101
|
Zilberzwige-Tal S, Levin A, Toprakcioglu Z, Knowles TPJ, Gazit E, Elbaz J. Programmable On-Chip Artificial Cell Producing Post-Translationally Modified Ubiquitinated Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901780. [PMID: 31207024 DOI: 10.1002/smll.201901780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/26/2019] [Indexed: 06/09/2023]
Abstract
In nature, intracellular microcompartments have evolved to allow the simultaneous execution of tightly regulated complex processes within a controlled environment. This architecture serves as the blueprint for the construction of a wide array of artificial cells. However, such systems are inadequate in their ability to confine and sequentially control multiple central dogma activities (transcription, translation, and post-translational modifications) resulting in a limited production of complex biomolecules. Here, an artificial cell-on-a-chip comprising hierarchical compartments allowing the processing and transport of products from transcription, translation, and post-translational modifications through connecting channels is designed and fabricated. This platform generates a tightly controlled system, yielding directly a purified modified protein, with the potential to produce proteoform of choice. Using this platform, the full ubiquitinated form of the Parkinson's disease-associated α-synuclein is generated starting from DNA, in a single device. By bringing together all central dogma activities in a single controllable platform, this approach will open up new possibilities for the synthesis of complex targets, will allow to decipher diverse molecular mechanisms in health and disease and to engineer protein-based materials and pharmaceutical agents.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Aviad Levin
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ehud Gazit
- School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Johann Elbaz
- School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
102
|
Wick S, Walsh DI, Bobrow J, Hamad-Schifferli K, Kong DS, Thorsen T, Mroszczyk K, Carr PA. PERSIA for Direct Fluorescence Measurements of Transcription, Translation, and Enzyme Activity in Cell-Free Systems. ACS Synth Biol 2019; 8:1010-1025. [PMID: 30920800 PMCID: PMC6830305 DOI: 10.1021/acssynbio.8b00450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantification of biology's central dogma (transcription and translation) is pursued by a variety of methods. Direct, immediate, and ongoing quantification of these events is difficult to achieve. Common practice is to use fluorescent or luminescent proteins to report indirectly on prior cellular events, such as turning on a gene in a genetic circuit. We present an alternative approach, PURExpress-ReAsH-Spinach In-vitro Analysis (PERSIA). PERSIA provides information on the production of RNA and protein during cell-free reactions by employing short RNA and peptide tags. Upon synthesis, these tags yield quantifiable fluorescent signal without interfering with other biochemical events. We demonstrate the applicability of PERSIA in measuring cell-free transcription, translation, and other enzymatic activity in a variety of applications: from sequence-structure-function studies, to genetic code engineering, to testing antiviral drug resistance.
Collapse
Affiliation(s)
- Scott Wick
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - David I Walsh
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Johanna Bobrow
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering , University of Massachusetts Boston , Boston , Massachusetts 02125 , United States
| | - David S Kong
- MIT Media Lab , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Todd Thorsen
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Keri Mroszczyk
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Peter A Carr
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
- Synthetic Biology Center at MIT , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
103
|
Swank Z, Laohakunakorn N, Maerkl SJ. Cell-free gene-regulatory network engineering with synthetic transcription factors. Proc Natl Acad Sci U S A 2019; 116:5892-5901. [PMID: 30850530 PMCID: PMC6442555 DOI: 10.1073/pnas.1816591116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene-regulatory networks are ubiquitous in nature and critical for bottom-up engineering of synthetic networks. Transcriptional repression is a fundamental function that can be tuned at the level of DNA, protein, and cooperative protein-protein interactions, necessitating high-throughput experimental approaches for in-depth characterization. Here, we used a cell-free system in combination with a high-throughput microfluidic device to comprehensively study the different tuning mechanisms of a synthetic zinc-finger repressor library, whose affinity and cooperativity can be rationally engineered. The device is integrated into a comprehensive workflow that includes determination of transcription-factor binding-energy landscapes and mechanistic modeling, enabling us to generate a library of well-characterized synthetic transcription factors and corresponding promoters, which we then used to build gene-regulatory networks de novo. The well-characterized synthetic parts and insights gained should be useful for rationally engineering gene-regulatory networks and for studying the biophysics of transcriptional regulation.
Collapse
Affiliation(s)
- Zoe Swank
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nadanai Laohakunakorn
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
104
|
Wiegand DJ, Lee HH, Ostrov N, Church GM. Cell-free Protein Expression Using the Rapidly Growing Bacterium Vibrio natriegens. J Vis Exp 2019:10.3791/59495. [PMID: 30933074 PMCID: PMC6512795 DOI: 10.3791/59495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The marine bacterium Vibrio natriegens has garnered considerable attention as an emerging microbial host for biotechnology due to its fast growth rate. A general protocol is described for the preparation of V. natriegens crude cell extracts using common laboratory equipment. This high yielding protocol has been specifically optimized for user accessibility and reduced cost. Cell-free protein synthesis (CFPS) can be carried out in small scale 10 μL batch reactions in either a 96- or 384-well format and reproducibly yields concentrations of > 260 μg/mL super folder GFP (sfGFP) within 3 h. Overall, crude cell extract preparation and CFPS can be achieved in 1-2 full days by a single user. This protocol can be easily integrated into existing protein synthesis pipelines to facilitate advances in bio-production and synthetic biology applications.
Collapse
Affiliation(s)
- Daniel J Wiegand
- Department of Genetics, Harvard Medical School; Wyss Institute for Biologically Inspired Engineering;
| | - Henry H Lee
- Department of Genetics, Harvard Medical School
| | - Nili Ostrov
- Department of Genetics, Harvard Medical School;
| | - George M Church
- Department of Genetics, Harvard Medical School; Wyss Institute for Biologically Inspired Engineering;
| |
Collapse
|
105
|
Gregorio NE, Levine MZ, Oza JP. A User's Guide to Cell-Free Protein Synthesis. Methods Protoc 2019; 2:E24. [PMID: 31164605 PMCID: PMC6481089 DOI: 10.3390/mps2010024] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Collapse
Affiliation(s)
- Nicole E Gregorio
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Max Z Levine
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Javin P Oza
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
106
|
Silverman AD, Kelley-Loughnane N, Lucks JB, Jewett MC. Deconstructing Cell-Free Extract Preparation for in Vitro Activation of Transcriptional Genetic Circuitry. ACS Synth Biol 2019; 8:403-414. [PMID: 30596483 PMCID: PMC6584022 DOI: 10.1021/acssynbio.8b00430] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in cell-free gene expression (CFE) systems have enabled their use for a host of synthetic biology applications, particularly for rapid prototyping of genetic circuits and biosensors. Despite the proliferation of cell-free protein synthesis platforms, the large number of currently existing protocols for making CFE extracts muddles the collective understanding of how the extract preparation method affects its functionality. A key aspect of extract performance relevant to many applications is the activity of the native host transcriptional machinery that can mediate protein synthesis. However, protein yields from genes transcribed in vitro by the native Escherichia coli RNA polymerase are variable for different extract preparation techniques, and specifically low in some conventional crude extracts originally optimized for expression by the bacteriophage transcriptional machinery. Here, we show that cell-free expression of genes under bacterial σ70 promoters is constrained by the rate of transcription in crude extracts, and that processing the extract with a ribosomal runoff reaction and subsequent dialysis alleviates this constraint. Surprisingly, these processing steps only enhance protein synthesis in genes under native regulation, indicating that the translation rate is unaffected. We further investigate the role of other common extract preparation process variants on extract performance and demonstrate that bacterial transcription is inhibited by including glucose in the growth culture but is unaffected by flash-freezing the cell pellet prior to lysis. Our final streamlined and detailed protocol for preparing extract by sonication generates extract that facilitates expression from a diverse set of sensing modalities including protein and RNA regulators. We anticipate that this work will clarify the methodology for generating CFE extracts that are active for biosensing using native transcriptional machinery and will encourage the further proliferation of cell-free gene expression technology for new applications.
Collapse
Affiliation(s)
- Adam D. Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Member, Robert H. Lurie Comprehensive Cancer Center, and Member, Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Member, Robert H. Lurie Comprehensive Cancer Center, and Member, Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
107
|
Aw R, Polizzi KM. Biosensor‐assisted engineering of a high‐yield
Pichia pastoris
cell‐free protein synthesis platform. Biotechnol Bioeng 2019; 116:656-666. [DOI: 10.1002/bit.26901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rochelle Aw
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| | - Karen M. Polizzi
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| |
Collapse
|
108
|
Dubuc E, Pieters PA, van der Linden AJ, van Hest JC, Huck WT, de Greef TF. Cell-free microcompartmentalised transcription-translation for the prototyping of synthetic communication networks. Curr Opin Biotechnol 2018; 58:72-80. [PMID: 30594098 PMCID: PMC6723619 DOI: 10.1016/j.copbio.2018.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
Recent efforts in synthetic biology have shown the possibility of engineering distributed functions in populations of living cells, which requires the development of highly orthogonal, genetically encoded communication pathways. Cell-free transcription-translation (TXTL) reactions encapsulated in microcompartments enable prototyping of molecular communication channels and their integration into engineered genetic circuits by mimicking critical cell features, such as gene expression, cell size, and cell individuality within a community. In this review, we discuss the uses of cell-free transcription-translation reactions for the development of synthetic genetic circuits, with a special focus on the use of microcompartments supporting this reaction. We highlight several studies where molecular communication between non-living microcompartments and living cells have been successfully engineered.
Collapse
Affiliation(s)
- Emilien Dubuc
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pascal A Pieters
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ardjan J van der Linden
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan Cm van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wilhelm Ts Huck
- Department of Physical Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 HP, The Netherlands
| | - Tom Fa de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
109
|
Caschera F, Karim AS, Gazzola G, d’Aquino AE, Packard NH, Jewett MC. High-Throughput Optimization Cycle of a Cell-Free Ribosome Assembly and Protein Synthesis System. ACS Synth Biol 2018; 7:2841-2853. [PMID: 30354075 DOI: 10.1021/acssynbio.8b00276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Building variant ribosomes offers opportunities to reveal fundamental principles underlying ribosome biogenesis and to make ribosomes with altered properties. However, cell viability limits mutations that can be made to the ribosome. To address this limitation, the in vitro integrated synthesis, assembly and translation (iSAT) method for ribosome construction from the bottom up was recently developed. Unfortunately, iSAT is complex, costly, and laborious to researchers, partially due to the high cost of reaction buffer containing over 20 components. In this study, we develop iSAT in Escherichia coli BL21Rosetta2 cell lysates, a commonly used bacterial strain, with a cost-effective poly sugar and nucleotide monophosphate-based metabolic scheme. We achieved a 10-fold increase in protein yield over our base case with an evolutionary design of experiments approach, screening 490 reaction conditions to optimize the reaction buffer. The computationally guided, cell-free, high-throughput technology presented here augments the way we approach multicomponent synthetic biology projects and efforts to repurpose ribosomes.
Collapse
Affiliation(s)
| | | | - Gianluca Gazzola
- Rutgers Center for Operations Research, Rutgers Business School, 100 Rockafeller Road, Piscataway, New Jersey 08854, United States
| | | | - Norman H. Packard
- ProtoLife, Inc., 57 Post Street Suite 908, San Francisco, California 94104, United States
| | - Michael C. Jewett
- Rutgers Center for Operations Research, Rutgers Business School, 100 Rockafeller Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
110
|
Koch M, Faulon JL, Borkowski O. Models for Cell-Free Synthetic Biology: Make Prototyping Easier, Better, and Faster. Front Bioeng Biotechnol 2018; 6:182. [PMID: 30555825 PMCID: PMC6281764 DOI: 10.3389/fbioe.2018.00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cell-free TX-TL is an increasingly mature and useful platform for prototyping, testing, and engineering biological parts and systems. However, to fully accomplish the promises of synthetic biology, mathematical models are required to facilitate the design and predict the behavior of biological components in cell-free extracts. We review here the latest models accounting for transcription, translation, competition, and depletion of resources as well as genome scale models for lysate-based cell-free TX-TL systems, including their current limitations. These models will have to find ways to account for batch-to-batch variability before being quantitatively predictive in cell-free lysate-based platforms.
Collapse
Affiliation(s)
- Mathilde Koch
- Micalis Institute, INRA, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France
- Systems and Synthetic Biology Lab, CEA, CNRS, UMR 8030, Genomics Metabolics, University Paris-Saclay, Évry, France
- SYNBIOCHEM Center, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Olivier Borkowski
- Micalis Institute, INRA, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France
- Systems and Synthetic Biology Lab, CEA, CNRS, UMR 8030, Genomics Metabolics, University Paris-Saclay, Évry, France
| |
Collapse
|
111
|
Carter SR, Warner CM. Trends in Synthetic Biology Applications, Tools, Industry, and Oversight and Their Security Implications. Health Secur 2018; 16:320-333. [PMID: 30339097 DOI: 10.1089/hs.2018.0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent developments in synthetic biology tools and techniques are driving commercialization of a wide range of products for human health, agriculture, environmental stewardship, and other purposes. This article reviews some of the trends in synthetic biology applications as well as some of the tools enabling these and future advances. These tools and capabilities are being developed in the context of a rapidly changing industry, which may have an impact on the rate and direction of progress. Final products are subject to a regulatory framework that is being challenged by the pace, scale, and novelty of this new era of biotechnology. This article includes discussion of these factors and how they may affect product design and the types of applications that are most likely to be supported and pursued commercially. The final section provides perspective on the security implications of these advances, with a focus on US interests.
Collapse
Affiliation(s)
- Sarah R Carter
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| | - Christopher M Warner
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| |
Collapse
|
112
|
Pardee K. Perspective: Solidifying the impact of cell-free synthetic biology through lyophilization. Biochem Eng J 2018; 138:91-97. [PMID: 30740032 PMCID: PMC6358126 DOI: 10.1016/j.bej.2018.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Cell-free synthetic biology is an exciting and new branch in the field of synthetic biology. Based on in vitro transcription and translation systems, this application-focused domain builds on decades of cell-free biochemistry and protein expression to operate synthetic gene networks outside of cellular environments. This has brought new and perhaps even unexpected advantages. Chief among these is the ability to operate genetically encoded tools in a sterile and abiotic format. Recent work has extended this advantage by freeze-drying these cell-free systems into dried pellets or embedded paper-based reactions. Taken together, these new ideas have solved the longstanding challenge of how to deploy poised synthetic gene networks in a biosafe mode outside of the laboratory. There is significant excitement in the potential of this newfound venue and the community has begun to extend proof-of-concept demonstrations in important and creative ways. Here I explore these new efforts and provide my thoughts on the challenges and opportunities ahead for freeze-dried, cell-free synthetic biology.
Collapse
|
113
|
Freedman AJE, Peet KC, Boock JT, Penn K, Prather KLJ, Thompson JR. Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Front Microbiol 2018; 9:2152. [PMID: 30319556 PMCID: PMC6167967 DOI: 10.3389/fmicb.2018.02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Supercritical carbon dioxide (scCO2) is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones, and aldehydes. However, biological systems that use scCO2 are mainly limited to in vitro processes due to its strong inhibition of cell viability and growth. To solve this problem, we used a bioprospecting approach to isolate a microbial strain with the natural ability to grow while exposed to scCO2. Enrichment culture and serial passaging of deep subsurface fluids from the McElmo Dome scCO2 reservoir in aqueous media under scCO2 headspace enabled the isolation of spore-forming strain Bacillus megaterium SR7. Sequencing and analysis of the complete 5.51 Mbp genome and physiological characterization revealed the capacity for facultative anaerobic metabolism, including fermentative growth on a diverse range of organic substrates. Supplementation of growth medium with L-alanine for chemical induction of spore germination significantly improved growth frequencies and biomass accumulation under scCO2 headspace. Detection of endogenous fermentative compounds in cultures grown under scCO2 represents the first observation of bioproduct generation and accumulation under this condition. Culturing development and metabolic characterization of B. megaterium SR7 represent initial advancements in the effort toward enabling exploitation of scCO2 as a sustainable solvent for in vivo bioprocessing.
Collapse
Affiliation(s)
- Adam J. E. Freedman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kyle C. Peet
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jason T. Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Janelle R. Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
114
|
Des Soye BJ, Davidson SR, Weinstock MT, Gibson DG, Jewett MC. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens. ACS Synth Biol 2018; 7:2245-2255. [PMID: 30107122 DOI: 10.1021/acssynbio.8b00252] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new wave of interest in cell-free protein synthesis (CFPS) systems has shown their utility for producing proteins at high titers, establishing genetic regulatory element libraries ( e.g., promoters, ribosome binding sites) in nonmodel organisms, optimizing biosynthetic pathways before implementation in cells, and sensing biomarkers for diagnostic applications. Unfortunately, most previous efforts have focused on a select few model systems, such as Escherichia coli. Broadening the spectrum of organisms used for CFPS promises to better mimic host cell processes in prototyping applications and open up new areas of research. Here, we describe the development and characterization of a facile CFPS platform based on lysates derived from the fast-growing bacterium Vibrio natriegens, which is an emerging host organism for biotechnology. We demonstrate robust preparation of highly active extracts using sonication, without specialized and costly equipment. After optimizing the extract preparation procedure and cell-free reaction conditions, we show synthesis of 1.6 ± 0.05 g/L of superfolder green fluorescent protein in batch mode CFPS, making it competitive with existing E. coli CFPS platforms. To showcase the flexibility of the system, we demonstrate that it can be lyophilized and retain biosynthesis capability, that it is capable of producing antimicrobial peptides, and that our extract preparation procedure can be coupled with the recently described Vmax Express strain in a one-pot system. Finally, to further increase system productivity, we explore a knockout library in which putative negative effectors of CFPS are genetically removed from the source strain. Our V. natriegens-derived CFPS platform is versatile and simple to prepare and use. We expect it will facilitate expansion of CFPS systems into new laboratories and fields for compelling applications in synthetic biology.
Collapse
Affiliation(s)
| | | | | | - Daniel G. Gibson
- Synthetic Genomics, Inc., La Jolla, California 92037, United States
| | | |
Collapse
|
115
|
Jaroentomeechai T, Stark JC, Natarajan A, Glasscock CJ, Yates LE, Hsu KJ, Mrksich M, Jewett MC, DeLisa MP. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat Commun 2018; 9:2686. [PMID: 30002445 PMCID: PMC6043479 DOI: 10.1038/s41467-018-05110-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
The emerging discipline of bacterial glycoengineering has made it possible to produce designer glycans and glycoconjugates for use as vaccines and therapeutics. Unfortunately, cell-based production of homogeneous glycoproteins remains a significant challenge due to cell viability constraints and the inability to control glycosylation components at precise ratios in vivo. To address these challenges, we describe a novel cell-free glycoprotein synthesis (CFGpS) technology that seamlessly integrates protein biosynthesis with asparagine-linked protein glycosylation. This technology leverages a glyco-optimized Escherichia coli strain to source cell extracts that are selectively enriched with glycosylation components, including oligosaccharyltransferases (OSTs) and lipid-linked oligosaccharides (LLOs). The resulting extracts enable a one-pot reaction scheme for efficient and site-specific glycosylation of target proteins. The CFGpS platform is highly modular, allowing the use of multiple distinct OSTs and structurally diverse LLOs. As such, we anticipate CFGpS will facilitate fundamental understanding in glycoscience and make possible applications in on demand biomanufacturing of glycoproteins. The ability to produce homogeneous glycoproteins is expected to advance fundamental understanding in glycoscience, but current in vivo-based production systems have several limitations. Here, the authors develop an E. coli extract-based one-pot system for customized production of N-linked glycoproteins.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Aravind Natarajan
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Cameron J Glasscock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Laura E Yates
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Karen J Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute B224, Evanston, IL, 60208-3120, USA
| | - Milan Mrksich
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.,Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
116
|
Abstract
Engineering biological systems for the production of biofuels and bioproducts holds great potential to transform the bioeconomy, but often requires laborious, time-consuming design-build-test cycles. For decades cell-free systems have offered quick and facile approaches to study enzymes with hopes of informing cellular processes, mainly in the form of purified single-enzyme activity assays. Over the past 20 years, cell-free systems have grown to include multienzymatic systems, both purified and crude. By decoupling cellular growth objectives from enzyme pathway engineering objectives, cell-free systems provide a controllable environment to direct substrates toward a single, desired product. Cell-free approaches are being developed for prototyping and for biomanufacturing. In prototyping applications, the idea is to use cell-free systems to test and optimize biosynthetic pathways before implementation in live cells and scale-up. We present a detailed method for the generation of crude lysates for cell-free pathway prototyping, mix-and-match cell-free metabolic engineering using preenriched lysates, and cell-free protein synthesis driven cell-free metabolic engineering. The cell-free synthetic biology methods described herein are generalizable to any biosynthetic pathway of interest and provide a powerful approach to building pathways in crude lysates for the purpose of prototyping. The foundational principle of the presented approach is that we can construct discrete metabolic pathways through modular assembly of cell-free lysates containing enzyme components produced by overexpression in the lysate chassis strain or by cell-free protein synthesis (in vitro production). Overall, the modular and cell-free nature of our pathway prototyping framework is poised to facilitate multiplexed, automated study of biosynthetic pathways to inform systems-level cellular design.
Collapse
Affiliation(s)
- Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Evanston, IL, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute, Northwestern University, Chicago, IL, United States.
| |
Collapse
|