101
|
To build a virus on a nucleic acid substrate. Biophys J 2013; 104:1595-604. [PMID: 23561536 DOI: 10.1016/j.bpj.2013.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/10/2013] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Many viruses package their genomes concomitant with assembly. Here, we show that this reaction can be described by three coefficients: association of capsid protein (CP) to nucleic acid (NA), KNA; CP-CP interaction, ω; and α, proportional to the work required to package NA. The value of α can vary as NA is packaged. A phase diagram of average lnα versus lnω identifies conditions where assembly is likely to fail or succeed. NA morphology can favor (lnα > 0) or impede (lnα < 0) assembly. As lnω becomes larger, capsids become more stable and assembly becomes more cooperative. Where (lnα + lnω) < 0, the CP is unable to contain the NA, so that assembly results in aberrant particles. This phase diagram is consistent with quantitative studies of cowpea chlorotic mottle virus, hepatitis B virus, and simian virus 40 assembling on ssRNA and dsDNA substrates. Thus, the formalism we develop is suitable for describing and predicting behavior of experimental studies of CP assembly on NA.
Collapse
|
102
|
Polyansky AA, Hlevnjak M, Zagrovic B. Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code. RNA Biol 2013; 10:1248-54. [PMID: 23945356 PMCID: PMC3817144 DOI: 10.4161/rna.25977] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite more than 50 years of effort, the origin of the genetic code remains enigmatic. Among different theories, the stereochemical hypothesis suggests that the code evolved as a consequence of direct interactions between amino acids and appropriate bases. If indeed true, such physicochemical foundation of the mRNA/protein relationship could also potentially lead to novel principles of protein-mRNA interactions in general. Inspired by this promise, we have recently explored the connection between the physicochemical properties of mRNAs and their cognate proteins at the proteome level. Using experimentally and computationally derived measures of solubility of amino acids in aqueous solutions of pyrimidine analogs together with knowledge-based interaction preferences of amino acids for different nucleobases, we have revealed a statistically significant matching between the composition of mRNA coding sequences and the base-binding preferences of their cognate protein sequences. Our findings provide strong support for the stereochemical hypothesis of genetic code's origin and suggest the possibility of direct complementary interactions between mRNAs and cognate proteins even in present-day cells.
Collapse
Affiliation(s)
- Anton A Polyansky
- Department of Structural and Computational Biology; Max F. Perutz Laboratories; University of Vienna; Vienna, Austria
| | | | | |
Collapse
|
103
|
Perlmutter JD, Qiao C, Hagan MF. Viral genome structures are optimal for capsid assembly. eLife 2013; 2:e00632. [PMID: 23795290 PMCID: PMC3683802 DOI: 10.7554/elife.00632] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Understanding how virus capsids assemble around their nucleic acid (NA) genomes could promote efforts to block viral propagation or to reengineer capsids for gene therapy applications. We develop a coarse-grained model of capsid proteins and NAs with which we investigate assembly dynamics and thermodynamics. In contrast to recent theoretical models, we find that capsids spontaneously ‘overcharge’; that is, the negative charge of the NA exceeds the positive charge on capsid. When applied to specific viruses, the optimal NA lengths closely correspond to the natural genome lengths. Calculations based on linear polyelectrolytes rather than base-paired NAs underpredict the optimal length, demonstrating the importance of NA structure to capsid assembly. These results suggest that electrostatics, excluded volume, and NA tertiary structure are sufficient to predict assembly thermodynamics and that the ability of viruses to selectively encapsidate their genomic NAs can be explained, at least in part, on a thermodynamic basis. DOI:http://dx.doi.org/10.7554/eLife.00632.001 Viruses are infectious agents made up of proteins and a genome made of DNA or RNA. Upon infecting a host cell, viruses hijack the cell’s gene expression machinery and force it to produce copies of the viral genome and proteins, which then assemble into new viruses that can eventually infect other host cells. Because assembly is an essential step in the viral life cycle, understanding how this process occurs could significantly advance the fight against viral diseases. In many viral families, a protein shell called a capsid forms around the viral genome during the assembly process. However, capsids can also assemble around nucleic acids in solution, indicating that a host cell is not required for their formation. Since capsid proteins are positively charged, and nucleic acids are negatively charged, electrostatic interactions between the two are thought to have an important role in capsid assembly. However, it is unclear how structural features of the viral genome affect assembly, and why the negative charge on viral genomes is actually far greater than the positive charge on capsids. These questions are difficult to address experimentally because most of the intermediates that form during virus assembly are too short-lived to be imaged. Here, Perlmutter et al. have used state of the art computational methods and advances in graphical processing units (GPUs) to produce the most realistic model of capsid assembly to date. They showed that the stability of the complex formed between the nucleic acid and the capsid depends on the length of the viral genome. Yield was highest for genomes within a certain range of lengths, and capsids that assembled around longer or shorter genomes tended to be malformed. Perlmutter et al. also explored how structural features of the virus—including base-pairing between viral nucleic acids, and the size and charge of the capsid—determine the optimal length of the viral genome. When they included structural data from real viruses in their simulations and predicted the optimal lengths for the viral genome, the results were very similar to those seen in existing viruses. This indicates that the structure of the viral genome has been optimized to promote packaging into capsids. Understanding this relationship between structure and packaging will make it easier to develop antiviral agents that thwart or misdirect virus assembly, and could aid the redesign of viruses for use in gene therapy and drug delivery. DOI:http://dx.doi.org/10.7554/eLife.00632.002
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin A Fisher School of Physics , Brandeis University , Waltham , United States
| | | | | |
Collapse
|
104
|
Dykeman EC, Stockley PG, Twarock R. Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome. J Mol Biol 2013; 425:3235-49. [PMID: 23763992 DOI: 10.1016/j.jmb.2013.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
Abstract
The current paradigm for assembly of single-stranded RNA viruses is based on a mechanism involving non-sequence-specific packaging of genomic RNA driven by electrostatic interactions. Recent experiments, however, provide compelling evidence for sequence specificity in this process both in vitro and in vivo. The existence of multiple RNA packaging signals (PSs) within viral genomes has been proposed, which facilitates assembly by binding coat proteins in such a way that they promote the protein-protein contacts needed to build the capsid. The binding energy from these interactions enables the confinement or compaction of the genomic RNAs. Identifying the nature of such PSs is crucial for a full understanding of assembly, which is an as yet untapped potential drug target for this important class of pathogens. Here, for two related bacterial viruses, we determine the sequences and locations of their PSs using Hamiltonian paths, a concept from graph theory, in combination with bioinformatics and structural studies. Their PSs have a common secondary structure motif but distinct consensus sequences and positions within the respective genomes. Despite these differences, the distributions of PSs in both viruses imply defined conformations for the packaged RNA genomes in contact with the protein shell in the capsid, consistent with a recent asymmetric structure determination of the MS2 virion. The PS distributions identified moreover imply a preferred, evolutionarily conserved assembly pathway with respect to the RNA sequence with potentially profound implications for other single-stranded RNA viruses known to have RNA PSs, including many animal and human pathogens.
Collapse
Affiliation(s)
- Eric C Dykeman
- Departments of Mathematics and Biology and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, UK
| | | | | |
Collapse
|
105
|
Stockley PG, Ranson NA, Twarock R. A new paradigm for the roles of the genome in ssRNA viruses. Future Virol 2013. [DOI: 10.2217/fvl.12.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent work with RNA phages and an ssRNA plant satellite virus challenges the widely held view that the sequences and structures of genomic RNAs are unimportant for virion assembly. In the T=3 phages, RNA–coat protein interactions occur throughout the genome, defining the quasiconformers of their protein shells. In the plant virus, there are multiple packaging signals dispersed throughout the genome that overcome electrostatic barriers to protein self-assembly. Both viral coat proteins cause the solution structures of their cognate genomes to collapse into a form that is readily encapsidated in a two-stage assembly process. Such similar behavior in two structurally unrelated viral protein folds implies that this might be a conserved feature of many viral assembly reactions. These results suggest a highly defined structure for the RNA in the virions, consistent with recent structural studies. They also have implications both for subsequent genome release during infection and for the evolution of viral sequences.
Collapse
Affiliation(s)
- Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology & Mathematics, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| |
Collapse
|
106
|
Stockley PG, Twarock R, Bakker SE, Barker AM, Borodavka A, Dykeman E, Ford RJ, Pearson AR, Phillips SEV, Ranson NA, Tuma R. Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism. J Biol Phys 2013; 39:277-87. [PMID: 23704797 PMCID: PMC3662417 DOI: 10.1007/s10867-013-9313-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA–coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.
Collapse
Affiliation(s)
- Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
van der Schoot P, Zandi R. Impact of the topology of viral RNAs on their encapsulation by virus coat proteins. J Biol Phys 2013; 39:289-99. [PMID: 23860874 DOI: 10.1007/s10867-013-9307-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/07/2013] [Indexed: 11/28/2022] Open
Abstract
Single-stranded RNAs of simple viruses seem to be topologically more compact than other types of single-stranded RNA. It has been suggested that this has an evolutionary purpose: more compact structures are more easily encapsulated in the limited space that the cavity of the virus capsid offers. We employ a simple Flory theory to calculate the optimal amount of polymers confined in a viral shell. We find that the free energy gain or more specifically the efficiency of RNA encapsidation increases substantially with topological compactness. We also find that the optimal length of RNA encapsidated in a capsid increases with the degree of branching of the genome even though this effect is very weak. Further, we show that if the structure of the branching of the polymer is allowed to anneal, the optimal loading increases substantially.
Collapse
Affiliation(s)
- Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | | |
Collapse
|
108
|
Structural characterization of H-1 parvovirus: comparison of infectious virions to empty capsids. J Virol 2013; 87:5128-40. [PMID: 23449783 DOI: 10.1128/jvi.03416-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors.
Collapse
|
109
|
Borodavka A, Tuma R, Stockley PG. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol 2013; 10:481-9. [PMID: 23422316 PMCID: PMC3710354 DOI: 10.4161/rna.23838] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
110
|
Dykeman EC, Stockley PG, Twarock R. Building a viral capsid in the presence of genomic RNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022717. [PMID: 23496558 DOI: 10.1103/physreve.87.022717] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Virus capsid assembly has traditionally been considered as a process that can be described primarily via self-assembly of the capsid proteins, neglecting interactions with other viral or cellular components. Our recent work on several ssRNA viruses, a major class of viral pathogens containing important human, animal, and plant viruses, has shown that this protein-centric view is too simplistic. Capsid assembly for these viruses relies strongly on a number of cooperative roles played by the genomic RNA. This realization requires a new theoretical framework for the modeling and prediction of the assembly behavior of these viruses. In a seminal paper Zlotnick [J. Mol. Biol. 241, 59 (1994)] laid the foundations for the modeling of capsid assembly as a protein-only self-assembly process, illustrating his approach using the example of a dodecahedral study system. We describe here a generalized framework for modeling assembly that incorporates the regulatory functions provided by cognate protein-nucleic-acid interactions between capsid proteins and segments of the genomic RNA, called packaging signals, into the model. Using the same dodecahedron system we demonstrate, using a Gillespie-type algorithm to deal with the enhanced complexity of the problem instead of a master equation approach, that assembly kinetics and yield strongly depend on the distribution and nature of the packaging signals, highlighting the importance of the crucial roles of the RNA in this process.
Collapse
Affiliation(s)
- Eric C Dykeman
- Department of Biology, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD United Kingdom
| | | | | |
Collapse
|
111
|
Ford RJ, Barker AM, Bakker SE, Coutts RH, Ranson NA, Phillips SEV, Pearson AR, Stockley PG. Sequence-specific, RNA-protein interactions overcome electrostatic barriers preventing assembly of satellite tobacco necrosis virus coat protein. J Mol Biol 2013; 425:1050-64. [PMID: 23318955 PMCID: PMC3593212 DOI: 10.1016/j.jmb.2013.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022]
Abstract
We have examined the roles of RNA–coat protein (CP) interactions in the assembly of satellite tobacco necrosis virus (STNV). The viral genomic RNA encodes only the CP, which comprises a β-barrel domain connected to a positively charged N-terminal extension. In the previous crystal structures of this system, the first 11 residues of the protein are disordered. Using variants of an RNA aptamer sequence isolated against the CP, B3, we have studied the sequence specificity of RNA-induced assembly. B3 consists of a stem–loop presenting the tetra-loop sequence ACAA. There is a clear preference for RNAs encompassing this loop sequence, as measured by the yield of T = 1 capsids, which is indifferent to sequences within the stem. The B3-containing virus-like particle has been crystallised and its structure was determined to 2.3 Å. A lower-resolution map encompassing density for the RNA has also been calculated. The presence of B3 results in increased ordering of the N-terminal helices located at the particle 3-fold axes, which extend by roughly one and a half turns to encompass residues 8–11, including R8 and K9. Under assembly conditions, STNV CP in the absence of RNA is monomeric and does not self-assemble. These facts suggest that a plausible model for assembly initiation is the specific RNA-induced stabilisation of a trimeric capsomere. The basic nature of the helical extension suggests that electrostatic repulsion between CPs prevents assembly in the absence of RNA and that this barrier is overcome by correct placement of appropriately orientated helical RNA stems. Such a mechanism would be consistent with the data shown here for assembly with longer RNA fragments, including an STNV genome. The results are discussed in light of a first stage of assembly involving compaction of the genomic RNA driven by multiple RNA packaging signal–CP interactions.
Collapse
Affiliation(s)
- Robert J Ford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Zhang R, Wernersson E, Linse P. Icosahedral capsid formation by capsomer subunits and a semiflexible polyion. RSC Adv 2013. [DOI: 10.1039/c3ra44533j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
113
|
Galaway FA, Stockley PG. MS2 Viruslike Particles: A Robust, Semisynthetic Targeted Drug Delivery Platform. Mol Pharm 2012; 10:59-68. [DOI: 10.1021/mp3003368] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francis A. Galaway
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds, LS2 9JT, U.K
| | - Peter G. Stockley
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|