101
|
Sakakibara I, Santolini M, Ferry A, Hakim V, Maire P. Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype. PLoS Genet 2014; 10:e1004386. [PMID: 24852826 PMCID: PMC4031048 DOI: 10.1371/journal.pgen.1004386] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/02/2014] [Indexed: 12/18/2022] Open
Abstract
Thousands of long intergenic non-coding RNAs (lincRNAs) are encoded by the mammalian genome. However, the function of most of these lincRNAs has not been identified in vivo. Here, we demonstrate a role for a novel lincRNA, linc-MYH, in adult fast-type myofiber specialization. Fast myosin heavy chain (MYH) genes and linc-MYH share a common enhancer, located in the fast MYH gene locus and regulated by Six1 homeoproteins. linc-MYH in nuclei of fast-type myofibers prevents slow-type and enhances fast-type gene expression. Functional fast-sarcomeric unit formation is achieved by the coordinate expression of fast MYHs and linc-MYH, under the control of a common Six-bound enhancer.
Collapse
Affiliation(s)
- Iori Sakakibara
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Santolini
- Laboratoire de Physique Statistique, CNRS, Université P. et M. Curie, Université D. Diderot, École Normale Supérieure, Paris, France
| | - Arnaud Ferry
- CNRS UMR 8104, Paris, France
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Vincent Hakim
- Laboratoire de Physique Statistique, CNRS, Université P. et M. Curie, Université D. Diderot, École Normale Supérieure, Paris, France
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
102
|
Rossi G, Messina G. Comparative myogenesis in teleosts and mammals. Cell Mol Life Sci 2014; 71:3081-99. [PMID: 24664432 PMCID: PMC4111864 DOI: 10.1007/s00018-014-1604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Skeletal myogenesis has been and is currently under extensive study in both mammals and teleosts, with the latter providing a good model for skeletal myogenesis because of their flexible and conserved genome. Parallel investigations of muscle studies using both these models have strongly accelerated the advances in the field. However, when transferring the knowledge from one model to the other, it is important to take into account both their similarities and differences. The main difficulties in comparing mammals and teleosts arise from their different temporal development. Conserved aspects can be seen for muscle developmental origin and segmentation, and for the presence of multiple myogenic waves. Among the divergences, many fish have an indeterminate growth capacity throughout their entire life span, which is absent in mammals, thus implying different post-natal growth mechanisms. This review covers the current state of the art on myogenesis, with a focus on the most conserved and divergent aspects between mammals and teleosts.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
103
|
Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic Biol Med 2013; 64:95-105. [PMID: 23872025 PMCID: PMC4867469 DOI: 10.1016/j.freeradbiomed.2013.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of gene expression, being involved in most biological processes examined to date. The proposal that miRNAs are primarily involved in the stress response of the cell makes miRNAs ideally suited to mediate the response of skeletal muscle to changes in contractile activity. Although the field is still in its infancy, the studies presented in this review highlight the promise that miRNAs will have an important role in mediating the response and adaptation of skeletal muscle to various modes of exercise. The roles of miRNAs in satellite cell biology, muscle regeneration, and various myopathies are also discussed.
Collapse
Affiliation(s)
- Tyler J. Kirby
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
| | - John J. McCarthy
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
- Center for Muscle Biology, University of Kentucky Lexington, KY 40516-0298
| |
Collapse
|
104
|
Miura S, Kai Y, Tadaishi M, Tokutake Y, Sakamoto K, Bruce CR, Febbraio MA, Kita K, Chohnan S, Ezaki O. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. Am J Physiol Endocrinol Metab 2013; 305:E213-29. [PMID: 23695215 DOI: 10.1152/ajpendo.00114.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LKB1 phosphorylates members of the AMP-activated protein kinase (AMPK) family. LKB1 and AMPK in the skeletal muscle are believed to regulate not only fuel oxidation during exercise but also exercise capacity. LKB1 was also required to prevent diaphragm fatigue, which was shown to affect exercise performance. Using mice expressing dominant negative (DN) mutants of LKB1 and AMPK, specifically in the skeletal muscle but not in the heart, we investigated the roles of LKB1 and AMPK activity in exercise performance and the effects of these kinases on the characteristics of respiratory and locomotive muscles. In the diaphragm and gastrocnemius, both AMPK-DN and LKB1-DN mice showed complete loss of AMPKα2 activity, and LKB1-DN mice showed a reduction in LKB1 activity. Exercise capacity was significantly reduced in LKB1-DN mice, with a marked reduction in oxygen consumption and carbon dioxide production during exercise. The diaphragm from LKB1-DN mice showed an increase in myosin heavy chain IIB and glycolytic enzyme expression. Normal respiratory chain function and CPT I activity were shown in the isolated mitochondria from LKB1-DN locomotive muscle, and the expression of genes related to fiber type, mitochondria function, glucose and lipid metabolism, and capillarization in locomotive muscle was not different between LKB1-DN and AMPK-DN mice. We concluded that LKB1 in the skeletal muscle contributes significantly to exercise capacity and oxygen uptake during exercise. LKB1 mediated the change of fiber-type distribution in the diaphragm independently of AMPK and might be responsible for the phenotypes we observed.
Collapse
Affiliation(s)
- Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013; 130:447-57. [PMID: 23811405 DOI: 10.1016/j.mod.2013.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 01/01/2023]
Abstract
Vertebrate skeletal muscle is composed of distinct types of fibre that are functionally adapted through differences in their physiological and metabolic properties. An understanding of the molecular basis of fibre-type specification is of relevance to human health and fitness. The zebrafish provides an attractive model for investigating fibre type specification; not only are their rapidly developing embryos optically transparent, but in contrast to amniotes, the embryonic myotome shows a discrete temporal and spatial separation of fibre type ontogeny that simplifies its analysis. Here we review the current state of understanding of muscle fibre type specification and differentiation during embryonic development of the zebrafish, with a particular focus on the roles of the Prdm1a and Sox6 transcription factors, and consider the relevance of these findings to higher vertebrate muscle biology.
Collapse
Affiliation(s)
- Harriet E Jackson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | |
Collapse
|
106
|
An CI, Ganio E, Hagiwara N. Trip12, a HECT domain E3 ubiquitin ligase, targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells. Skelet Muscle 2013; 3:11. [PMID: 23663701 PMCID: PMC3666947 DOI: 10.1186/2044-5040-3-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/08/2013] [Indexed: 11/30/2022] Open
Abstract
Background A sophisticated level of coordinated gene expression is necessary for skeletal muscle fibers to obtain their unique functional identities. We have previously shown that the transcription factor Sox6 plays an essential role in coordinating muscle fiber type differentiation by acting as a transcriptional suppressor of slow fiber-specific genes. Currently, mechanisms regulating the activity of Sox6 in skeletal muscle and how these mechanisms affect the fiber phenotype remain unknown. Methods Yeast two-hybrid screening was used to identify binding partners of Sox6 in muscle. Small interfering RNA (siRNA)-mediated knockdown of one of the Sox6 binding proteins, Trip12, was used to determine its effect on Sox6 activity in C2C12 myotubes using quantitative analysis of fiber type-specific gene expression. Results We found that the E3 ligase Trip12, a HECT domain E3 ubiquitin ligase, recognizes and polyubiquitinates Sox6. Inhibiting Trip12 or the 26S proteasome activity resulted in an increase in Sox6 protein levels in C2C12 myotubes. This control of Sox6 activity in muscle cells via Trip12 ubiquitination has significant phenotypic outcomes. Knockdown of Trip12 in C2C12 myotubes led to upregulation of Sox6 protein levels and concurrently to a decrease in slow fiber-specific Myh7 expression coupled with an increased expression in fast fiber-specific Myh4. Therefore, regulation of Sox6 cellular levels by the ubiquitin-proteasome system can induce identity-changing alterations in the expression of fiber type-specific genes in muscle cells. Conclusions Based on our data, we propose that in skeletal muscle, E3 ligases have a significant role in regulating fiber type-specific gene expression, expanding their importance in muscle beyond their well-established role in atrophy.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Edward Ganio
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
107
|
Gan Z, Rumsey J, Hazen BC, Lai L, Leone TC, Vega RB, Xie H, Conley KE, Auwerx J, Smith SR, Olson EN, Kralli A, Kelly DP. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J Clin Invest 2013; 123:2564-75. [PMID: 23676496 DOI: 10.1172/jci67652] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/08/2013] [Indexed: 11/17/2022] Open
Abstract
The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.
Collapse
Affiliation(s)
- Zhenji Gan
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Endo K, Weng H, Naito Y, Sasaoka T, Takahashi A, Fukushima Y, Iwai N. Classification of various muscular tissues using miRNA profiling. Biomed Res 2013; 34:289-99. [PMID: 24389405 DOI: 10.2220/biomedres.34.289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs of 18-23 nucleotides that regulate gene expression. Recently, plasma miRNAs have been investigated as biomarkers for various diseases. In the present study, we explored whether miRNA expression profiling of various muscle cells may be useful for the diagnosis of various diseases involving muscle necrosis. miRNA expression profiling was assessed by miRNA array and real-time reverse-transcriptase polymerase chain reaction by using a reverse primer of a stem loop structure. Profiling of various muscle cells of mouse, including cardiac muscles, skeletal muscles, and vascular and visceral smooth muscles, indicated that profiling of miR-1, miR-133a, miR-133b, miR-145, miR-206, miR-208a, miR-208b, and miR499 were adequate to discriminate muscle cells. miR-145 was remarkably highly expressed in smooth muscles. miR-208a and miR-499 were highly expressed in cardiomyocytes. miR-133a was highly expressed in fast-twitch skeletal muscles. miR-206 and miR-208b were expressed in the slow-twitch skeletal muscles, and they can likely discriminate fast- and slow-twitch types of skeletal muscle cells. We observed that brown fat adipose cells had an miRNA expression profile very similar to those of skeletal muscle cells in the mouse. Plasma concentrations of miR-133a and miR-145 were extremely useful in diagnosing skeletal muscle necrosis in a mouse model of Duchenne muscular dystrophy and colon smooth muscle necrosis in a rat ischemic colitis model, respectively. In the present study, we investigated the miRNA expression profiles of various muscular tissues. Our results suggest that expression profiling would be useful for the diagnosis of various diseases such as muscular necrosis.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Animals
- Colitis, Ischemic/blood
- Colitis, Ischemic/diagnosis
- Colitis, Ischemic/genetics
- Colitis, Ischemic/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation
- Male
- Mice
- MicroRNAs/blood
- MicroRNAs/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/diagnosis
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Terminology as Topic
- Tissue Array Analysis
Collapse
Affiliation(s)
- Kosuke Endo
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
109
|
Asaduzzaman M, Kinoshita S, Bhuiyan SS, Asakawa S, Watabe S. Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: transient and transgenic analysis of torafugu MYH(M86-2) promoter in zebrafish embryos. Exp Cell Res 2012; 319:820-37. [PMID: 23237989 DOI: 10.1016/j.yexcr.2012.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 12/18/2022]
Abstract
The myosin heavy chain gene, MYHM86-2, exhibited restricted expression in slow muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional mechanisms involved in its expression are still ambiguous. The present study is the first extensive analysis of slow muscle-specific MYHM86-2 promoter in fish for identifying the cis-elements that are crucial for its expression. Combining both transient transfection and transgenic approaches, we demonstrated that the 2614bp 5'-flanking sequences of MYHM86-2 contain a sufficient promoter activity to drive gene expression specific to superficial slow muscle fibers. By cyclopamine treatment, we also demonstrated that the differentiation of such superficial slow muscle fibers depends on hedgehog signaling activity. The deletion analyses defined an upstream fragment necessary for repressing ectopic MYHM86-2 expression in the fast muscle fibers. The transcriptional mechanism that prevents MYHM86-2 expression in the fast muscle fibers is mediated through Sox6 binding elements. We also demonstrated that Sox6 may function as a transcriptional repressor of MYHM86-2 expression. We further discovered that nuclear factor of activated T cells (NFAT) binding elements plays a key role and myocyte enhancer factor-2 (MEF2) binding elements participate in the transcriptional regulation of MYHM86-2 expression.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
110
|
Mladinov D, Liu Y, Mattson DL, Liang M. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase β1. Nucleic Acids Res 2012; 41:1273-83. [PMID: 23221637 PMCID: PMC3553948 DOI: 10.1093/nar/gks1228] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in biological development and disease. Much less is known about their role in normal adult physiology. The proximal convoluted tubule (PCT) and the medullary thick ascending limb (mTAL) in the kidney consist of epithelial cells with different transport activities. We identified 55 possible miRNA-target pairs of which the miRNAs and their predicted target proteins, many of which are involved in epithelial transport, were inversely enriched in PCT and mTAL. Some miRNAs appeared to have synergistic effects on shared targets. miR-192 and its predicted target the β-1 subunit of Na+/K+-ATPase (Atp1b1), an enzyme providing the driving force for tubular transport, were inversely enriched in kidney regions. In mice, knockdown of miR-192 led to up-regulation of Atp1b1 protein. When mice were fed with a high-salt diet, knockdown of miR-192 blunted the adaptational increase of urine output. Interestingly, miR-192 appeared to target Atp1b1 through the 5′-, rather than 3′-untranslated region. The study suggests a novel physiological mechanism in which miR-192 suppresses Na+/K+-ATPase and contributes to renal handling of fluid balance. It supports an important role of miRNAs in determining cellular characteristics that may appear subtle yet are physiologically critical.
Collapse
Affiliation(s)
- Domagoj Mladinov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
111
|
Anderson DM, George R, Noyes MB, Rowton M, Liu W, Jiang R, Wolfe SA, Wilson-Rawls J, Rawls A. Characterization of the DNA-binding properties of the Mohawk homeobox transcription factor. J Biol Chem 2012; 287:35351-35359. [PMID: 22923612 DOI: 10.1074/jbc.m112.399386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeobox transcription factor Mohawk (Mkx) is a potent transcriptional repressor expressed in the embryonic precursors of skeletal muscle, cartilage, and bone. MKX has recently been shown to be a critical regulator of musculoskeletal tissue differentiation and gene expression; however, the genetic pathways through which MKX functions and its DNA-binding properties are currently unknown. Using a modified bacterial one-hybrid site selection assay, we determined the core DNA-recognition motif of the mouse monomeric Mkx homeodomain to be A-C-A. Using cell-based assays, we have identified a minimal Mkx-responsive element (MRE) located within the Mkx promoter, which is composed of a highly conserved inverted repeat of the core Mkx recognition motif. Using the minimal MRE sequence, we have further identified conserved MREs within the locus of Sox6, a transcription factor that represses slow fiber gene expression during skeletal muscle differentiation. Real-time PCR and immunostaining of in vitro differentiated muscle satellite cells isolated from Mkx-null mice revealed an increase in the expression of Sox6 and down-regulation of slow fiber structural genes. Together, these data identify the unique DNA-recognition properties of MKX and reveal a novel role for Mkx in promoting slow fiber type specification during skeletal muscle differentiation.
Collapse
Affiliation(s)
- Douglas M Anderson
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501; Molecular and Cellular Biology Graduate Program, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501
| | - Rajani George
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501; Molecular and Cellular Biology Graduate Program, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501
| | - Marcus B Noyes
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Megan Rowton
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501; Molecular and Cellular Biology Graduate Program, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501
| | - Wenjin Liu
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rulang Jiang
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Scot A Wolfe
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501
| | - Alan Rawls
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501; Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-4501.
| |
Collapse
|
112
|
Yeung F, Chung E, Guess MG, Bell ML, Leinwand LA. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res 2012; 40:7303-18. [PMID: 22638570 PMCID: PMC3424578 DOI: 10.1093/nar/gks466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022] Open
Abstract
The sarcomeric myosin gene, Myh7b, encodes an intronic microRNA, miR-499, which regulates cardiac and skeletal muscle biology, yet little is known about its transcriptional regulation. To identify the transcription factors involved in regulating Myh7b/miR-499 gene expression, we have mapped the transcriptional start sites and identified an upstream 6.2 kb region of the mouse Myh7b gene whose activity mimics the expression pattern of the endogenous Myh7b gene both in vitro and in vivo. Through promoter deletion analysis, we have mapped a distal E-box element and a proximal Ikaros site that are essential for Myh7b promoter activity in muscle cells. We show that the myogenic regulatory factors, MyoD, Myf5 and Myogenin, bind to the E-box, while a lymphoid transcription factor, Ikaros 4 (Eos), binds to the Ikaros motif. Further, we show that through physical interaction, MyoD and Eos form an active transcriptional complex on the chromatin to regulate the expression of the endogenous Myh7b/miR-499 gene in muscle cells. We also provide the first evidence that Eos can regulate expression of additional myosin genes (Myosin 1 and β-Myosin) via the miR-499/Sox6 pathway. Therefore, our results indicate a novel role for Eos in the regulation of the myofiber gene program.
Collapse
Affiliation(s)
| | | | | | | | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
113
|
Huang BT, Chang PY, Su CH, Chao CCK, Lin-Chao S. Gas7-deficient mouse reveals roles in motor function and muscle fiber composition during aging. PLoS One 2012; 7:e37702. [PMID: 22662195 PMCID: PMC3360064 DOI: 10.1371/journal.pone.0037702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/23/2012] [Indexed: 11/25/2022] Open
Abstract
Background Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. Methodology/Principal Findings Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. Conclusions/Significance These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance.
Collapse
Affiliation(s)
- Bo-Tsang Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pu-Yuan Chang
- Department of Biochemistry and Molecular Biology, Chang-Gung University, Taoyuan, Taiwan
| | - Ching-Hua Su
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuck C.-K. Chao
- Department of Biochemistry and Molecular Biology, Chang-Gung University, Taoyuan, Taiwan
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
114
|
Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc Natl Acad Sci U S A 2012; 109:1649-54. [PMID: 22307625 DOI: 10.1073/pnas.1121159109] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Maintenance of skeletal muscle structure and function requires efficient and precise metabolic control. Autophagy plays a key role in metabolic homeostasis of diverse tissues by recycling cellular constituents, particularly under conditions of caloric restriction, thereby normalizing cellular metabolism. Here we show that histone deacetylases (HDACs) 1 and 2 control skeletal muscle homeostasis and autophagy flux in mice. Skeletal muscle-specific deletion of both HDAC1 and HDAC2 results in perinatal lethality of a subset of mice, accompanied by mitochondrial abnormalities and sarcomere degeneration. Mutant mice that survive the first day of life develop a progressive myopathy characterized by muscle degeneration and regeneration, and abnormal metabolism resulting from a blockade to autophagy. HDAC1 and HDAC2 regulate skeletal muscle autophagy by mediating the induction of autophagic gene expression and the formation of autophagosomes, such that myofibers of mice lacking these HDACs accumulate toxic autophagic intermediates. Strikingly, feeding HDAC1/2 mutant mice a high-fat diet from the weaning age releases the block in autophagy and prevents myopathy in adult mice. These findings reveal an unprecedented and essential role for HDAC1 and HDAC2 in maintenance of skeletal muscle structure and function and show that, at least in some pathological conditions, myopathy may be mitigated by dietary modifications.
Collapse
|
115
|
An CI, Dong Y, Hagiwara N. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC DEVELOPMENTAL BIOLOGY 2011; 11:59. [PMID: 21985497 PMCID: PMC3239296 DOI: 10.1186/1471-213x-11-59] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO) mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II) ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development. Conclusions Our present data indicate that during development, Sox6 functions as a transcriptional suppressor of fiber type-specific and developmental isoform genes to promote functional specification of muscle which is critical for optimum muscle performance and health.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
116
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
117
|
Wang X, Ono Y, Tan SC, Chai RJ, Parkin C, Ingham PW. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development 2011; 138:4399-404. [PMID: 21880783 DOI: 10.1242/dev.070516] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sox6 has been proposed to play a conserved role in vertebrate skeletal muscle fibre type specification. In zebrafish, sox6 transcription is repressed in slow-twitch progenitors by the Prdm1a transcription factor. Here we identify sox6 cis-regulatory sequences that drive fast-twitch-specific expression in a Prdm1a-dependent manner. We show that sox6 transcription subsequently becomes derepressed in slow-twitch fibres, whereas Sox6 protein remains restricted to fast-twitch fibres. We find that translational repression of sox6 is mediated by miR-499, the slow-twitch-specific expression of which is in turn controlled by Prdm1a, forming a regulatory loop that initiates and maintains the slow-twitch muscle lineage.
Collapse
Affiliation(s)
- XinGang Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|