/15/2022]
Abstract
The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled effectively in simpler eukaryotes such as Saccharomyces cerevisiae. Here we analyze and extend genetic networks of CIN cancer gene orthologs in yeast, focusing on essential genes. This identifies hub genes and processes that are candidate targets for synthetic lethal killing of cancer cells with defined somatic mutations. One hub process in these networks is DNA replication. A nonessential, fork-associated scaffold, CTF4, is among the most highly connected genes. As Ctf4 lacks enzymatic activity, potentially limiting its development as a therapeutic target, we exploited its function as a physical interaction hub to rationally predict synthetic lethal interactions between essential Ctf4-binding proteins and CIN cancer gene orthologs. We then validated a subset of predicted genetic interactions in a human colorectal cancer cell line, showing that siRNA-mediated knockdown of MRE11A sensitizes cells to depletion of various replication fork-associated proteins. Overall, this work describes methods to identify, predict, and validate in cancer cells candidate therapeutic targets for tumors with known somatic mutations in CIN genes using data from yeast. We affirm not only replication stress but also the targeting of DNA replication fork proteins themselves as potential targets for anticancer therapeutic development.
Collapse
|
120
|
Takaya J, Kusunoki S, Ishimi Y. Protein interaction and cellular localization of human CDC45. J Biochem 2013; 153:381-8. [PMID: 23364835 DOI: 10.1093/jb/mvt004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CDC45, which plays a role in eukaryotic DNA replication, is a member of the CMG (CDC45/MCM2-7/GINS) complex that is thought to function as a replicative DNA helicase. However, the biochemical properties of CDC45 are not fully understood. We systematically examined the interactions of human CDC45 with MCM2-7, GINS and other replication proteins by immunoprecipitation. We found that CDC45 can directly interact with all MCM2-7 proteins; with PSF2, PSF3 and SLD5 in GINS subunits; and with replication protein A2 (RPA2), AND-1 and topoisomerase 2-binding protein 1. These results are consistent with the notion that CDC45 plays a role in progression of DNA replication forks. Experiments using antibodies against CDC45 show that the level of CDC45 recovered from the Triton-insoluble chromatin-containing fraction is peaked at middle of S phase in synchronized HeLa cells. However, incubation of the Triton-insoluble fraction with nucleases resulted in recovery of less than half the amount of CDC45 in the nuclease-sensitive fraction; this result is in contrast with RPA1 and proliferating cell nuclear antigen distribution. These results indicate that a considerable portion of CDC45 localizes in a region other than the DNA replication forks in nuclei or it localizes on the replication forks but it is not fractionated with the fork proteins owing to its tight association with presumably nuclear scaffolds.
Collapse
Affiliation(s)
- Junichiro Takaya
- College of Science, Ibaraki University, Mito, Ibaraki 351-8511, Japan
| | | | | |
Collapse
|
121
|
Jaramillo-Lambert A, Hao J, Xiao H, Li Y, Han Z, Zhu W. Acidic nucleoplasmic DNA-binding protein (And-1) controls chromosome congression by regulating the assembly of centromere protein A (CENP-A) at centromeres. J Biol Chem 2012. [PMID: 23184928 DOI: 10.1074/jbc.m112.429266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The centromere is an epigenetically designated chromatin domain that is essential for the accurate segregation of chromosomes during mitosis. The incorporation of centromere protein A (CENP-A) into chromatin is fundamental in defining the centromeric loci. Newly synthesized CENP-A is loaded at centromeres in early G(1) phase by the CENP-A-specific histone chaperone Holliday junction recognition protein (HJURP) coupled with other chromatin assembly factors. However, it is unknown whether there are additional HJURP-interacting factor(s) involving in this process. Here we identify acidic nucleoplasmic DNA-binding protein 1 (And-1) as a new factor that is required for the assembly of CENP-A nucleosomes. And-1 interacts with both CENP-A and HJURP in a prenucleosomal complex, and the association of And-1 with CENP-A is increased during the cell cycle transition from mitosis to G(1) phase. And-1 down-regulation significantly compromises chromosome congression and the deposition of HJURP-CENP-A complexes at centromeres. Consistently, overexpression of And-1 enhances the assembly of CENP-A at centromeres. We conclude that And-1 is an important factor that functions together with HJURP to facilitate the cell cycle-specific recruitment of CENP-A to centromeres.
Collapse
Affiliation(s)
- Aimee Jaramillo-Lambert
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037, USA
| | | | | | | | | | | |
Collapse
|
122
|
Crevel G, Vo N, Crevel I, Hamid S, Hoa L, Miyata S, Cotterill S. Drosophila RecQ4 is directly involved in both DNA replication and the response to UV damage in S2 cells. PLoS One 2012; 7:e49505. [PMID: 23166690 PMCID: PMC3500301 DOI: 10.1371/journal.pone.0049505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/10/2012] [Indexed: 11/18/2022] Open
Abstract
The RecQ4 protein shows homology to both the S.cerevisiae DNA replication protein Sld2 and the DNA repair related RecQ helicases. Experimental data also suggest replication and repair functions for RecQ4, but the precise details of its involvement remain to be clarified. Here we show that depletion of DmRecQ4 by dsRNA interference in S2 cells causes defects consistent with a replication function for the protein. The cells show reduced proliferation associated with an S phase block, reduced BrdU incorporation, and an increase in cells with a subG1 DNA content. At the molecular level we observe reduced chromatin association of DNA polymerase-alpha and PCNA. We also observe increased chromatin association of phosphorylated H2AvD - consistent with the presence of DNA damage and increased apoptosis. Analysis of DmRecQ4 repair function suggests a direct role in NER, as the protein shows rapid but transient nuclear localisation after UV treatment. Re-localisation is not observed after etoposide or H2O2 treatment, indicating that the involvement of DmRecQ4 in repair is likely to be pathway specific. Deletion analysis of DmRecQ4 suggests that the SLD2 domain was essential, but not sufficient, for replication function. In addition a DmRecQ4 N-terminal deletion could efficiently re-localise on UV treatment, suggesting that the determinants for this response are contained in the C terminus of the protein. Finally several deletions show differential rescue of dsRNA generated replication and proliferation phenotypes. These will be useful for a molecular analysis of the specific role of DmRecQ4 in different cellular pathways.
Collapse
Affiliation(s)
- Gilles Crevel
- Department Basic Medical Sciences, St. Georges University London, Cranmer Terrace, London, United Kingdom
| | - Nicole Vo
- Department Basic Medical Sciences, St. Georges University London, Cranmer Terrace, London, United Kingdom
| | - Isabelle Crevel
- Department Basic Medical Sciences, St. Georges University London, Cranmer Terrace, London, United Kingdom
| | - Sana Hamid
- Department Basic Medical Sciences, St. Georges University London, Cranmer Terrace, London, United Kingdom
| | - Lily Hoa
- Department Basic Medical Sciences, St. Georges University London, Cranmer Terrace, London, United Kingdom
| | - Seiji Miyata
- Department Basic Medical Sciences, St. Georges University London, Cranmer Terrace, London, United Kingdom
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Sue Cotterill
- Department Basic Medical Sciences, St. Georges University London, Cranmer Terrace, London, United Kingdom
- * E-mail:
| |
Collapse
|
123
|
Li Y, Xiao H, de Renty C, Jaramillo-Lambert A, Han Z, DePamphilis ML, Brown KJ, Zhu W. The involvement of acidic nucleoplasmic DNA-binding protein (And-1) in the regulation of prereplicative complex (pre-RC) assembly in human cells. J Biol Chem 2012; 287:42469-79. [PMID: 23093411 DOI: 10.1074/jbc.m112.404277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2-7 onto chromatin during late mitosis of the cell cycle. MCM2-7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G(1) phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2-7 to facilitate the assembly of MCM2-7 onto chromatin at replication origins in late mitosis and G(1) phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G(1) phase cells. Thus, human And-1 facilitates loading of the MCM2-7 helicase onto chromatin during the assembly of pre-RC.
Collapse
Affiliation(s)
- Yongming Li
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div 2012; 7:22. [PMID: 23075259 PMCID: PMC3520825 DOI: 10.1186/1747-1028-7-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
125
|
An interaction between human papillomavirus 16 E2 and TopBP1 is required for optimum viral DNA replication and episomal genome establishment. J Virol 2012; 86:12806-15. [PMID: 22973044 DOI: 10.1128/jvi.01002-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In human papillomavirus DNA replication, the viral protein E2 forms homodimers and binds to 12-bp palindromic DNA sequences surrounding the origin of DNA replication. Via a protein-protein interaction, it then recruits the viral helicase E1 to an A/T-rich origin of replication, whereupon a dihexamer forms, resulting in DNA replication initiation. In order to carry out DNA replication, the viral proteins must interact with host factors that are currently not all known. An attractive cellular candidate for regulating viral replication is TopBP1, a known interactor of the E2 protein. In mammalian DNA replication, TopBP1 loads DNA polymerases onto the replicative helicase after the G(1)-to-S transition, and this process is tightly cell cycle controlled. The direct interaction between E2 and TopBP1 would allow E2 to bypass this cell cycle control, resulting in DNA replication more than once per cell cycle, which is a requirement for the viral life cycle. We report here the generation of an HPV16 E2 mutant compromised in TopBP1 interaction in vivo and demonstrate that this mutant retains transcriptional activation and repression functions but has suboptimal DNA replication potential. Introduction of this mutant into a viral life cycle model results in the failure to establish viral episomes. The results present a potential new antiviral target, the E2-TopBP1 interaction, and increase our understanding of the viral life cycle, suggesting that the E2-TopBP1 interaction is essential.
Collapse
|
126
|
RECQL4 in genomic instability and aging. Trends Genet 2012; 28:624-31. [PMID: 22940096 DOI: 10.1016/j.tig.2012.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/21/2012] [Accepted: 08/09/2012] [Indexed: 11/21/2022]
Abstract
Helicases are ubiquitous proteins that unwind DNA and participate in DNA metabolism including replication, repair, transcription, and chromatin organization. The highly conserved RecQ helicase family proteins are important in these transactions and have been termed the guardians of the genome. Humans have five members of this family: WRN, BLM, RECQL4, RECQL1, and RECQL5. The first three of are associated with premature aging and cancer prone syndromes, but the latter two proteins have not yet been implicated in any human disease. Although WRN and BLM have been fairly well characterized, RECQL4 has only recently been intensively investigated. The sum of this work to date has shown that RECQL4 has helicase activity and localizes to telomeres and mitochondria. In addition, new protein partners are emerging, implicating RECQL4 in novel processes. Here, we describe these recent findings which place RECQL4 at the crossroads of genomic instability and aging processes.
Collapse
|
127
|
Singh DK, Ghosh AK, Croteau DL, Bohr VA. RecQ helicases in DNA double strand break repair and telomere maintenance. Mutat Res 2012; 736:15-24. [PMID: 21689668 PMCID: PMC3368089 DOI: 10.1016/j.mrfmmm.2011.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/19/2011] [Accepted: 06/02/2011] [Indexed: 10/24/2022]
Abstract
Organisms are constantly exposed to various environmental insults which could adversely affect the stability of their genome. To protect their genomes against the harmful effect of these environmental insults, organisms have evolved highly diverse and efficient repair mechanisms. Defective DNA repair processes can lead to various kinds of chromosomal and developmental abnormalities. RecQ helicases are a family of evolutionarily conserved, DNA unwinding proteins which are actively engaged in various DNA metabolic processes, telomere maintenance and genome stability. Bacteria and lower eukaryotes, like yeast, have only one RecQ homolog, whereas higher eukaryotes including humans possess multiple RecQ helicases. These multiple RecQ helicases have redundant and/or non-redundant functions depending on the types of DNA damage and DNA repair pathways. Humans have five different RecQ helicases and defects in three of them cause autosomal recessive diseases leading to various kinds of cancer predisposition and/or aging phenotypes. Emerging evidence also suggests that the RecQ helicases have important roles in telomere maintenance. This review mainly focuses on recent knowledge about the roles of RecQ helicases in DNA double strand break repair and telomere maintenance which are important in preserving genome integrity.
Collapse
Affiliation(s)
| | | | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
128
|
Croteau DL, Rossi ML, Ross J, Dawut L, Dunn C, Kulikowicz T, Bohr VA. RAPADILINO RECQL4 mutant protein lacks helicase and ATPase activity. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1727-34. [PMID: 22885111 DOI: 10.1016/j.bbadis.2012.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/17/2012] [Accepted: 07/26/2012] [Indexed: 12/18/2022]
Abstract
The RecQ family of helicases has been shown to play an important role in maintaining genomic stability. In humans, this family has five members and mutations in three of these helicases, BLM, WRN and RECQL4, are associated with disease. Alterations in RECQL4 are associated with three diseases, Rothmund-Thomson syndrome, Baller-Gerold syndrome, and RAPADILINO syndrome. One of the more common mutations found in RECQL4 is the RAPADILINO mutation, c.1390+2delT which is a splice-site mutation leading to an in-frame skipping of exon 7 resulting in 44 amino acids being deleted from the protein (p.Ala420-Ala463del). In order to characterize the RAPADILINO RECQL4 mutant protein, it was expressed in bacteria and purified using an established protocol. Strand annealing, helicase, and ATPase assays were conducted to characterize the protein's activities relative to WT RECQL4. Here we show that strand annealing activity in the absence of ATP is unchanged from that of WT RECQL4. However, the RAPADILINO protein variant lacks helicase and ssDNA-stimulated ATPase activity. These observations help explain the underlying molecular etiology of the disease and our findings provide insight into the genotype and phenotype association among RECQL4 syndromes.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Ohlenschläger O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, Saluz HP, Hortschansky P, Hänel F, Grosse F, Görlach M, Pospiech H. The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res 2012; 40:8309-24. [PMID: 22730300 PMCID: PMC3458545 DOI: 10.1093/nar/gks591] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund–Thomson, RAPADILINO and Baller–Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have identified the first 54 amino acids of RecQL4 (RecQL4_N54) as the minimum interaction region with human TopBP1. The solution structure of RecQL4_N54 was determined by heteronuclear liquid–state nuclear magnetic resonance (NMR) spectroscopy (PDB 2KMU; backbone root-mean-square deviation 0.73 Å). Despite low-sequence homology, the well-defined structure carries an overall helical fold similar to homeodomain DNA-binding proteins but lacks their archetypical, minor groove-binding N-terminal extension. Sequence comparison indicates that this N-terminal homeodomain-like fold is a common hallmark of metazoan RecQL4 and yeast Sld2 DNA replication initiation factors. RecQL4_N54 binds DNA without noticeable sequence specificity yet with apparent preference for branched over double-stranded (ds) or single-stranded (ss) DNA. NMR chemical shift perturbation observed upon titration with Y-shaped, ssDNA and dsDNA shows a major contribution of helix α3 to DNA binding, and additional arginine side chain interactions for the ss and Y-shaped DNA.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstr. 11, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P, Ramamoorthy M, Wang ZM, Singh DK, Akbari M, Kasiviswanathan R, Copeland WC, Bohr VA. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 2012; 11:456-66. [PMID: 22296597 DOI: 10.1111/j.1474-9726.2012.00803.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RECQL4 is associated with Rothmund-Thomson Syndrome (RTS), a rare autosomal recessive disorder characterized by premature aging, genomic instability, and cancer predisposition. RECQL4 is a member of the RecQ helicase family, and has many similarities to WRN protein, which is also implicated in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase γ showed that the polymerase inhibited RECQL4's helicase activity. RECQL4 is the first 3'-5' RecQ helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Boos D, Frigola J, Diffley JFX. Activation of the replicative DNA helicase: breaking up is hard to do. Curr Opin Cell Biol 2012; 24:423-30. [PMID: 22424671 DOI: 10.1016/j.ceb.2012.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/15/2022]
Abstract
The precise duplication of the eukaryotic genome is accomplished by carefully coordinating the loading and activation of the replicative DNA helicase so that each replication origin is unwound and assembles functional bi-directional replisomes just once in each cell cycle. The essential Minichromosome Maintenance 2-7 (Mcm2-7) proteins, comprising the core of the replicative DNA helicase, are first loaded at replication origins in an inactive form. The helicase is then activated by recruitment of the Cdc45 and GINS proteins into a holo-helicase known as CMG (Cdc45, Mcm2-7, GINS). These steps are regulated by multiple mechanisms to ensure that Mcm2-7 loading can only occur during G1 phase, whilst activation of Mcm2-7 cannot occur during G1 phase. Here we review recent progress in understanding these critical reactions focusing on the mechanism of helicase loading and activation.
Collapse
Affiliation(s)
- Dominik Boos
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
132
|
Singh DK, Popuri V, Kulikowicz T, Shevelev I, Ghosh AK, Ramamoorthy M, Rossi ML, Janscak P, Croteau DL, Bohr VA. The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. Nucleic Acids Res 2012; 40:6632-48. [PMID: 22544709 PMCID: PMC3413146 DOI: 10.1093/nar/gks349] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria and yeast possess one RecQ helicase homolog whereas humans contain five RecQ helicases, all of which are important in preserving genome stability. Three of these, BLM, WRN and RECQL4, are mutated in human diseases manifesting in premature aging and cancer. We are interested in determining to which extent these RecQ helicases function cooperatively. Here, we report a novel physical and functional interaction between BLM and RECQL4. Both BLM and RECQL4 interact in vivo and in vitro. We have mapped the BLM interacting site to the N-terminus of RECQL4, comprising amino acids 361–478, and the region of BLM encompassing amino acids 1–902 interacts with RECQL4. RECQL4 specifically stimulates BLM helicase activity on DNA fork substrates in vitro. The in vivo interaction between RECQL4 and BLM is enhanced during the S-phase of the cell cycle, and after treatment with ionizing radiation. The retention of RECQL4 at DNA double-strand breaks is shortened in BLM-deficient cells. Further, depletion of RECQL4 in BLM-deficient cells leads to reduced proliferative capacity and an increased frequency of sister chromatid exchanges. Together, our results suggest that BLM and RECQL4 have coordinated activities that promote genome stability.
Collapse
Affiliation(s)
- Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Broderick R, Ramadurai S, Tóth K, Togashi DM, Ryder AG, Langowski J, Nasheuer HP. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy. PLoS One 2012; 7:e35537. [PMID: 22536402 PMCID: PMC3334904 DOI: 10.1371/journal.pone.0035537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/17/2012] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS) in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.
Collapse
Affiliation(s)
- Ronan Broderick
- Systems Biology Ireland and Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sivaramakrishnan Ramadurai
- Systems Biology Ireland and Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katalin Tóth
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Denisio M. Togashi
- Nanoscale Biophotonics Laboratory, School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Alan G. Ryder
- Nanoscale Biophotonics Laboratory, School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Jörg Langowski
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heinz Peter Nasheuer
- Systems Biology Ireland and Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
134
|
Kohzaki M, Chiourea M, Versini G, Adachi N, Takeda S, Gagos S, Halazonetis TD. The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation. Carcinogenesis 2012; 33:1203-10. [PMID: 22508716 DOI: 10.1093/carcin/bgs149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vertebrate RECQL4 (RECQ4) gene is thought to be the ortholog of budding yeast SLD2. However, RecQL4 contains within its C-terminus a RecQ-like helicase domain, which is absent in Sld2. We established human pre-B lymphocyte Nalm-6 cells, in which the endogenous RECQL4 gene was homozygously targeted such that the entire C-terminus would not be expressed. The RECQL4(ΔC/ΔC) cells behaved like the parental cells during unperturbed DNA replication or after treatment with agents that induce stalling of DNA replication forks, such as hydroxyurea (HU). However, after exposure to ionizing radiation (IR), the RECQL4(ΔC/ΔC) cells exhibited hypersensitivity, inability to complete S phase and prematurely terminated or paused DNA replication forks. Deletion of BLM, a gene that also encodes a RecQ helicase, had the opposite phenotype; an almost wild-type response to IR, but hypersensitivity to HU. Targeting both RECQL4 and BLM resulted in viable cells, which exhibited mostly additive phenotypes compared with those exhibited by the RECQL4(ΔC/ΔC) and the BLM(-/-) cells. We propose that RecQL4 facilitates DNA replication in cells that have been exposed to IR.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
135
|
Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A 2012; 109:6042-7. [PMID: 22474384 DOI: 10.1073/pnas.1203734109] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, although the Mcm2-7 complex is a key component of the replicative DNA helicase, its association with Cdc45 and GINS (the CMG complex) is required for the activation of the DNA helicase. Here, we show that the CMG complex is localized to chromatin in human cells and describe the biochemical properties of the human CMG complex purified from baculovirus-infected Sf9 cells. The isolated complex binds to ssDNA regions in the presence of magnesium and ATP (or a nonhydrolyzable ATP analog), contains maximal DNA helicase in the presence of forked DNA structures, and translocates along the leading strand (3' to 5' direction). The complex hydrolyses ATP in the absence of DNA; unwinds duplex regions up to 500 bp; and either replication protein A or Escherichia coli single stranded binding protein increases the efficiency of displacement of long duplex regions. Using a 200-nt primed circular DNA substrate, the combined action of human DNA polymerase ε and the human CMG complex leads to the formation of products >10 kb in length. These findings suggest that the coordinated action of these replication complexes supports leading strand synthesis.
Collapse
|
136
|
De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K. Replisome Stability at Defective DNA Replication Forks Is Independent of S Phase Checkpoint Kinases. Mol Cell 2012; 45:696-704. [DOI: 10.1016/j.molcel.2012.01.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/17/2011] [Accepted: 01/06/2012] [Indexed: 12/20/2022]
|
137
|
Errico A, Costanzo V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 2012; 47:222-35. [DOI: 10.3109/10409238.2012.655374] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
138
|
Aves SJ, Liu Y, Richards TA. Evolutionary diversification of eukaryotic DNA replication machinery. Subcell Biochem 2012; 62:19-35. [PMID: 22918578 DOI: 10.1007/978-94-007-4572-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA replication research to date has focused on model organisms such as the vertebrate Xenopus laevis and the yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. However, animals and fungi both belong to the Opisthokonta, one of about six eukaryotic phylogenetic 'supergroups', and therefore represent only a fraction of eukaryotic diversity. To explore evolutionary diversification of the eukaryotic DNA replication machinery a bioinformatic approach was used to investigate the presence or absence of yeast/animal replisome components in other eukaryotic taxa. A comparative genomic survey was undertaken of 59 DNA replication proteins in a diverse range of 36 eukaryotes from all six supergroups. Twenty-three proteins including Mcm2-7, Cdc45, RPA1, primase, some DNA polymerase subunits, RFC1-5, PCNA and Fen1 are present in all species examined. A further 20 proteins are present in all six eukaryotic supergroups, although not necessarily in every species: with the exception of RNase H2B and the fork protection complex component Timeless/Tof1, all of these are members of anciently derived paralogous families such as ORC, MCM, GINS or RPA. Together these form a set of 43 proteins that must have been present in the last common eukaryotic ancestor (LCEA). This minimal LCEA replisome is significantly more complex than the related replisome in Archaea, indicating evolutionary events including duplications of DNA replication genes in the LCEA lineage which parallel the early evolution of other complex eukaryotic cellular features.
Collapse
Affiliation(s)
- Stephen J Aves
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | |
Collapse
|
139
|
Abstract
Minichromosome maintenance protein 10 (Mcm10) is a non-enzymatic replication factor required for proper assembly of the eukaryotic replication fork. Mcm10 interacts with single-stranded and double-stranded DNA, DNA polymerase α and Mcm2-7, and is important for activation of the pre-replicative complex and recruitment of subsequent proteins to the origin at the onset of S-phase. In addition, Mcm10 has recently been implicated in coordination of helicase and polymerase activities during replication fork progression. The nature of Mcm10's involvement in these activities, whether direct or indirect, remains unknown. However, recent biochemical and structural characterization of Mcm10 from multiple organisms has provided insights into how Mcm10 utilizes a modular architecture to act as a replisome scaffold, which helps to define possible roles in origin DNA melting, Pol α recruitment and coordination of enzymatic activities during elongation.
Collapse
Affiliation(s)
- Wenyue Du
- Departments of Biological Sciences and Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA,
| | | | | |
Collapse
|
140
|
Abstract
In eukaryotes, the Mcm2-7 complex forms the core of the replicative helicase - the molecular motor that uses ATP binding and hydrolysis to fuel the unwinding of double-stranded DNA at the replication fork. Although it is a toroidal hexameric helicase superficially resembling better-studied homohexameric helicases from prokaryotes and viruses, Mcm2-7 is the only known helicase formed from six unique and essential subunits. Recent biochemical and structural analyses of both Mcm2-7 and a higher-order complex containing additional activator proteins (the CMG complex) shed light on the reason behind this unique subunit assembly: whereas only a limited number of specific ATPase active sites are needed for DNA unwinding, one particular ATPase active site has evolved to form a reversible discontinuity (gate) in the toroidal complex. The activation of Mcm2-7 helicase during S-phase requires physical association of the accessory proteins Cdc45 and GINS; structural data suggest that these accessory factors activate DNA unwinding through closure of the Mcm2-7 gate. Moreover, studies capitalizing on advances in the biochemical reconstitution of eukaryotic DNA replication demonstrate that Mcm2-7 loads onto origins during initiation as a double hexamer, yet does not act as a double-stranded DNA pump during elongation.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | |
Collapse
|
141
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
142
|
Skibbens RV. Sticking a fork in cohesin--it's not done yet! Trends Genet 2011; 27:499-506. [PMID: 21943501 DOI: 10.1016/j.tig.2011.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 12/28/2022]
Abstract
To identify the products of chromosome replication (termed sister chromatids) from S-phase through M-phase of the cell cycle, each sister pair becomes tethered together by specialized protein complexes termed cohesins. To participate in sister tethering reactions, chromatin-bound cohesins become modified by establishment factors that function during S-phase and bind to DNA replication-fork components. Early models posited that establishment factors might move with replication forks, but that fork progression takes place independently of cohesion pathways. Recent studies now suggest that progression of the replication fork and/or S-phase are slowed in cohesion-deficient cells. These findings have led to speculations that cohesin ring-like structures normally hinder fork progression but coordinate origin firing during replication. Neither model, however, fully explains the diverse effects of cohesion mutation on replication kinetics. I discuss these challenges and then offer alternative views that include cohesin-independent mechanisms for replication-fork destabilization and transcription-based effects on S-phase progression.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
| |
Collapse
|
143
|
Abstract
Histone acetyltransferases (HATs) play a central role in the modification of chromatin as well as in pathogenesis of a broad set of diseases including cancers. Gcn5 is the first identified transcription-related histone acetyltransferase (HAT) that has been implicated in the regulation of diverse cellular functions. However, how Gcn5 proteins are regulated remains largely unknown. Here we show that And-1 (a HMG domain-containing protein) has remarkable capability to regulate the stability of Gcn5 proteins and thereby histone H3 acetylation. We find that And-1 forms a complex with both histone H3 and Gcn5. Downregulation of And-1 results in Gcn5 degradation, leading to the reduction of H3K9 and H3K56 acetylation. And-1 overexpression stabilizes Gcn5 through protein-protein interactions in vivo. Furthermore, And-1 expression is increased in cancer cells in a manner correlating with increased Gcn5 and H3K9Ac and H3K56Ac. Thus, our data reveal not only a functional link between Gcn5 and And-1 that is essential to regulate Gcn5 protein stability and histone H3 acetylation, but also a potential role of And-1 in cancer.
Collapse
|
144
|
Bermudez VP, Farina A, Raghavan V, Tappin I, Hurwitz J. Studies on human DNA polymerase epsilon and GINS complex and their role in DNA replication. J Biol Chem 2011; 286:28963-28977. [PMID: 21705323 DOI: 10.1074/jbc.m111.256289] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis.
Collapse
Affiliation(s)
- Vladimir P Bermudez
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Andrea Farina
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Vineetha Raghavan
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Inger Tappin
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021.
| |
Collapse
|
145
|
Gosnell JA, Christensen TW. Drosophila Ctf4 is essential for efficient DNA replication and normal cell cycle progression. BMC Mol Biol 2011; 12:13. [PMID: 21470422 PMCID: PMC3082215 DOI: 10.1186/1471-2199-12-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proper coordination of the functions at the DNA replication fork is vital to the normal functioning of a cell. Specifically the precise coordination of helicase and polymerase activity is crucial for efficient passage though S phase. The Ctf4 protein has been shown to be a central member of the replication fork and links the replicative MCM helicase and DNA polymerase α primase. In addition, it has been implicated as a member of a complex that promotes replication fork stability, the Fork Protection Complex (FPC), and as being important for sister chromatid cohesion. As such, understanding the role of Ctf4 within the context of a multicellular organism will be integral to our understanding of its potential role in developmental and disease processes. RESULTS We find that Drosophila Ctf4 is a conserved protein that interacts with members of the GINS complex, Mcm2, and Polymerase α primase. Using in vivo RNAi knockdown of CTF4 in Drosophila we show that Ctf4 is required for viability, S phase progression, sister chromatid cohesion, endoreplication, and coping with replication stress. CONCLUSIONS Ctf4 remains a central player in DNA replication. Our findings are consistent with what has been previously reported for CTF4 function in yeast, Xenopus extracts, and human tissue culture. We show that Ctf4 function is conserved and that Drosophila can be effectively used as a model to further probe the precise function of Ctf4 as a member of the replication fork and possible roles in development.
Collapse
Affiliation(s)
- Justin A Gosnell
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
146
|
Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 2011; 18:471-7. [PMID: 21378962 PMCID: PMC4184033 DOI: 10.1038/nsmb.2004] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/09/2010] [Indexed: 11/09/2022]
Abstract
Two central steps for initiating eukaryotic DNA replication involve loading of the Mcm2-7 helicase onto double-stranded DNA and its activation by GINS-Cdc45. To better understand these events, we determined the structures of Mcm2-7 and the CMG complex by using single-particle electron microscopy. Mcm2-7 adopts two conformations--a lock-washer-shaped spiral state and a planar, gapped-ring form--in which Mcm2 and Mcm5 flank a breach in the helicase perimeter. GINS and Cdc45 bridge this gap, forming a topologically closed assembly with a large interior channel; nucleotide binding further seals off the discontinuity between Mcm2 and Mcm5, partitioning the channel into two smaller pores. Together, our data help explain how GINS and Cdc45 activate Mcm2-7, indicate that Mcm2-7 loading may be assisted by a natural predisposition of the hexamer to form open rings, and suggest a mechanism by which the CMG complex assists DNA strand separation.
Collapse
Affiliation(s)
- Alessandro Costa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Gambus A, Khoudoli GA, Jones RC, Blow JJ. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 2011; 286:11855-64. [PMID: 21282109 PMCID: PMC3064236 DOI: 10.1074/jbc.m110.199521] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/06/2011] [Indexed: 02/01/2023] Open
Abstract
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to license them for initiation in the upcoming S phase. After initiation, Mcm2-7 provide helicase activity to unwind DNA at the replication fork. Here we examine the structure of Mcm2-7 on chromatin in Xenopus egg extracts. We show that prior to replication initiation, Mcm2-7 is present at licensed replication origins in a complex with a molecular mass close to double that of the Mcm2-7 hexamer. This complex has approximately stoichiometric quantities of the 6 Mcm2-7 proteins and we conclude that it consists of a double heterohexamer. This provides a configuration potentially capable of initiating a pair of bidirectional replication forks in S phase. We also show that after initiation, Mcm2-7 associate with Cdc45 and GINS to form a relatively stable CMG (Cdc45-MCM-GINS) complex. The CMG proteins also associate less strongly with other replication proteins, consistent with the idea that a single CMG complex forms the core of the replisome.
Collapse
Affiliation(s)
- Agnieszka Gambus
- From the Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee DD1 5EH, United Kingdom and
| | - Guennadi A. Khoudoli
- From the Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee DD1 5EH, United Kingdom and
| | | | - J. Julian Blow
- From the Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee DD1 5EH, United Kingdom and
| |
Collapse
|
148
|
Masai H. RecQL4: a helicase linking formation and maintenance of a replication fork. J Biochem 2011; 149:629-31. [DOI: 10.1093/jb/mvr031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
149
|
Su Y, Meador JA, Calaf GM, Proietti De-Santis L, Zhao Y, Bohr VA, Balajee AS. Human RecQL4 helicase plays critical roles in prostate carcinogenesis. Cancer Res 2010; 70:9207-17. [PMID: 21045146 DOI: 10.1158/0008-5472.can-10-1743] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the second leading cause of cancer-associated deaths among men in the western countries. Here, we report that human RecQL4 helicase, which is implicated in the pathogenesis of a subset of cancer-prone Rothmund-Thomson syndrome, is highly elevated in metastatic prostate cancer cell lines. Increased RecQL4 expression was also detected in human prostate tumor tissues as a function of tumor grade with the highest expression level in metastatic tumor samples, suggesting that RecQL4 may be a potential prognostic factor for advanced stage of prostate cancer. Transient and stable suppression of RecQL4 by small interfering RNA and short hairpin RNA vectors drastically reduced the growth and survival of metastatic prostate cancer cells, indicating that RecQL4 is a prosurvival factor for prostate cancer cells. RecQL4 suppression led to increased poly(ADP-ribose) polymerase (PARP) synthesis and RecQL4-suppressed prostate cancer cells underwent an extensive apoptotic death in a PARP-1-dependent manner. Most notably, RecQL4 knockdown in metastatic prostate cancer cells drastically reduced their cell invasiveness in vitro and tumorigenicity in vivo, showing that RecQL4 is essential for prostate cancer promotion. Observation of a direct interaction of retinoblastoma (Rb) and E2F1 proteins with RecQL4 promoter suggests that Rb-E2F1 pathway may regulate RecQL4 expression. Collectively, our study shows that RecQL4 is an essential factor for prostate carcinogenesis.
Collapse
Affiliation(s)
- Yanrong Su
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Recent work has greatly contributed to the understanding of the biology and biochemistry of RecQ4. It plays an essential non-enzymatic role in the formation of the CMG complex, and thus replication initiation, by means of its Sld2 homologous domain. The helicase domain of RecQ4 has now been demonstrated to possess 3'-5' DNA helicase activity, like the other members of the RecQ family. The biological purpose of this activity is still unclear, but helicase-dead mutants are unable to restore viability in the absence of wildtype RecQ4. This indicates that RecQ4 performs a second role, which requires helicase activity and is implicated in replication and DNA repair. Thus, it is clear that two helicases, RecQ4 and Mcm2-7, are integral to replication. The nature of the simultaneous involvement of these two helicases remains to be determined, and possible models will be proposed.
Collapse
Affiliation(s)
- Christopher Capp
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|