101
|
Lina TT, Alzahrani S, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Immune evasion strategies used by Helicobacter pylori. World J Gastroenterol 2014; 20:12753-12766. [PMID: 25278676 PMCID: PMC4177461 DOI: 10.3748/wjg.v20.i36.12753] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/07/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.
Collapse
|
102
|
Abstract
BACKGROUND Gastric cancer is the second most common cause of cancer deaths worldwide. The vast majority of gastric cancers are inflammation-related cancers caused by infection with Helicobacter pylori. H. pylori-induced oxidative stress damages DNA, resulting in genetic instability. In addition, H. pylori itself can cause DNA damage and epigenetic changes that trigger genetic instability and neoplastic transformation. SUMMARY H. pylori strain-specific components act in combination with host factors and environmental and dietary factors to greatly enhance the inflammatory response and thus the cancer risk. Variations in several key factors, such as the cag pathogenicity island and the VacA protein, can trigger a greater inflammatory response in host cells. Genetic polymorphisms in the host such as in the IL-1β gene, and chromosomes 9p21.3 and 10q23 also play a contributing role. Finally, diet is a major external factor that modulates the risk of gastric cancer. KEY MESSAGE The majority of gastric cancers are inflammation-related cancers caused by infection with H. pylori. Eradication of H. pylori is important for the prevention and treatment of gastric cancer. PRACTICAL IMPLICATIONS H. pylori eradication results in healing of gastritis and prevention of further H. pylori-induced genetic damage. Eradication of H. pylori prior to development of atrophic gastritis can prevent the development of gastric cancer. Japan has undertaken a nationwide program to identify and eliminate H. pylori, along with surveillance for those who underwent H. pylori eradication too late to eliminate cancer risk. Population-wide eradication of H. pylori will result in gastric cancer becoming a vanishingly rare disease.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - David Y. Graham
- Department of Medicine, Michael E. DeBakey VAMC and Baylor College of Medicine, Houston, Tex., USA
| |
Collapse
|
103
|
Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biol 2014; 12:e1001845. [PMID: 24781109 PMCID: PMC4004538 DOI: 10.1371/journal.pbio.1001845] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/21/2014] [Indexed: 11/23/2022] Open
Abstract
The intracellular human protozoan parasite Toxoplasma gondii uses a novel secreted protein to recruit host mitochondria and alter the host's response to infection. Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA−) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA− strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria. Recent discoveries have revealed the remarkable functional diversity of mitochondria in roles other than energy production, including an integral role for mitochondria and their dynamics in the regulation of the innate immune response. Interestingly, host mitochondria are recruited to the membranes that surround certain intracellular bacteria and parasites during infection. To date, how and why this phenomenon occurs has been a mystery, although it has been proposed to provide a metabolic benefit to the microbes. Here we identify mitochondrial association factor 1 (MAF1) as the parasite protein that mediates the association between the protozoan pathogen Toxoplasma and host mitochondria during infection. We show that MAF1 is needed to recruit host mitochondria to the Toxoplasma-containing vacuole and that this process is associated with changes in the immune response in infected cells and animals. These findings show that recruitment and association with host mitochondria is an important means by which intracellular pathogens interface with their host. We also find that the cost–benefit outcome of altering mitochondrial function might differ between strains depending on the precise niche in which they evolved; for infectious agents, these differences likely reflect different host organisms.
Collapse
|
104
|
Lum M, Morona R. Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection. Int J Med Microbiol 2014; 304:530-41. [PMID: 24755420 DOI: 10.1016/j.ijmm.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
Shigella infection in epithelial cells induces cell death which is accompanied by mitochondrial dysfunction. In this study the role of the mitochondrial fission protein, Drp1 during Shigella infection in HeLa cells was examined. Significant lactate dehydrogenase (LDH) release was detected in the culture supernatant when HeLa cells were infected with Shigella at a high multiplicity of infection. Drp1 inhibition with Mdivi-1 and siRNA knockdown significantly reduced LDH release. HeLa cell death was also accompanied by mitochondrial fragmentation. Tubular mitochondrial networks were partially restored when Drp1 was depleted with either siRNA or inhibited with Mdivi-1. Surprisingly either Mdivi-1 treatment or Drp1 siRNA-depletion of HeLa cells also reduced Shigella plaque formation. The effect of Mdivi-1 on Shigella infection was assessed using the murine Sereny model, however it had no impact on ocular inflammation. Overall our results suggest that Drp1 and the mitochondria play important roles during Shigella infection.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
105
|
Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett 2014; 345:196-202. [PMID: 23981572 DOI: 10.1016/j.canlet.2013.08.016] [Citation(s) in RCA: 517] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023]
|
106
|
Alaimo A, Gorojod RM, Beauquis J, Muñoz MJ, Saravia F, Kotler ML. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS One 2014; 9:e91848. [PMID: 24632637 PMCID: PMC3954806 DOI: 10.1371/journal.pone.0091848] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Agustina Alaimo
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Roxana M. Gorojod
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Manuel J. Muñoz
- Departamento de Fisiología, Biología Molecular y Celular and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Mónica L. Kotler
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
107
|
Akazawa Y, Isomoto H, Matsushima K, Kanda T, Minami H, Yamaghchi N, Taura N, Shiozawa K, Ohnita K, Takeshima F, Nakano M, Moss J, Hirayama T, Nakao K. Endoplasmic reticulum stress contributes to Helicobacter pylori VacA-induced apoptosis. PLoS One 2013; 8:e82322. [PMID: 24349255 PMCID: PMC3862672 DOI: 10.1371/journal.pone.0082322] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 10/31/2013] [Indexed: 12/17/2022] Open
Abstract
Vacuolating cytotoxin A (VacA) is one of the important virulence factors produced by H. pylori. VacA induces apoptotic cell death, which is potentiated by ammonia. VacA also causes cell death by mitochondrial damage, via signaling pathways that are not fully defined. Our aim was to determine whether endoplasmic reticulum (ER) stress is associated with VacA-induced mitochondrial dysfunction and apoptosis. We found that C/EBP homologous protein (CHOP), a key signaling protein of ER stress-induced apoptosis, was transcriptionally up-regulated following incubation of gastric epithelial cells with VacA. The effect of VacA on CHOP induction was significantly enhanced by co-incubation with ammonium chloride. Phosphorylation of eukaryotic initiation factor 2 (eIF2)-alpha, which is known to occur downstream of the ER stress sensor PKR-like ER-localized eIF2-alpha kinase (PERK) and to regulate CHOP expression, was also observed following incubation with VacA in the presence of ammonium chloride. Knockdown of CHOP by siRNA resulted in inhibition of VacA-induced apoptosis. Further studies showed that silencing of the PERK gene with siRNA attenuated VacA-mediated phosphorylation of eIF2-alpha, CHOP induction, expression of BH3-only protein Bim and Bax activation, and cell death induced by VacA with ammonium chloride, indicating that ER stress may lead to mitochondrial dysfunction during VacA-induced toxicity. Activation of ER stress and up-regulation of BH3-only proteins were also observed in human H. pylori-infected gastric mucosa. Collectively, this study reveals a possible association between VacA-induced apoptosis in gastric epithelial cells, and activation of ER stress in H. pylori-positive gastric mucosa.
Collapse
Affiliation(s)
- Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
- * E-mail:
| | - Hajime Isomoto
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Tsutomu Kanda
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hitomi Minami
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoyuki Yamaghchi
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Naota Taura
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Ken Shiozawa
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Fuminao Takeshima
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| | - Masayuki Nakano
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
108
|
Abstract
Helicobacter pylori colonizes the human stomach and confers an increased risk for the development of peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. A secreted H. pylori toxin, VacA, can cause multiple alterations in gastric epithelial cells, including cell death. In this study, we sought to identify host cell factors that are required for VacA-induced cell death. To do this, we analyzed gene trap and short hairpin RNA (shRNA) libraries in AZ-521 human gastric epithelial cells and selected for VacA-resistant clones. Among the VacA-resistant clones, we identified multiple gene trap library clones and an shRNA library clone with disrupted expression of connexin 43 (Cx43) (also known as gap junction protein alpha 1 [GJA1]). Further experiments with Cx43-specific shRNAs confirmed that a reduction in Cx43 expression results in resistance to VacA-induced cell death. Immunofluorescence microscopy experiments indicated that VacA did not colocalize with Cx43. We detected production of the Cx43 protein in AZ-521 cells but not in AGS, HeLa, or RK-13 cells, and correspondingly, AZ-521 cells were the most susceptible to VacA-induced cell death. When Cx43 was expressed in HeLa cells, the cells became more susceptible to VacA. These results indicate that Cx43 is a host cell constituent that contributes to VacA-induced cell death and that variation among cell types in susceptibility to VacA-induced cell death is attributable at least in part to cell type-specific differences in Cx43 production.
Collapse
|
109
|
Posselt G, Backert S, Wessler S. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 2013; 11:77. [PMID: 24099599 PMCID: PMC3851490 DOI: 10.1186/1478-811x-11-77] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) can lead to severe gastric diseases ranging from chronic gastritis and ulceration to neoplastic changes in the stomach. Development and progress of H. pylori-associated disorders are determined by multifarious bacterial factors. Many of them interact directly with host cells or require specific receptors, while others enter the host cytoplasm to derail cellular functions. Several adhesins (e.g. BabA, SabA, AlpA/B, or OipA) establish close contact with the gastric epithelium as an important first step in persistent colonization. Soluble H. pylori factors (e.g. urease, VacA, or HtrA) have been suggested to alter cell survival and intercellular adhesions. Via a type IV secretion system (T4SS), H. pylori also translocates the effector cytotoxin-associated gene A (CagA) and peptidoglycan directly into the host cytoplasm, where cancer- and inflammation-associated signal transduction pathways can be deregulated. Through these manifold possibilities of interaction with host cells, H. pylori interferes with the complex signal transduction networks in its host and mediates a multi-step pathogenesis.
Collapse
Affiliation(s)
- Gernot Posselt
- Division of Molecular Biology, Department of Microbiology, Paris-Lodron University, Salzburg, Austria.
| | | | | |
Collapse
|
110
|
Bimczok D, Smythies LE, Waites KB, Grams JM, Stahl RD, Mannon PJ, Peter S, Wilcox CM, Harris PR, Das S, Ernst PB, Smith PD. Helicobacter pylori infection inhibits phagocyte clearance of apoptotic gastric epithelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:6626-34. [PMID: 23686492 DOI: 10.4049/jimmunol.1203330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased apoptotic death of gastric epithelial cells is a hallmark of Helicobacter pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells (AECs) in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR(+) mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive AEC material, indicating that gastric phagocytes are involved in AEC clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the AECs by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-α, which was expressed at higher levels in H. pylori-infected, compared with uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of AECs and higher levels of nonphagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.
Collapse
Affiliation(s)
- Diane Bimczok
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Sun EW, Wagner ML, Maize A, Kemler D, Garland-Kuntz E, Xu L, Luo ZQ, Hollenbeck PJ. Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics. PLoS One 2013; 8:e62972. [PMID: 23638172 PMCID: PMC3640039 DOI: 10.1371/journal.pone.0062972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/28/2013] [Indexed: 12/02/2022] Open
Abstract
During infection of cells by Legionella pneumophila, the bacterium secretes a large number of effector proteins into the host cell cytoplasm, allowing it to alter many cellular processes and make the vacuole and the host cell into more hospitable environments for bacterial replication. One major change induced by infection is the recruitment of ER-derived vesicles to the surface of the vacuole, where they fuse with the vacuole membrane and prevent it from becoming an acidified, degradative compartment. However, the recruitment of mitochondria to the region of the vacuole has also been suggested by ultrastructural studies. In order to test this idea in a controlled and quantitative experimental system, and to lay the groundwork for a genome-wide screen for factors involved in mitochondrial recruitment, we examined the behavior of mitochondria during the early stages of Legionella pneumophila infection of Drosophila S2 cells. We found that the density of mitochondria near vacuoles formed by infection with wild type Legionella was not different from that found in dotA– mutant-infected cells during the first 4 hours after infection. We then examined 4 parameters of mitochondrial motility in infected cells: velocity of movement, duty cycle of movement, directional persistence and net direction. In the 4 hours following infection, most of these measures were indistinguishable between wild type and dotA−.infection. However, wild type Legionella did induce a modest shift in the velocity distribution toward faster movement compared dotA− infection, and a small downward shift in the duty cycle distribution. In addition, wild type infection produced mitochondrial movement that was biased in the direction of the bacterial vacuole relative to dotA-, although not enough to cause a significant accumulation within 10 um of the vacuole. We conclude that in this host cell, mitochondria are not strongly recruited to the vacuole, nor is their motility dramatically affected.
Collapse
Affiliation(s)
- Elizabeth Wen Sun
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Monica L. Wagner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Amanda Maize
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Doris Kemler
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Elisabeth Garland-Kuntz
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Li Xu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Peter J. Hollenbeck
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
112
|
Buret AG, Bhargava A. Modulatory mechanisms of enterocyte apoptosis by viral, bacterial and parasitic pathogens. Crit Rev Microbiol 2013; 40:1-17. [DOI: 10.3109/1040841x.2012.746952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
113
|
Chambers MG, Pyburn TM, González-Rivera C, Collier SE, Eli I, Yip CK, Takizawa Y, Lacy DB, Cover TL, Ohi MD. Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. J Mol Biol 2012. [PMID: 23178866 DOI: 10.1016/j.jmb.2012.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach and contributes to peptic ulceration and gastric adenocarcinoma. H. pylori secretes a pore-forming exotoxin known as vacuolating toxin (VacA). VacA contains two distinct domains, designated p33 and p55, and assembles into large "snowflake"-shaped oligomers. Thus far, no structural data are available for the p33 domain, which is essential for membrane channel formation. Using single-particle electron microscopy and the random conical tilt approach, we have determined the three-dimensional structures of six VacA oligomeric conformations at ~15-Å resolution. The p55 domain, composed primarily of β-helical structures, localizes to the peripheral arms, while the p33 domain consists of two globular densities that localize within the center of the complexes. By fitting the VacA p55 crystal structure into the electron microscopy densities, we have mapped inter-VacA interactions that support oligomerization. In addition, we have examined VacA variants/mutants that differ from wild-type (WT) VacA in toxin activity and/or oligomeric structural features. Oligomers formed by VacA∆6-27, a mutant that fails to form membrane channels, lack an organized p33 central core. Mixed oligomers containing both WT and VacA∆6-27 subunits also lack an organized core. Oligomers formed by a VacA s2m1 chimera (which lacks cell-vacuolating activity) and VacAΔ301-328 (which retains vacuolating activity) each contain p33 central cores similar to those of WT oligomers. By providing the most detailed view of the VacA structure to date, these data offer new insights into the toxin's channel-forming component and the intermolecular interactions that underlie oligomeric assembly.
Collapse
Affiliation(s)
- Melissa G Chambers
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Helicobacter pylori VacA: a new perspective on an invasive chloride channel. Microbes Infect 2012; 14:1026-33. [DOI: 10.1016/j.micinf.2012.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/17/2022]
|
115
|
Abstract
Although Helicobacter pylori infection is highly prevalent in the global human population, the majority of infected individuals remain asymptomatic. A complex combination of host, environmental, and bacterial factors are considered to determine susceptibility and severity of outcome in the subset of individuals that develop clinical disease. These factors collectively determine the ability of H. pylori to colonize the gastric mucosa and profoundly influence the nature of the interaction that ensues. Many studies over the last year provide new insight into H. pylori virulence strategies and the activities of critical bacterial determinants that modulate the host environment. These latter include the secreted proteins CagA and VacA and adhesins BabA and OipA, which directly interact with host tissues. Observations from several studies extend the functional repertoire of CagA and the cag type IV secretion system in particular, providing further mechanistic understanding of how these important determinants engage and activate host signalling pathways important in the development of disease.
Collapse
Affiliation(s)
- Robin M Delahay
- Centre for Biomolecular Sciences and Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
116
|
Abstract
The immune response to Helicobacter pylori is a multifaceted group of mechanisms involving responses that are both protective and damaging to the host. The innate and the adaptive immune responses lead to damaging inflammatory responses, but these responses may fail, allowing for persistence of many infections. Thus, developing new therapeutics and effective vaccines against H. pylori has proven to be arduous. In this manuscript, we will examine the advances in knowledge made in the past year in understanding the host immune response to H. pylori and the progress toward developing a vaccine.
Collapse
Affiliation(s)
- Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Irina V. Pinchuk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Ellen J. Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
117
|
González-Rivera C, Algood HMS, Radin JN, McClain MS, Cover TL. The intermediate region of Helicobacter pylori VacA is a determinant of toxin potency in a Jurkat T cell assay. Infect Immun 2012; 80:2578-88. [PMID: 22585965 PMCID: PMC3434591 DOI: 10.1128/iai.00052-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/04/2012] [Indexed: 02/08/2023] Open
Abstract
Colonization of the human stomach with Helicobacter pylori is a risk factor for peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. The secreted VacA toxin is an important H. pylori virulence factor that causes multiple alterations in gastric epithelial cells and T cells. Several families of vacA alleles have been described, and H. pylori strains containing certain vacA types (s1, i1, and m1) are associated with an increased risk of gastric disease, compared to strains containing other vacA types (s2, i2, and m2). Thus far, there has been relatively little study of the role of the VacA intermediate region (i-region) in toxin activity. In this study, we compared the ability of i1 and i2 forms of VacA to cause functional alterations in Jurkat cells. To do this, we manipulated the chromosomal vacA gene in two H. pylori strains to introduce alterations in the region encoding the VacA i-region. We did not detect any differences in the capacity of i1 and i2 forms of VacA to cause vacuolation of RK13 cells. In comparison to i1 forms of VacA, i2 forms of VacA had a diminished capacity to inhibit the activation of nuclear factor of activated T cells (NFAT) and suppress interleukin-2 (IL-2) production. Correspondingly, i2 forms of VacA bound to Jurkat cells less avidly than did i1 forms of VacA. These results indicate that the VacA i-region is an important determinant of VacA effects on human T cell function.
Collapse
Affiliation(s)
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jana N. Radin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
118
|
Yahiro K, Satoh M, Nakano M, Hisatsune J, Isomoto H, Sap J, Suzuki H, Nomura F, Noda M, Moss J, Hirayama T. Low-density lipoprotein receptor-related protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA. J Biol Chem 2012; 287:31104-15. [PMID: 22822085 DOI: 10.1074/jbc.m112.387498] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In Helicobacter pylori infection, vacuolating cytotoxin (VacA)-induced mitochondrial damage leading to apoptosis is believed to be a major cause of cell death. It has also been proposed that VacA-induced autophagy serves as a host mechanism to limit toxin-induced cellular damage. Apoptosis and autophagy are two dynamic and opposing processes that must be balanced to regulate cell death and survival. Here we identify the low-density lipoprotein receptor-related protein-1 (LRP1) as the VacA receptor for toxin-induced autophagy in the gastric epithelial cell line AZ-521, and show that VacA internalization through binding to LRP1 regulates the autophagic process including generation of LC3-II from LC3-I, which is involved in formation of autophagosomes and autolysosomes. Knockdown of LRP1 and Atg5 inhibited generation of LC3-II as well as cleavage of PARP, a marker of apoptosis, in response to VacA, whereas caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethylketone (Z-VAD-fmk), and necroptosis inhibitor, Necrostatin-1, did not inhibit VacA-induced autophagy, suggesting that VacA-induced autophagy via LRP1 binding precedes apoptosis. Other VacA receptors such as RPTPα, RPTPβ, and fibronectin did not affect VacA-induced autophagy or apoptosis. Therefore, we propose that the cell surface receptor, LRP1, mediates VacA-induced autophagy and apoptosis.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Palframan SL, Kwok T, Gabriel K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol 2012; 2:92. [PMID: 22919683 PMCID: PMC3417644 DOI: 10.3389/fcimb.2012.00092] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
More than 50% of the world's population is infected with Helicobacter pylori (H. pylori). Chronic infection with this Gram-negative pathogen is associated with the development of peptic ulcers and is linked to an increased risk of gastric cancer. H. pylori secretes many proteinaceous factors that are important for initial colonization and subsequent persistence in the host stomach. One of the major protein toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA). After secretion from the bacteria via a type V autotransport secretion system, the 88 kDa VacA toxin (comprised of the p33 and p55 subunits) binds to host cells and is internalized, causing severe “vacuolation” characterized by the accumulation of large vesicles that possess hallmarks of both late endosomes and early lysosomes. The development of “vacuoles” has been attributed to the formation of VacA anion-selective channels in membranes. Apart from its vacuolating effects, it has recently become clear that VacA also directly affects mitochondrial function. Earlier studies suggested that the p33 subunit, but not the p55 subunit of VacA, could enter mitochondria to modulate organelle function. This raised the possibility that a mechanism separate from pore formation may be responsible for the effects of VacA on mitochondria, as crystallography studies and structural modeling predict that both subunits are required for a physiologically stable pore. It has also been suggested that the mitochondrial effects observed are due to indirect effects on pro-apoptotic proteins and direct effects on mitochondrial morphology-related processes. Other studies have shown that both the p55 and p33 subunits can indeed be efficiently imported into mammalian-derived mitochondria raising the possibility that they could re-assemble to form a pore. Our review summarizes and consolidates the recent advances in VacA toxin research, with focus on the outstanding controversies in the field and the key remaining questions that need to be addressed.
Collapse
Affiliation(s)
- Samuel L Palframan
- Host Pathogens Molecular Biology Group, Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC, Australia
| | | | | |
Collapse
|
120
|
Jiang JH, Tong J, Gabriel K. Hijacking Mitochondria: Bacterial Toxins that Modulate Mitochondrial Function. IUBMB Life 2012; 64:397-401. [DOI: 10.1002/iub.1021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
121
|
Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2012; 2:37. [PMID: 22919629 PMCID: PMC3417592 DOI: 10.3389/fcimb.2012.00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important. Analogous to a number of H. pylori genes, the vacA gene exhibits allelic mosaicism, and human epidemiological studies have revealed that several families of toxin alleles are predictive of more severe disease. Animal model studies suggest that VacA may contribute to pathogenesis in several ways. VacA functions as an intracellular-acting protein exotoxin. However, VacA does not fit the current prototype of AB intracellular-acting bacterial toxins, which elaborate modulatory effects through the action of an enzymatic domain translocated inside host cells. Rather, VacA may represent an alternative prototype for AB intracellular acting toxins that modulate cellular homeostasis by forming ion-conducting intracellular membrane channels. Although VacA seems to form channels in several different membranes, one of the most important target sites is the mitochondrial inner membrane. VacA apparently take advantage of an unusual intracellular trafficking pathway to mitochondria, where the toxin is imported and depolarizes the inner membrane to disrupt mitochondrial dynamics and cellular energy homeostasis as a mechanism for engaging the apoptotic machinery within host cells. VacA remodeling of the gastric environment appears to be fine-tuned through the action of the Type IV effector protein CagA which, in part, limits the cytotoxic effects of VacA in cells colonized by H. pylori.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana IL, USA
| | | |
Collapse
|
122
|
Boquet P, Ricci V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol 2012; 20:165-74. [PMID: 22364673 DOI: 10.1016/j.tim.2012.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 02/09/2023]
Abstract
VacA toxin from the cancer-inducing bacterium Helicobacter pylori is currently classified as a pore-forming toxin but is also considered a multifunctional toxin, apparently causing many pleiotropic cell effects. However, an increasing body of evidence suggests that VacA could be the prototype of a new class of monofunctional A-B toxins in which the A subunit exhibits pore-forming instead of enzymatic activity. Thus, VacA may use a peculiar mechanism of action, allowing it to intoxicate the human stomach. By combining the action of a cell-binding domain, a specific intracellular trafficking pathway and a novel mitochondrion-targeting sequence, the VacA pore-forming domain is selectively delivered to the inner mitochondrial membrane to efficiently kill target epithelial cells by apoptosis.
Collapse
Affiliation(s)
- Patrice Boquet
- Department of Clinical Bacteriology, Nice University Hospital, 151 Route de Saint Antoine de Ginestière, 06202 Nice Cedex 03, France.
| | | |
Collapse
|
123
|
Abstract
PURPOSE OF REVIEW Helicobacter pylori is implicated in numerous gastric pathologies; however, the prevalence of infection is declining in developed countries. Therefore, it is important to understand the complex mechanism of its interaction with the host and how the changing epidemiology of infection may impact on disease. In this review, we systemically revisit the major novel discoveries of the last year relating to H. pylori disease pathogenesis. RECENT FINDINGS Novel pathways have been implicated in H. pylori cytotoxin-associated gene (CagA) mediated carcinogenesis, highlighting the aberrant regulation of proliferation and apoptosis. Furthermore, the human microbiome was implicated as having a key role in H. pylori-related disease development. Several studies have begun to delineate the mechanisms behind the epidemiologically inverse correlation of H. pylori infection with asthma and inflammatory bowel disease. SUMMARY The recent findings enable researchers to focus on novel and previously unsuspected mechanisms in the development of disease, and prompt further research into possible therapeutic approaches. The potential beneficial aspects of H. pylori colonization and the role bacterial flora play in promoting disease have yet to be elucidated, but promise to have a great impact on patient care.
Collapse
|