101
|
Murray KT. How Does Genetics Influence the Efficacy and Safety of Antiarrhythmic Drugs? Card Electrophysiol Clin 2010; 2:359-367. [PMID: 28770795 DOI: 10.1016/j.ccep.2010.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent progress in genomic sequencing has begun to elucidate the basic mechanisms for several adverse responses, as well as the clinical efficacy, for antiarrhythmic drugs. DNA variants in drug metabolizing enzymes have been implicated in excessive drug accumulation, and genetic variability in drug targets can identify individuals at increased risk for serious side effects, in particular proarrhythmia. It is hoped that future advances in the area of genomic medicine will lead to more individually tailored or personalized pharmacologic therapy in the management of cardiac arrhythmias.
Collapse
Affiliation(s)
- Katherine T Murray
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Room 559 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602, USA
| |
Collapse
|
102
|
|
103
|
Abstract
Adverse drug reactions are a significant public health problem that leads to mortality, hospital admissions, an increased length of stay, increasing healthcare costs, and withdrawal of drugs from market. Intensive care unit patients are particularly vulnerable and are at an elevated risk. Critical care practitioners, regulatory agencies, and the pharmaceutical industry aggressively seek biomarkers to mitigate patient risk. The rapidly expanding field of pharmacogenomics focuses on the genetic contributions to the variability in drug response. Polymorphisms may explain why some groups of patients have the expected response to pharmacotherapy whereas others experience adverse drug reactions. Historically, genetic association studies have focused on characterizing the effects of variation in drug metabolizing enzymes on pharmacokinetics. Recent work has investigated drug transporters and the variants of genes encoding drug targets, both intended and unintended, that comprise pharmacodynamics. This has led to an appreciation of the role that genetics plays in adverse drug reactions that are either predictable extensions of a drug's known therapeutic effect or idiosyncratic.This review presents the evidence for a genetic predisposition to adverse drug reactions, focusing on gene variants producing alterations in drug pharmacokinetics and pharmacodynamics in intensive care unit patients. Genetic biomarkers with the strongest associations to adverse drug reaction risk in the intensive care unit are presented along with the medications involved. Variant genotypes and phenotypes, allelic frequencies in different populations, and clinical studies are discussed. The article also presents the current recommendations for pharmacogenetic testing in clinical practice and explores the drug, patient, research study design, regulatory, and practical issues that presently limit more widespread implementation.
Collapse
|
104
|
Tomás M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A, Bellazzi R, Arking DE, Marban E, Chakravarti A, Spooner PM, Priori SG. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J Am Coll Cardiol 2010; 55:2745-52. [PMID: 20538168 DOI: 10.1016/j.jacc.2009.12.065] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/03/2009] [Accepted: 12/17/2009] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We investigated the role of nitric oxide 1 adaptor protein (NOS1AP) as a genetic modifier of long QT syndrome (LQTS). BACKGROUND LQTS risk stratification is complicated by the phenotype variability that limits prediction of life-threatening arrhythmic events based on available metrics. Thus, the identification of new markers is desirable. Recent studies have shown that NOS1AP variations in the gene modulate QT interval in healthy and 1 LQTS kindred, and occurrence of cardiac events in healthy subjects. METHODS The study included 901 patients enrolled in a prospective LQTS registry. Three NOS1AP marker SNPs (rs4657139, rs16847548, and rs10494366) were genotyped to assess the effect of variant alleles on QTc and on the incidence of cardiac events. We quantified the association between variant alleles, QTc, and outcomes to assess whether NOS1AP is a useful risk stratifier in LQTS. RESULTS Variant alleles tagged by SNPs rs4657139 and rs16847548 were associated with an average QTc prolongation of 7 and 8 ms, respectively (p < 0.05; p < 0.01); whereas rs4657139 and rs10494366 were associated with increased incidence of cardiac events (25.2% vs. 18.0%, p < 0.05 and 24.8% vs. 17.8% p < 0.05). Cox multivariate analysis identified rs10494366 minor allele as an independent prognostic marker among patients with QTc <500 ms (hazard ratio: 1.63; 95% confidence interval: 1.06 to 2.5; p < 0.05) but not in the entire cohort. CONCLUSIONS Our results provide the first demonstration, to our knowledge, of a risk-conferring genetic modifier in a large LQTS cohort. Subject to confirmation in additional cohorts, we suggest that the NOS1AP tag SNP genotype may provide an additional clinical dimension, which helps assess risk and choice of therapeutic strategies in LQTS.
Collapse
Affiliation(s)
- Marta Tomás
- Molecular Cardiology Laboratories, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Albert CM, MacRae CA, Chasman DI, VanDenburgh M, Buring JE, Manson JE, Cook NR, Newton-Cheh C. Common variants in cardiac ion channel genes are associated with sudden cardiac death. Circ Arrhythm Electrophysiol 2010; 3:222-9. [PMID: 20400777 PMCID: PMC2891421 DOI: 10.1161/circep.110.944934] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/18/2010] [Indexed: 01/19/2023]
Abstract
BACKGROUND Rare variants in cardiac ion channel genes are associated with sudden cardiac death in rare primary arrhythmic syndromes; however, it is unknown whether common variation in these same genes may contribute to sudden cardiac death risk at the population level. METHODS AND RESULTS We examined the association between 147 single nucleotide polymorphisms (SNPs) (137 tag, 5 noncoding SNPs associated with QT interval duration, and 5 nonsynonymous SNPs) in 5 cardiac ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2, and sudden and/or arrhythmic death in a combined nested case-control analysis among 516 cases and 1522 matched control subjects of European ancestry enrolled in 6 prospective cohort studies. After accounting for multiple testing, 2 SNPs (rs2283222 located in intron 11 in KCNQ1 and rs11720524 located in intron 1 in SCN5A) remained significantly associated with sudden/arrhythmic death (false discovery rate=0.01 and 0.03, respectively). Each increasing copy of the major T-allele of rs2283222 or the major C-allele of rs1172052 was associated with an odds ratio of 1.36 (95% confidence interval, 1.16 to 1.60; P=0.0002) and 1.30 (95% confidence interval, 1.12 to 1.51; P=0.0005), respectively. Control for cardiovascular risk factors and/or limiting the analysis to definite sudden cardiac death did not significantly alter these relationships. CONCLUSION In this combined analysis of 6 prospective cohort studies, 2 common intronic variants in KCNQ1 and SCN5A were associated with sudden cardiac death in individuals of European ancestry. Further study in other populations and investigation into the functional abnormalities associated with noncoding variation in these genes may lead to important insights into predisposition to lethal arrhythmias.
Collapse
Affiliation(s)
- Christine M Albert
- Center for Arrhythmia Prevention, Division of Preventive Medicine, Cardiovascular Division, Channing Laboratory, and Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-1204, USA.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Levy DI, Cepaitis E, Wanderling S, Toth PT, Archer SL, Goldstein SAN. The membrane protein MiRP3 regulates Kv4.2 channels in a KChIP-dependent manner. J Physiol 2010; 588:2657-68. [PMID: 20498229 DOI: 10.1113/jphysiol.2010.191395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
MiRP3, the single-span membrane protein encoded by KCNE4, is localized by immunofluorescence microscopy to the transverse tubules of murine cardiac myocytes. MiRP3 is found to co-localize with Kv4.2 subunits that contribute to cardiac transient outward potassium currents (I(to)). Whole-cell, voltage-clamp recordings of human MiRP3 and Kv4.2 expressed in a clonal cell line (tsA201) reveal MiRP3 to modulate Kv4.2 current activation, inactivation and recovery from inactivation. MiRP3 shifts the half-maximal voltage for activation (V(1/2)) approximately 20 mV and slows time to peak approximately 100%. In addition, MiRP3 slows inactivation approximately 100%, speeds recovery from inactivation approximately 30%, and enhances restored currents so they 'overshoot' baseline levels. The cytoplasmic accessory subunit KChIP2 also assembles with Kv4.2 in tsA201 cells to increase peak current, shift V(1/2) approximately 5 mV, slow time to peak approximately 10%, slow inactivation approximately 100%, and speed recovery from inactivation approximately 250% without overshoot. Simultaneous expression of all three subunits yields a biophysical profile unlike either accessory subunit alone, abolishes MiRP3-induced overshoot, and allows biochemical isolation of the ternary complex. Thus, regional heterogeneity in cardiac expression of MiRP3, Kv4.2 and KChIP2 in health and disease may establish the local attributes and magnitude of cardiac I(to).
Collapse
Affiliation(s)
- Daniel I Levy
- Department of Medicine, Biological Sciences Division, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
108
|
Abstract
PURPOSE OF REVIEW In this article, we will review the appropriate use of genetic testing in those patients suspected to have inherited arrhythmogenic diseases, with specific focus on the indications for testing and the expected probability of positive genotyping. RECENT FINDINGS Important advances have been made in the identification of new genes, associated mutations, and polymorphisms that modulate susceptibility of acquired arrhythmias. We will examine the most recent advances relevant to the rational application of genetic analysis, guided by genotype-phenotype correlations derived from disease and patient-specific evaluation, as well as discussing novel technologies and recently published cost-effectiveness data. SUMMARY Genetic analysis can be performed to identify the molecular substrate in those patients suspected to be affected by an inherited arrhythmogenic disease; however, the clinical usefulness of this information is often not straightforward. We hope to emphasize the concept that there is a significant difference in the impact of genetic testing within the various arrhythmogenic disorders, and the benefit of accessing genetic testing is not the same in all patients. The resultant integration between the expected yield of genetic screening and cost may allow the formation of criteria to prioritize access for those who could derive the most clinical benefit.
Collapse
|
109
|
Grunnet M. Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle? Acta Physiol (Oxf) 2010; 198 Suppl 676:1-48. [PMID: 20132149 DOI: 10.1111/j.1748-1716.2009.02072.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cardiac action potential can be divided into five distinct phases designated phases 0-4. The exact shape of the action potential comes about primarily as an orchestrated function of ion channels. The present review will give an overview of ion channels involved in generating the cardiac action potential with special emphasis on potassium channels involved in phase 3 repolarization. In humans, these channels are primarily K(v)11.1 (hERG1), K(v)7.1 (KCNQ1) and K(ir)2.1 (KCNJ2) being the responsible alpha-subunits for conducting I(Kr), I(Ks) and I(K1). An account will be given about molecular components, biophysical properties, regulation, interaction with other proteins and involvement in diseases. Both loss and gain of function of these currents are associated with different arrhythmogenic diseases. The second part of this review will therefore elucidate arrhythmias and subsequently focus on newly developed chemical entities having the ability to increase the activity of I(Kr), I(Ks) and I(K1). An evaluation will be given addressing the possibility that this novel class of compounds have the ability to constitute a new anti-arrhythmic principle. Experimental evidence from in vitro, ex vivo and in vivo settings will be included. Furthermore, conceptual differences between the short QT syndrome and I(Kr) activation will be accounted for.
Collapse
Affiliation(s)
- M Grunnet
- NeuroSearch A/S, Ballerup, and Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark.
| |
Collapse
|
110
|
Cardiac Ito, KCNE2, and Brugada syndrome: Promiscuous subunit interactions, or what happens in HEK cells stays in HEK cells? Heart Rhythm 2010; 7:206-7. [DOI: 10.1016/j.hrthm.2009.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Indexed: 11/24/2022]
|
111
|
Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M. The genetic basis of long QT and short QT syndromes: A mutation update. Hum Mutat 2009; 30:1486-511. [DOI: 10.1002/humu.21106] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
112
|
Heron SE, Hernandez M, Edwards C, Edkins E, Jansen FE, Scheffer IE, Berkovic SF, Mulley JC. Neonatal seizures and long QT syndrome: a cardiocerebral channelopathy? Epilepsia 2009; 51:293-6. [PMID: 19863579 DOI: 10.1111/j.1528-1167.2009.02317.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We identified a patient with electrophysiologically verified neonatal long QT syndrome (LQTS) and neonatal seizures in the presence of a controlled cardiac rhythm. To find a cause for this unusual combination of phenotypes, we tested the patient for mutations in seven ion channel genes associated with either LQTS or benign familial neonatal seizures (BFNS). Comparative genome hybridization (CGH) was done to exclude the possibility of a contiguous gene syndrome. No mutations were found in the genes (KCNQ2, KCNQ3) associated with BFNS, and CGH was negative. A previously described mutation and a known rare variant were found in the LQTS-associated genes SCN5A and KCNE2. Both are expressed in the brain, and although mutations have not been associated with epilepsy, we propose a pathophysiologic mechanism by which the combination of molecular changes may cause seizures.
Collapse
Affiliation(s)
- Sarah E Heron
- SA Pathology at Women's and Children's Hospital, North Adelaide, SA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, Gabbarini F, Goulene K, Insolia R, Mannarino S, Mosca F, Nespoli L, Rimini A, Rosati E, Salice P, Spazzolini C. Prevalence of the congenital long-QT syndrome. Circulation 2009; 120:1761-7. [PMID: 19841298 DOI: 10.1161/circulationaha.109.863209] [Citation(s) in RCA: 714] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The prevalence of genetic arrhythmogenic diseases is unknown. For the long-QT syndrome (LQTS), figures ranging from 1:20 000 to 1:5000 were published, but none was based on actual data. Our objective was to define the prevalence of LQTS. METHODS AND RESULTS In 18 maternity hospitals, an ECG was performed in 44 596 infants 15 to 25 days old (43 080 whites). In infants with a corrected QT interval (QTc) >450 ms, the ECG was repeated within 1 to 2 weeks. Genetic analysis, by screening 7 LQTS genes, was performed in 28 of 31 (90%) and in 14 of 28 infants (50%) with, respectively, a QTc >470 ms or between 461 and 470 ms. A QTc of 451 to 460, 461 to 470, and >470 ms was observed in 177 (0.41%), 28 (0.06%), and 31 infants (0.07%). Among genotyped infants, disease-causing mutations were found in 12 of 28 (43%) with a QTc >470 ms and in 4 of 14 (29%) with a QTc of 461 to 470 ms. One genotype-negative infant (QTc 482 ms) was diagnosed as affected by LQTS on clinical grounds. Among family members of genotype-positive infants, 51% were found to carry disease-causing mutations. In total, 17 of 43 080 white infants were affected by LQTS, demonstrating a prevalence of at least 1:2534 apparently healthy live births (95% confidence interval, 1:1583 to 1:4350). CONCLUSIONS This study provides the first data-based estimate of the prevalence of LQTS among whites. On the basis of the nongenotyped infants with QTc between 451 and 470 ms, we advance the hypothesis that this prevalence might be close to 1:2000. ECG-guided molecular screening can identify most infants affected by LQTS and unmask affected relatives, thus allowing effective preventive measures.
Collapse
Affiliation(s)
- Peter J Schwartz
- Department of Lung, Blood, and Heart, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Wu J, Shimizu W, Ding WG, Ohno S, Toyoda F, Itoh H, Zang WJ, Miyamoto Y, Kamakura S, Matsuura H, Nademanee K, Brugada J, Brugada P, Brugada R, Vatta M, Towbin JA, Antzelevitch C, Horie M. KCNE2 modulation of Kv4.3 current and its potential role in fatal rhythm disorders. Heart Rhythm 2009; 7:199-205. [PMID: 20042375 DOI: 10.1016/j.hrthm.2009.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/07/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND The transient outward current I(to) is of critical importance in regulating myocardial electrical properties during the very early phase of the action potential. The auxiliary beta subunit KCNE2 recently was shown to modulate I(to). OBJECTIVE The purpose of this study was to examine the contributions of KCNE2 and its two published variants (M54T, I57T) to I(to). METHODS The functional interaction between Kv4.3 (alpha subunit of human I(to)) and wild-type (WT), M54T, and I57T KCNE2, expressed in a heterologous cell line, was studied using patch-clamp techniques. RESULTS Compared to expression of Kv4.3 alone, co-expression of WT KCNE2 significantly reduced peak current density, slowed the rate of inactivation, and caused a positive shift of voltage dependence of steady-state inactivation curve. These modifications rendered Kv4.3 channels more similar to native cardiac I(to). Both M54T and I57T variants significantly increased I(to) current density and slowed the inactivation rate compared with WT KCNE2. Moreover, both variants accelerated the recovery from inactivation. CONCLUSION The study results suggest that KCNE2 plays a critical role in the normal function of the native I(to) channel complex in human heart and that M54T and I57T variants lead to a gain of function of I(to), which may contribute to generating potential arrhythmogeneity and pathogenesis for inherited fatal rhythm disorders.
Collapse
Affiliation(s)
- Jie Wu
- Pharmacology Department, Medical School of Xi'an Jiaotong University. Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med 2009; 15:1186-94. [PMID: 19767733 PMCID: PMC2790327 DOI: 10.1038/nm.2029] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 08/19/2009] [Indexed: 01/22/2023]
Abstract
Thyroid dysfunction affects 1–4% of the population worldwide, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that KCNQ1 and KCNE2 form a TSH-stimulated, constitutively-active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 impaired thyroid iodide accumulation up to 8-fold, impaired maternal milk ejection and halved milk T4 content, causing hypothyroidism, 50% reduced litter size, dwarfism, alopecia, goiter, and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by T3/T4 administration to pups, by supplementing dams with T4 pre- and postpartum, or by pre-weaning surrogacy with Kcne2+/+ dams; conversely these symptoms were elicited in Kcne2+/+ pups by surrogacy with Kcne2−/− dams. The data identify a critical thyrocyte K+ channel, provide a possible novel therapeutic avenue for thyroid disorders, and predict an endocrine component to some previously-identified KCNE2- and KCNQ1-linked human cardiac arrhythmias.
Collapse
|
116
|
Charpentier F, Mérot J, Loussouarn G, Baró I. Delayed rectifier K(+) currents and cardiac repolarization. J Mol Cell Cardiol 2009; 48:37-44. [PMID: 19683534 DOI: 10.1016/j.yjmcc.2009.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/16/2009] [Accepted: 08/06/2009] [Indexed: 11/17/2022]
Abstract
The two components of the cardiac delayed rectifier current have been the subject of numerous studies since firstly described. This current controls the action potential duration and is highly regulated. After identification of the channel subunits underlying IKs, KCNQ1 associated with KCNE1, and IKr, HERG, their involvement in human cardiac channelopathies have provided various models allowing the description of the molecular mechanisms of the KCNQ1 and HERG channels trafficking, activity and regulation. More recently, studies have been focusing on the unveiling of different partners of the pore-forming proteins that contribute to their maturation, trafficking, activity and/or degradation, on one side, and on their respective expression in the heterogeneous cardiac tissue, on the other side. The aim of this review is to report and discuss the major works on IKs and IKr and the most recent ones that help to understand the precise function of these currents in the heart.
Collapse
|
117
|
Männikkö R, Overend G, Perrey C, Gavaghan CL, Valentin JP, Morten J, Armstrong M, Pollard CE. Pharmacological and electrophysiological characterization of nine, single nucleotide polymorphisms of the hERG-encoded potassium channel. Br J Pharmacol 2009; 159:102-14. [PMID: 19673885 DOI: 10.1111/j.1476-5381.2009.00334.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Potencies of compounds blocking K(V)11.1 [human ether-ago-go-related gene (hERG)] are commonly assessed using cell lines expressing the Caucasian wild-type (WT) variant. Here we tested whether such potencies would be different for hERG single nucleotide polymorphisms (SNPs). EXPERIMENTAL APPROACH SNPs (R176W, R181Q, Del187-189, P347S, K897T, A915V, P917L, R1047L, A1116V) and a binding-site mutant (Y652A) were expressed in Tet-On CHO-K1 cells. Potencies [mean IC(50); lower/upper 95% confidence limit (CL)] of 48 hERG blockers was estimated by automated electrophysiology [IonWorks HT (IW)]. In phase one, rapid potency comparison of each WT-SNP combination was made for each compound. In phase two, any compound-SNP combinations from phase one where the WT upper/lower CL did not overlap with those of the SNPs were re-examined. Electrophysiological WT and SNP parameters were determined using conventional electrophysiology. KEY RESULTS IW detected the expected sixfold potency decrease for propafenone in Y652A. In phase one, the WT lower/upper CL did not overlap with those of the SNPs for 77 compound-SNP combinations. In phase two, 62/77 cases no longer yielded IC(50) values with non-overlapping CLs. For seven of the remaining 15 cases, there were non-overlapping CLs but in the opposite direction. For the eight compound-SNP combinations with non-overlapping CLs in the same direction as for phase 1, potencies were never more than twofold apart. The only statistically significant electrophysiological difference was the voltage dependence of activation of R1047L. CONCLUSION AND IMPLICATIONS Potencies of hERG channel blockers defined using the Caucasian WT sequence, in this in vitro assay, were representative of potencies for common SNPs.
Collapse
|
118
|
Itoh H, Sakaguchi T, Ding WG, Watanabe E, Watanabe I, Nishio Y, Makiyama T, Ohno S, Akao M, Higashi Y, Zenda N, Kubota T, Mori C, Okajima K, Haruna T, Miyamoto A, Kawamura M, Ishida K, Nagaoka I, Oka Y, Nakazawa Y, Yao T, Jo H, Sugimoto Y, Ashihara T, Hayashi H, Ito M, Imoto K, Matsuura H, Horie M. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ Arrhythm Electrophysiol 2009; 2:511-23. [PMID: 19843919 DOI: 10.1161/circep.109.862649] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drugs with I(Kr)-blocking action cause secondary long-QT syndrome. Several cases have been associated with mutations of genes coding cardiac ion channels, but their frequency among patients affected by drug-induced long-QT syndrome (dLQTS) and the resultant molecular effects remain unknown. METHODS AND RESULTS Genetic testing was carried out for long-QT syndrome-related genes in 20 subjects with dLQTS and 176 subjects with congenital long-QT syndrome (cLQTS); electrophysiological characteristics of dLQTS-associated mutations were analyzed using a heterologous expression system with Chinese hamster ovary cells together with a computer simulation model. The positive mutation rate in dLQTS was similar to cLQTS (dLQTS versus cLQTS, 8 of 20 [40%] versus 91 of 176 [52%] subjects, P=0.32). The incidence of mutations was higher in patients with torsades de pointes induced by nonantiarrhythmic drugs than by antiarrhythmic drugs (antiarrhythmic versus others, 3 of 14 [21%] versus 5 of 6 [83%] subjects, P<0.05). When reconstituted in Chinese hamster ovary cells, KCNQ1 and KCNH2 mutant channels showed complex gating defects without dominant negative effects or a relatively mild decreased current density. Drug sensitivity for mutant channels was similar to that of the wild-type channel. With the Luo-Rudy simulation model of action potentials, action potential durations of most mutant channels were between those of wild-type and cLQTS. CONCLUSIONS dLQTS had a similar positive mutation rate compared with cLQTS, whereas the functional changes of these mutations identified in dLQTS were mild. When I(Kr)-blocking agents produce excessive QT prolongation (dLQTS), the underlying genetic background of the dLQTS subject should also be taken into consideration, as would be the case with cLQTS; dLQTS can be regarded as a latent form of long-QT syndrome.
Collapse
Affiliation(s)
- Hideki Itoh
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Disease-Causing Polymorphisms in the Spectrum of Long QT Syndrome Mutations. J Am Coll Cardiol 2009; 54:820-1. [DOI: 10.1016/j.jacc.2009.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 06/30/2009] [Indexed: 11/20/2022]
|
120
|
Clancy SM, Chen B, Bertaso F, Mamet J, Jegla T. KCNE1 and KCNE3 beta-subunits regulate membrane surface expression of Kv12.2 K(+) channels in vitro and form a tripartite complex in vivo. PLoS One 2009; 4:e6330. [PMID: 19623261 PMCID: PMC2710002 DOI: 10.1371/journal.pone.0006330] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/17/2009] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated potassium channels that activate near the neuronal resting membrane potential are important regulators of excitation in the nervous system, but their functional diversity is still not well understood. For instance, Kv12.2 (ELK2, KCNH3) channels are highly expressed in the cerebral cortex and hippocampus, and although they are most likely to contribute to resting potassium conductance, surprisingly little is known about their function or regulation. Here we demonstrate that the auxiliary MinK (KCNE1) and MiRP2 (KCNE3) proteins are important regulators of Kv12.2 channel function. Reduction of endogenous KCNE1 or KCNE3 expression by siRNA silencing, significantly increased macroscopic Kv12.2 currents in Xenopus oocytes by around 4-fold. Interestingly, an almost 9-fold increase in Kv12.2 currents was observed with the dual injection of KCNE1 and KCNE3 siRNA, suggesting an additive effect. Consistent with these findings, over-expression of KCNE1 and/or KCNE3 suppressed Kv12.2 currents. Membrane surface biotinylation assays showed that surface expression of Kv12.2 was significantly increased by KCNE1 and KCNE3 siRNA, whereas total protein expression of Kv12.2 was not affected. KCNE1 and KCNE3 siRNA shifted the voltages for half-maximal activation to more hyperpolarized voltages, indicating that KCNE1 and KCNE3 may also inhibit activation gating of Kv12.2. Native co-immunoprecipitation assays from mouse brain membranes imply that KCNE1 and KCNE3 interact with Kv12.2 simultaneously in vivo, suggesting the existence of novel KCNE1-KCNE3-Kv12.2 channel tripartite complexes. Together these data indicate that KCNE1 and KCNE3 interact directly with Kv12.2 channels to regulate channel membrane trafficking.
Collapse
Affiliation(s)
- Sinead M. Clancy
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Bihan Chen
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Federica Bertaso
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julien Mamet
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Timothy Jegla
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
121
|
Viskin S, Rosso R, Márquez MF, Antzelevitch C. The acquired Brugada syndrome and the paradox of choice. Heart Rhythm 2009; 6:1342-4. [PMID: 19716090 DOI: 10.1016/j.hrthm.2009.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Indexed: 12/15/2022]
|
122
|
Drolet B, Simard C, Gailis L, Daleau P. Ischemic, genetic and pharmacological origins of cardiac arrhythmias: the contribution of the Quebec Heart Institute. Can J Cardiol 2009; 23 Suppl B:15B-22B. [PMID: 17932583 DOI: 10.1016/s0828-282x(07)71006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Research in the field of basic electrophysiology at the Quebec Heart Institute (Laval Hospital, Quebec City, Quebec) has evolved since its beginning in the 1990s. Interests were focused on cardiac arrhythmias induced by drugs, allelic variants and metabolic factors produced during ischemia. The results have contributed to the creation of new standards in drug development, more specifically, testing all new drugs for their potential effects on cardiac potassium currents, which could produce life-threatening proarrhythmic effects. In a French-Canadian population, three heterozygous single nucleotide polymorphisms in hK(v)1.5, a gene encoding for a major atrial repolarizing current, were found. These variants affect the expression level of the hK(v)1.5 channel and change the inactivation process in the presence of its accessory beta subunit. Because these effects could shorten atrial action potential, their presence was tested in postcoronary bypass patients and a higher prevalence was found in patients with postoperative atrial fibrillation. Finally, three potentially proarrhythmic factors characteristic of ischemia were identified: pH decrease; oxygen free radicals, which both increase the flow of K(+) ions through human ether-a-go-go-related gene and hK(v)1.5, producing a reduction in action potential duration, frequently leading to cardiac arrhythmias; and lysophosphatidylcholine, a metabolite involved in the production of cardiac arrhythmias early during ischemia that was shown to be a major cause of electrical uncoupling. Over the past decade, the Quebec Heart Institute has provided a significant amount of original data in the field of basic cardiac electrophysiology, specifically concerning arrhythmias originating from pharmacological agents, genetic background and cardiac ischemia.
Collapse
|
123
|
Marjamaa A, Newton-Cheh C, Porthan K, Reunanen A, Lahermo P, Väänänen H, Jula A, Karanko H, Swan H, Toivonen L, Nieminen MS, Viitasalo M, Peltonen L, Oikarinen L, Palotie A, Kontula K, Salomaa V. Common candidate gene variants are associated with QT interval duration in the general population. J Intern Med 2009; 265:448-58. [PMID: 19019189 PMCID: PMC2668713 DOI: 10.1111/j.1365-2796.2008.02026.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES QT interval prolongation is associated with increased risk of sudden cardiac death at the population level. As 30-40% of the QT-interval variability is heritable, we tested the association of common LQTS and NOS1AP gene variants with QT interval in a Finnish population-based sample. METHODS We genotyped 12 common LQTS and NOS1AP genetic variants in Health 2000, an epidemiological sample of 5043 Finnish individuals, using Sequenom MALDI-TOF mass spectrometry. ECG parameters were measured from digital 12-lead ECGs and QT intervals were adjusted for age, gender and heart rate with a nomogram (Nc) method derived from the present study population. RESULTS The KCNE1 D85N minor allele (frequency 1.4%) was associated with a 10.5 ms (SE 1.6) or 0.57 SD prolongation of the adjusted QT(Nc) interval (P=3.6 x 10(-11)) in gender-pooled analysis. In agreement with previous studies, we replicated the association with QT(Nc) interval with minor alleles of KCNH2 intronic SNP rs3807375 [1.6 ms (SE 0.4) or 0.08 SD, P=4.7 x 10(-5)], KCNH2 K897T [-2.6 ms (SE 0.5) or -0.14 SD, P=2.1 x 10(-7)] and NOSA1P variants including rs2880058 [4.0 ms (SE 0.4) or 0.22 SD, P=3.2 x 10(-24)] under additive models. CONCLUSIONS We demonstrate that each additional copy of the KCNE1 D85N minor allele is associated with a considerable 10.5 ms prolongation of the age-, gender- and heart rate-adjusted QT interval and could thus modulate repolarization-related arrhythmia susceptibility at the population level. In addition, we robustly confirm the previous findings that three independent KCNH2 and NOSA1P variants are associated with adjusted QT interval.
Collapse
Affiliation(s)
- Annukka Marjamaa
- Research Program in Molecular Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Kimmo Porthan
- Department of Cardiology, University of Helsinki, Helsinki, Finland
| | | | - Päivi Lahermo
- Finnish Genome Center, University of Helsinki, Helsinki, Finland
| | - Heikki Väänänen
- Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo, Finland
| | - Antti Jula
- National Public Health Institute, Helsinki, Finland
| | | | - Heikki Swan
- Department of Cardiology, University of Helsinki, Helsinki, Finland
| | - Lauri Toivonen
- Department of Cardiology, University of Helsinki, Helsinki, Finland
| | | | - Matti Viitasalo
- Department of Cardiology, University of Helsinki, Helsinki, Finland
| | | | - Lasse Oikarinen
- Department of Cardiology, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Finnish Genome Center, University of Helsinki, Helsinki, Finland
| | - Kimmo Kontula
- Research Program in Molecular Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medicine, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
124
|
Abbott GW, Roepke TK. HERG biosynthesis: the positive influence of negative charge. Am J Physiol Heart Circ Physiol 2009; 296:H1211-2. [PMID: 19286960 DOI: 10.1152/ajpheart.00218.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
125
|
McCrossan ZA, Roepke TK, Lewis A, Panaghie G, Abbott GW. Regulation of the Kv2.1 potassium channel by MinK and MiRP1. J Membr Biol 2009; 228:1-14. [PMID: 19219384 PMCID: PMC2849987 DOI: 10.1007/s00232-009-9154-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/13/2009] [Indexed: 12/17/2022]
Abstract
Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.
Collapse
Affiliation(s)
| | | | - Anthony Lewis
- Greenberg Division of Cardiology, Departments of Medicine and Pharmacology, Weill Medical College of Cornell University, New York, NY
| | - Gianina Panaghie
- Greenberg Division of Cardiology, Departments of Medicine and Pharmacology, Weill Medical College of Cornell University, New York, NY
| | - Geoffrey W. Abbott
- Greenberg Division of Cardiology, Departments of Medicine and Pharmacology, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
126
|
Abstract
The long QT syndrome (LQTS) is a rare, congenital or acquired disease, which may lead to fatal cardiac arrhythmias (torsade de pointes, TdP). In all LQTS subtypes, TdPs are caused by disturbances in cardiac ion channels. Diagnosis is made using clinical, anamnestic and electrocardiographic data. Triggers of TdPs are numerous and should be avoided perioperatively. Sufficient sedation and preoperative correction of electrolyte imbalances are essential. Volatile anaesthetics and antagonists of muscle relaxants should be avoided and high doses of local anaesthetics are not recommended to date. Propofol is safe for anaesthesia induction and maintenance. The acute therapy of TdPs with cardiovascular depression should be performed in accordance with the guidelines for advanced cardiac life support and includes cardioversion/defibrillation and magnesium. Torsades de pointes may be associated with bradycardia or tachycardia resulting in specific therapeutic and prophylactic measures.
Collapse
Affiliation(s)
- S Rasche
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Carl Gustav Carus, Technische Universität, Dresden.
| | | | | |
Collapse
|
127
|
Radicke S, Cotella D, Sblattero D, Ravens U, Santoro C, Wettwer E. The transmembrane beta-subunits KCNE1, KCNE2, and DPP6 modify pharmacological effects of the antiarrhythmic agent tedisamil on the transient outward current Ito. Naunyn Schmiedebergs Arch Pharmacol 2009; 379:617-26. [PMID: 19153714 DOI: 10.1007/s00210-008-0389-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
Abstract
Accessory beta-subunits modulate the pharmacology of ion channel blockers. The aim was to investigate differences in effects of the antiarrhythmic agent and open-channel blocker tedisamil on transient outward current I(to) (Kv4.3) when coexpressed with beta-subunits potassium voltage-gated channel, Isk-related family, member 1 (KCNE1), potassium voltage-gated channel, Isk-related family, member 2 (KCNE2), or dipeptidyl-aminopeptidase-like protein 6 (DPP6) which modulate I(to) kinetics. Tedisamil inhibited I(to) with IC(50) values of 16 microM for Kv4.3+KChIP2, 11 microM in the presence of KCNE1, and 14 microM for KCNE2. Values were higher in the presence of DPP6 or DPP6+KCNE2 (35 and 26 microM). K(d) values of tedisamil binding and rate constants were not affected by KCNE or DPP6. I(to) kinetics were accelerated by KCNE and DPP6, inactivation to a larger extent with DPP6. Tedisamil did not affect activation time course but apparently accelerated inactivation in all channel subunit combinations tested. Deletion of the intracellular domain of KCNE2 or DPP6 resulted in slowing of kinetics and increased tedisamil sensitivity (IC(50) 4 and 7 microM). It is concluded that apparent effects of DPP6 and deletion mutants (KCNE2 and DPP6) are due to the acceleration or slowing effects of the beta-subunits on I(to) kinetics.
Collapse
Affiliation(s)
- Susanne Radicke
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
128
|
Palacios R, González M, Ruiz J, Santos J. Efectos adversos de atazanavir. Enferm Infecc Microbiol Clin 2008; 26 Suppl 17:41-4. [DOI: 10.1016/s0213-005x(08)76619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
129
|
Perrin MJ, Subbiah RN, Vandenberg JI, Hill AP. Human ether-a-go-go related gene (hERG) K+ channels: function and dysfunction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:137-48. [PMID: 19027781 DOI: 10.1016/j.pbiomolbio.2008.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human Ether-a-go-go Related Gene (hERG) potassium channel plays a central role in regulating cardiac excitability and maintenance of normal cardiac rhythm. Mutations in hERG cause a third of all cases of congenital long QT syndrome, a disorder of cardiac repolarisation characterised by prolongation of the QT interval on the surface electrocardiogram, abnormal T waves, and a risk of sudden cardiac death due to ventricular arrhythmias. Additionally, the hERG channel protein is the molecular target for almost all drugs that cause the acquired form of long QT syndrome. Advances in understanding the structural basis of hERG gating, its traffic to the cell surface, and the molecular architecture involved in drug-block of hERG, are providing the foundation for rational treatment and prevention of hERG associated long QT syndrome. This review summarises the current knowledge of hERG function and dysfunction, and the areas of ongoing research.
Collapse
Affiliation(s)
- Mark J Perrin
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
| | | | | | | |
Collapse
|
130
|
Abstracts of the European Association of Poisons Centres and Clinical Toxicologists XXV International Congress. Clin Toxicol (Phila) 2008. [DOI: 10.1080/07313820500207624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
131
|
Odening KE, Hyder O, Chaves L, Schofield L, Brunner M, Kirk M, Zehender M, Peng X, Koren G. Pharmacogenomics of anesthetic drugs in transgenic LQT1 and LQT2 rabbits reveal genotype-specific differential effects on cardiac repolarization. Am J Physiol Heart Circ Physiol 2008; 295:H2264-72. [PMID: 18835916 DOI: 10.1152/ajpheart.00680.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anesthetic agents prolong cardiac repolarization by blocking ion currents. However, the clinical relevance of this blockade in subjects with reduced repolarization reserve is unknown. We have generated transgenic long QT syndromes type 1 (LQT1) and type 2 (LQT2) rabbits that lack slow delayed rectifier K+ currents (IKs) or rapidly activating K+ currents (IKr) and used them as a model system to detect the channel-blocking properties of anesthetic agents. Therefore, LQT1, LQT2, and littermate control (LMC) rabbits were administered isoflurane, thiopental, midazolam, propofol, or ketamine, and surface ECGs were analyzed. Genotype-specific heart rate correction formulas were used to determine the expected QT interval at a given heart rate. The QT index (QTi) was calculated as percentage of the observed QT/expected QT. Isoflurane, a drug that blocks IKs) prolonged the QTi only in LQT2 and LMC but not in LQT1 rabbits. Midazolam, which blocks inward rectifier K+ current (IK1), prolonged the QTi in both LQT1 and LQT2 but not in LMC. Thiopental, which blocks both IKs and IK1, increased the QTi in LQT2 and LMC more than in LQT1. By contrast, ketamine, which does not block IKr, IKs, or IK1, did not alter the QTi in any group. Finally, anesthesia with isoflurane or propofol resulted in lethal polymorphic ventricular tachycardia (pVT) in three out of nine LQT2 rabbits. Transgenic LQT1 and LQT2 rabbits could serve as an in vivo model in which to examine the pharmacogenomics of drug-induced QT prolongation of anesthetic agents and their proarrhythmic potential. Transgenic LQT2 rabbits developed pVT under isoflurane and propofol, underlining the proarrhythmic risk of IKs blockers in subjects with reduced IKr.
Collapse
Affiliation(s)
- Katja E Odening
- Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Coro West 51031 Hoppin St., Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Schulze-Bahr E. Susceptibility genes & modifiers for cardiac arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:289-300. [DOI: 10.1016/j.pbiomolbio.2009.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
133
|
Freeman BD, Dixon DJ, Coopersmith CM, Zehnbauer BA, Buchman TG. Pharmacoepidemiology of QT-interval prolonging drug administration in critically ill patients. Pharmacoepidemiol Drug Saf 2008; 17:971-81. [PMID: 18693297 PMCID: PMC2587152 DOI: 10.1002/pds.1637] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Commonly prescribed medications produce QT-prolongation and are associated with torsades de pointes in non-acutely ill patients. We examined patterns of QT-prolonging drug use in critically ill individuals. METHODS An administrative critical care database was utilized to identify patients receiving drugs associated with QT-interval prolongation or torsades de pointes for > or = 24 hours. RESULTS Data from 212 016 individuals collected over a 63-month period was examined to identify 6125 patients (2.9%) receiving QT-interval prolonging drugs. These individuals had a mean (+/-SE) age of 63.0 (+/-0.2) years, were predominately male (55.4%) and Caucasian (84.4%), and were exposed to QT-interval prolonging agents for a mean (+/-SE) 53.1 (+/-0.4)% of their ICU length of stay. Respiratory and cardiovascular illnesses were the most common reasons for ICU admission (17.2, 12.0%, respectively). The most frequently administered agents were amiodarone (23.5%), haloperidol (19.8%), and levofloxacin (19.7%); no other single agent accounted for more than 10% of QT-interval prolonging drugs prescribed. Coadministration of QT-prolonging drugs occurred in 1139 patients (18.6%). These patients had higher ICU mortality rate and longer ICU lengths of stay, compared to patients not receiving coadministered drugs (p < 0.001 for both). For patients receiving coadministered drugs, overlap occurred for 71.4 (+/-0.8)% of the time that the drugs were given. Amiodarone coadministration with antibiotics, haloperidol coadministration with antibiotics, and haloperidol coadministration with amiodarone, comprised 15.2, 13.7, and 9.4%, of all coadministered agents, respectively. CONCLUSIONS QT-prolonging drugs were used in a minority of critically ill patients. Prospective evaluation in the ICU environment is necessary to determine whether administration of these agents is associated with adverse cardiac events comparable to those reported in ambulatory patients.
Collapse
Affiliation(s)
- Bradley D Freeman
- Department of Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
134
|
The Effect of Propofol Concentration on Dispersion of Myocardial Repolarization in Children. Anesth Analg 2008; 107:806-10. [DOI: 10.1213/ane.0b013e3181815ce3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
135
|
Abstract
This Seminar presents the most recent information about the congenital long and short QT syndromes, emphasising the varied genotype-phenotype association in the ten different long QT syndromes and the five different short QT syndromes. Although uncommon, these syndromes serve as a Rosetta stone for the understanding of inherited ion-channel disorders leading to life-threatening cardiac arrhythmias. Ionic abnormal changes mainly affecting K(+), Na(+), or Ca(2+) currents, which either prolong or shorten ventricular repolarisation, can create a substrate of electrophysiological heterogeneity that predisposes to the development of ventricular tachyarrhythmias and sudden death. The understanding of the genetic basis of the syndromes is hoped to lead to genetic therapy that can restore repolarisation. Presently, symptomatic individuals are generally best treated with an implantable cardioverter defibrillator. Clinicians should be aware of these syndromes and realise that drugs, ischaemia, exercise, and emotions can precipitate sudden death in susceptible individuals.
Collapse
Affiliation(s)
- Hiroshi Morita
- Krannert Institute of Cardiology and the Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
136
|
Saksena S, Nagarakanti R. The future of implantable defibrillator and cardiac resynchronization therapy trials. J Interv Card Electrophysiol 2008; 23:29-39. [DOI: 10.1007/s10840-008-9302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 07/08/2008] [Indexed: 11/29/2022]
|
137
|
Abstract
Abnormal excitability of myocardial cells may give rise to ectopic beats and initiate re-entry around an anatomical or functional obstacle. As K(+) currents control the repolarization process of the cardiac action potential (AP), the K(+) channel function determines membrane potential and refractoriness of the myocardium. Both gain and loss of the K(+) channel function can lead to arrhythmia. The former because abbreviation of the active potential duration (APD) shortens refractoriness and wave length, and thereby facilitates re-entry and the latter because excessive prolongation of APD may lead to torsades de pointes (TdP) arrhythmia and sudden cardiac death. The pro-arrhythmic consequences of malfunctioning K(+) channels in ventricular and atrial tissue are discussed in the light of three pathophysiologically relevant aspects: genetic background, drug action, and disease-induced remodelling. In the ventricles, loss-of-function mutations in the genes encoding for K(+) channels and many drugs (mainly hERG channel blockers) are related to hereditary and acquired long-QT syndrome, respectively, that put individuals at high risk for developing TdP arrhythmias and life-threatening ventricular fibrillation. Similarly, down-regulation of K(+) channels in heart failure also increases the risk for sudden cardiac death. Mutations and polymorphisms in genes encoding for atrial K(+) channels can be associated with gain-of-function and shortened, or with loss-of-function and prolonged APs. The block of atrial K(+) channels becomes a particular therapeutic challenge when trying to ameliorate atrial fibrillation (AF). This arrhythmia has a strong tendency to cause electrical remodelling, which affects many K(+) channels. Atrial-selective drugs for the treatment of AF without affecting the ventricles could target structures such as I(Kur) or constitutively active I(K,ACh) channels.
Collapse
Affiliation(s)
- Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Dresden, Germany.
| | | |
Collapse
|
138
|
Affiliation(s)
- Dan M. Roden
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville Tennessee, U.S.A
| |
Collapse
|
139
|
Roepke TK, Kontogeorgis A, Ovanez C, Xu X, Young JB, Purtell K, Goldstein PA, Christini DJ, Peters NS, Akar FG, Gutstein DE, Lerner DJ, Abbott GW. Targeted deletion of kcne2 impairs ventricular repolarization via disruption of I(K,slow1) and I(to,f). FASEB J 2008; 22:3648-60. [PMID: 18603586 DOI: 10.1096/fj.08-110171] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in human KCNE2, which encodes the MiRP1 potassium channel ancillary subunit, associate with long QT syndrome (LQTS), a defect in ventricular repolarization. The precise cardiac role of MiRP1 remains controversial, in part, because it has marked functional promiscuity in vitro. Here, we disrupted the murine kcne2 gene to define the role of MiRP1 in murine ventricles. kcne2 disruption prolonged ventricular action potential duration (APD), suggestive of reduced repolarization capacity. Accordingly, kcne2 (-/-) ventricles exhibited a 50% reduction in I(K,slow1), generated by Kv1.5--a previously unknown partner for MiRP1. I(to,f), generated by Kv4 alpha subunits, was also diminished, by approximately 25%. Ventricular MiRP1 protein coimmunoprecipitated with native Kv1.5 and Kv4.2 but not Kv1.4 or Kv4.3. Unexpectedly, kcne2 (-/-) ventricular membrane fractions exhibited 50% less mature Kv1.5 protein than wild type, and disruption of Kv1.5 trafficking to the intercalated discs. Consistent with the reduction in ventricular K(+) currents and prolonged ventricular APD, kcne2 deletion lengthened the QT(c) under sevoflurane anesthesia. Thus, targeted disruption of kcne2 has revealed a novel cardiac partner for MiRP1, a novel role for MiRPs in alpha subunit targeting in vivo, and a role for MiRP1 in murine ventricular repolarization with parallels to that proposed for the human heart.
Collapse
Affiliation(s)
- Torsten K Roepke
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Hancox JC, McPate MJ, El Harchi A, Zhang YH. The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther 2008; 119:118-32. [PMID: 18616963 DOI: 10.1016/j.pharmthera.2008.05.009] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 01/08/2023]
Abstract
Drug-induced torsades de pointes (TdP) arrhythmia is a major safety concern in the process of drug design and development. The incidence of TdP tends to be low, so early pre-clinical screens rely on surrogate markers of TdP to highlight potential problems with new drugs. hERG (human ether-à-go-go-related gene, alternative nomenclature KCNH2) is responsible for channels mediating the 'rapid' delayed rectifier K+ current (IKr) which plays an important role in ventricular repolarization. Pharmacological inhibition of native IKr and of recombinant hERG channels is a shared feature of diverse drugs associated with TdP. In vitro hERG assays therefore form a key element of an integrated assessment of TdP liability, with patch-clamp electrophysiology offering a 'gold standard'. However, whilst clearly necessary, hERG assays cannot be assumed automatically to provide sufficient information, when considered in isolation, to differentiate 'safe' from 'dangerous' drugs. Other relevant factors include therapeutic plasma concentration, drug metabolism and active metabolites, severity of target condition and drug effects on other cardiac ion channels that may mitigate or exacerbate effects of hERG blockade. Increased understanding of the nature of drug-hERG channel interactions may ultimately help eliminate potential hERG blockade early in the design and development process. Currently, for promising drug candidates integration of data from hERG assays with information from other pre-clinical safety screens remains essential.
Collapse
Affiliation(s)
- Jules C Hancox
- Department of Physiology and Pharmacology, Cardiovascular Research Laboratories, Bristol Heart Institute, School of Medical Sciences, The University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom.
| | | | | | | |
Collapse
|
141
|
|
142
|
Koskela J, Laiho J, KäHönen M, Rontu R, Lehtinen R, Viik J, Niemi M, Niemelä K, Kööbi T, Turjanmaa V, Pörsti I, Lehtimäki T, Nieminen T. Potassium channel KCNH2 K897T polymorphism and cardiac repolarization during exercise test: The Finnish Cardiovascular Study. Scandinavian Journal of Clinical and Laboratory Investigation 2008; 68:31-8. [PMID: 17852802 DOI: 10.1080/00365510701496488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cardiac repolarization is regulated, in part, by the KCNH2 gene, which encodes a rapidly activating component of the delayed rectifier potassium channel. The gene expresses a functional single nucleotide polymorphism, K897T, which changes the biophysical properties of the channel. The objective of this study was to evaluate whether this polymorphism influences two indices of repolarization--the QT interval and T-wave alternans (TWA)--during different phases of a physical exercise test. MATERIAL AND METHODS The cohort consisted of 1,975 patients undergoing an exercise test during which on-line electrocardiographic data were registered. Information on coronary risk factors and medication was recorded. The 2690A>C nucleotide variation in the KCNH2 gene corresponding to the K897T amino acid change was analysed after polymerase chain reaction with allele-specific TaqMan probes. RESULTS Among all subjects, the QTc intervals did not differ between the three genotype groups (p> or =0.31, RANOVA). Women with the CC genotype tended to have longer QT intervals during the exercise test, but the difference was statistically significant only at rest (p = 0.011, ANOVA). This difference was also detected when the analysis was adjusted for several factors influencing the QT interval. No statistically significant effects of the K897T polymorphism on TWA were observed among all subjects (p = 0.16, RANOVA), nor in men and women separately. CONCLUSIONS The K897T polymorphism of the KCNH2 gene may not be a major genetic determinant for the TWA, but the influence of the CC genotype on QT interval deserves further research among women.
Collapse
Affiliation(s)
- J Koskela
- Internal Medicine, Tampere University Hospital and Tampere University Medical School, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Levy DI, Wanderling S, Biemesderfer D, Goldstein SAN. MiRP3 acts as an accessory subunit with the BK potassium channel. Am J Physiol Renal Physiol 2008; 295:F380-7. [PMID: 18463315 DOI: 10.1152/ajprenal.00598.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MinK-related peptides (MiRPs) are single-span membrane proteins that assemble with specific voltage-gated K+ (Kv) channel alpha-subunits to establish gating kinetics, unitary conductance, expression level, and pharmacology of the mixed complex. MiRP3 (encoded by the KCNE4 gene) has been shown to alter the behavior of some Kv alpha-subunits in vitro but its natural partners and physiologic functions are unknown. Seeking in vivo partners for MiRP3, immunohistochemistry was used to localize its expression to a unique subcellular site, the apical membrane of renal intercalated cells, where one potassium channel type has been recorded, the calcium- and voltage-gated channel BK. Overlapping staining of these two proteins was found in rabbit intercalated cells, and MiRP3 and BK subunits expressed in tissue culture cells were found to form detergent-stable complexes. Electrophysiologic and biochemical evaluation showed MiRP3 to act on BK to reduce current density in two fashions: shifting the current-voltage relationship to more depolarized voltages in a calcium-dependent fashion ( approximately 10 mV at normal intracellular calcium levels) and accelerating degradation of MiRP3-BK complexes. The findings suggest a role for MiRP3 modulation of BK-dependent urinary potassium excretion.
Collapse
Affiliation(s)
- Daniel I Levy
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
144
|
Simkó J, Csilek A, Karászi J, Lorincz I. Proarrhythmic potential of antimicrobial agents. Infection 2008; 36:194-206. [PMID: 18454341 DOI: 10.1007/s15010-007-7211-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/24/2007] [Indexed: 01/08/2023]
Abstract
Several antiarrhythmic and non-cardiovascular drug therapies including antimicrobial agents have been implicated as the causes for QT interval prolongation, torsades de pointes (TdP) ventricular tachycardia and sudden cardiac death. Most of the drugs that have been associated with the lengthening of the QT interval or development of TdP can also block the rapidly activating component of the delayed rectifier potassium current (IKr) in the ventricular cardiomyocytes. This article presents a review of the current literature on the QT interval prolonging effect of antimicrobials based on the results of the in vitro, in vivo studies and case reports. Our observations were derived from currently available Medline database. As we found, the most frequently QT interval prolonging antimicrobials are erythromycin, clarithromycin, fluoroquinolones, halofantrine, and pentamidine. Almost every antimicrobial-associated QT interval prolongation occurs in patients with multiple risk factors of the following: drug interactions, female gender, advanced age, structural heart disease, genetic predisposition, and electrolyte abnormalities. In conclusion, physicians should avoid prescribing antimicrobials having QT prolonging potential for patients with multiple risk factors. Recognition and appropriate treatment of TdP are also indispensable.
Collapse
Affiliation(s)
- J Simkó
- First Department of Internal Medicine, Semmelweis Hospital, Csabai kapu 9-11, Miskolc 3529, Hungary.
| | | | | | | |
Collapse
|
145
|
Abstract
Sudden cardiac death stemming from ventricular arrhythmogenesis is one of the major causes of mortality in the developed world. Congenital and acquired forms of long QT syndrome (LQTS) are in turn associated with life threatening arrhythmias. Over the past decade our understanding of arrhythmogenic mechanisms in the setting of these diseases has increased greatly due to the creation of a number of animal models. Of these, the genetically amenable mouse has proved to be a particularly powerful tool. This review summarizes the congenital and acquired LQTS and describes the various mouse models that have been created to further probe arrhythmogenic mechanisms.
Collapse
Affiliation(s)
- M J Killeen
- Physiological Laboratory, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
146
|
Jeyaraj D, Abernethy DP, Natarajan RN, Dettmer MM, Dikshteyn M, Meredith DM, Patel K, Allareddy RR, Lewis SA, Kaufman ES. IKr channel blockade to unmask occult congenital long QT syndrome. Heart Rhythm 2008; 5:2-7. [DOI: 10.1016/j.hrthm.2007.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
147
|
Tseng GN. The phenotype of a KCNQ1 mutation depends on its KCNE partners: is the cardiac slow delayed rectifier (IKs) channel more than a KCNQ1/KCNE1 complex? Heart Rhythm 2007; 4:1542-3. [PMID: 17980676 PMCID: PMC2185539 DOI: 10.1016/j.hrthm.2007.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Indexed: 10/22/2022]
Affiliation(s)
- Gea-ny Tseng
- Virginia Commonwealth University, Department of Physiology, Medical College of Virginia, Po Box 980551, Richmond, VA 23298-0551, UNITED STATES, 804-828-7382, FAX: 804-828-7382,
| |
Collapse
|
148
|
Frolov RV, Berim IG, Singh S. Inhibition of delayed rectifier potassium channels and induction of arrhythmia: a novel effect of celecoxib and the mechanism underlying it. J Biol Chem 2007; 283:1518-1524. [PMID: 17984087 DOI: 10.1074/jbc.m708100200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selective inhibitors of cyclooxygenase-2 (COX-2), such as rofecoxib (Vioxx), celecoxib (Celebrex), and valdecoxib (Bextra), have been developed for treating arthritis and other musculoskeletal complaints. Selective inhibition of COX-2 over COX-1 results in preferential decrease in prostacyclin production over thromboxane A2 production, thus leading to less gastric effects than those seen with nonselective COX inhibitors such as acetylsalicylic acid (aspirin). Here we show a novel effect of celecoxib via a mechanism that is independent of COX-2 inhibition. The drug inhibited the delayed rectifier (Kv2) potassium channels from Drosophila, rats, and humans and led to pronounced arrhythmia in Drosophila heart and arrhythmic beating of rat heart cells in culture. These effects occurred despite the genomic absence of cyclooxygenases in Drosophila and the failure of acetylsalicylic acid, a potent inhibitor of both COX-1 and COX-2, to inhibit rat Kv2.1 channels. A genetically null mutant of Drosophila Shab (Kv2) channels reproduced the cardiac effect of celecoxib, and the drug was unable to further enhance the effect of the mutation. These observations reveal an unanticipated effect of celecoxib on Drosophila hearts and on heart cells from rats, implicating the inhibition of Kv2 channels as the mechanism underlying this effect.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York 14214
| | - Ilya G Berim
- Department of Medicine, State University of New York, Buffalo, New York 14214
| | - Satpal Singh
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York 14214.
| |
Collapse
|
149
|
Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, Giacomini KM, Krauss RM. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 2007; 6:904-16. [PMID: 17971785 PMCID: PMC2763923 DOI: 10.1038/nrd2423] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serious adverse drug reactions (SADRs) are a major cause of morbidity and mortality worldwide. Some SADRs may be predictable, based upon a drug's pharmacodynamic and pharmacokinetic properties. Many, however, appear to be idiosyncratic. Genetic factors may underlie susceptibility to SADRs and the identification of predisposing genotypes may improve patient management through the prospective selection of appropriate candidates. Here we discuss three specific SADRs with an emphasis on genetic risk factors. These SADRs, selected based on wide-sweeping clinical interest, are drug-induced liver injury, statin-induced myotoxicity and drug-induced long QT and torsades de pointes. Key challenges for the discovery of predictive risk alleles for these SADRs are also considered.
Collapse
Affiliation(s)
- Russell A Wilke
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Abbott GW, Xu X, Roepke TK. Impact of ancillary subunits on ventricular repolarization. J Electrocardiol 2007; 40:S42-6. [PMID: 17993327 PMCID: PMC2128763 DOI: 10.1016/j.jelectrocard.2007.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 05/14/2007] [Indexed: 01/19/2023]
Abstract
Voltage-gated potassium (Kv) channels generate the outward K(+) ion currents that constitute the primary force in ventricular repolarization. Voltage-gated potassium channels comprise tetramers of pore-forming alpha subunits and, in probably most cases in vivo, ancillary or beta subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation, and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as alpha subunits. Cytoplasmic ancillary subunits include the Kv beta subunits, which regulate a range of Kv channels and may link channel gating to redox potential, and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular I(to) current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv alpha subunit subfamilies, and the putative 12-transmembrane domain KCR1 protein, which modulates hERG. In some cases, such as the ventricular I(Ks) channel complex, it is well established that the KCNQ1 alpha subunit must coassemble with the MinK (KCNE1) single-transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating I(Ks) current. In other cases, it is not so clear-cut, and in particular, the roles of the other MiRPs (1-4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular I(Kr)) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, for example, KChIP2 and the epicardial-endocardial I(to) current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, New York, NY, USA.
| | | | | |
Collapse
|